
Logic Synthesis Meets Machine Learning:
Trading Exactness for Generalization

Shubham Raif,6,†, Walter Lau Neton,10,†, Yukio Miyasakao,1, Xinpei Zhanga,1, Mingfei Yua,1, Qingyang Yia,1,
Masahiro Fujitaa,1, Guilherme B. Manskeb,2, Matheus F. Pontesb,2, Leomar S. da Rosa Juniorb,2,

Marilton S. de Aguiarb,2, Paulo F. Butzene,2, Po-Chun Chienc,3, Yu-Shan Huangc,3, Hoa-Ren Wangc,3,
Jie-Hong R. Jiangc,3, Jiaqi Gud,4, Zheng Zhaod,4, Zixuan Jiangd,4, David Z. Pand,4, Brunno A. de Abreue,5,9,

Isac de Souza Camposm,5,9, Augusto Berndtm,5,9, Cristina Meinhardtm,5,9, Jonata T. Carvalhom,5,9,
Mateus Grellertm,5,9, Sergio Bampie,5, Aditya Lohanaf,6, Akash Kumarf,6, Wei Zengj,7, Azadeh Davoodij,7,

Rasit O. Topalogluk,7, Yuan Zhoul,8, Jordan Dotzell,8, Yichi Zhangl,8, Hanyu Wangl,8, Zhiru Zhangl,8,
Valerio Tenacen,10, Pierre-Emmanuel Gaillardonn,10, Alan Mishchenkoo,†, and Satrajit Chatterjeep,†

aUniversity of Tokyo, Japan, bUniversidade Federal de Pelotas, Brazil, cNational Taiwan University,
Taiwan, dUniversity of Texas at Austin, USA, eUniversidade Federal do Rio Grande do Sul, Brazil,
fTechnische Universitaet Dresden, Germany, jUniversity of Wisconsin–Madison, USA, kIBM, USA,

lCornell University, USA, mUniversidade Federal de Santa Catarina, Brazil, nUniversity of Utah, USA,
oUC Berkeley, USA, pGoogle AI, USA

The alphabetic characters in the superscript represent the affiliations while the digits represent the team numbers
†Equal contribution. Email: shubham.rai@tu-dresden.de, walter.launeto@utah.edu, alanmi@berkeley.edu, schatter@google.com

Abstract—Logic synthesis is a fundamental step in hard-
ware design whose goal is to find structural representations
of Boolean functions while minimizing delay and area.
If the function is completely-specified, the implementa-
tion accurately represents the function. If the function is
incompletely-specified, the implementation has to be true
only on the care set. While most of the algorithms in logic
synthesis rely on SAT and Boolean methods to exactly
implement the care set, we investigate learning in logic
synthesis, attempting to trade exactness for generalization.
This work is directly related to machine learning where
the care set is the training set and the implementation
is expected to generalize on a validation set. We present
learning incompletely-specified functions based on the re-
sults of a competition conducted at IWLS 2020. The goal
of the competition was to implement 100 functions given
by a set of care minterms for training, while testing the
implementation using a set of validation minterms sampled
from the same function. We make this benchmark suite
available and offer a detailed comparative analysis of the
different approaches to learning.

I. INTRODUCTION

Logic synthesis is a key ingredient in modern electronic
design automation flows. A central problem in logic
synthesis is the following: Given a Boolean function
f : Bn → B (where B denotes the set {0, 1}), construct
a logic circuit that implements f with the minimum
number of logic gates. The function f may be completely
specified, i.e., we are given f(x) for all x ∈ Bn, or it may
be incompletely specified, i.e., we are only given f(x)
for a subset of Bn called the careset. An incompletely
specified function provides more flexibility for optimizing
the circuit since the values produced by the circuit outside
the careset are not of interest.

Recently, machine learning has emerged as a key
enabling technology for a variety of breakthroughs in

This work was supported in part by the Semiconductor Research
Corporation under Contract 2867.001.

artificial intelligence. A central problem in machine
learning is that of supervised learning: Given a class
H of functions from a domain X to a co-domain Y , find
a member h ∈ H that best fits a given set of training
examples of the form (x, y) ∈ X×Y . The quality of the
fit is judged by how well h generalizes, i.e., how well h
fits examples that were not seen during training.

Thus, logic synthesis and machine learning are closely
related. Supervised machine learning can be seen as logic
synthesis of an incompletely specified function with a
different constraint (or objective): the circuit must also
generalize well outside the careset (i.e., to the test set)
possibly at the expense of reduced accuracy on the careset
(i.e., on the training set). Conversely, logic synthesis may
be seen as a machine learning problem where in addition
to generalization, we care about finding an element of H
that has small size, and the sets X and Y are not smooth
but discrete.

To explore this connection between the two fields, the
two last authors of this paper organized a programming
contest at the 2020 International Workshop in Logic
Synthesis. The goal of this contest was to come up
with an algorithm to synthesize a small circuit for a
Boolean function f : Bn → B learnt from a training set
of examples. Each example (x, y) in the training set is an
input-output pair, i.e., x ∈ Bn and y ∈ B. The training set
was chosen at random from the 2n possible inputs of the
function (and in most cases was much smaller than 2n).
The quality of the solution was evaluated by measuring
accuracy on a test set not provided to the participants.

The synthesized circuit for f had to be in the form
of an And-Inverter Graph (AIG) [1, 2] with no more
than 5000 nodes. An AIG is a standard data structure
used in logic synthesis to represent Boolean functions
where a node corresponds to a 2-input And gate and
edges represent direct or inverted connections. Since an



AIG can represent any Boolean function, in this problem
H is the full set of Boolean functions on n variables.

To evaluate the algorithms proposed by the participants,
we created a set of 100 benchmarks drawn from a
mix of standard problems in logic synthesis such as
synthesis of arithmetic circuits and random logic from
standard logic synthesis benchmarks. We also included
some tasks from standard machine learning benchmarks.
For each benchmark the participants were provided with
the training set (which was sub-divided into a training set
proper of 6400 examples and a validation set of another
6400 examples though the participants were free to use
these subsets as they saw fit), and the circuits returned
by their algorithms were evaluated on the corresponding
test set (again with 6400 examples) that was kept private
until the competition was over. The training, validation
and test sets were created in the PLA format [3]. The
score assigned to each participant was the average test
accuracy over all the benchmarks with possible ties being
broken by the circuit size.

Ten teams spanning 6 countries took part in the contest.
They explored many different techniques to solve this
problem. In this paper we present short overviews of the
techniques used by the different teams (the superscript
for an author indicates their team number), as well a
comparative analysis of these techniques. The following
are our main findings from the analysis:

• No one technique dominated across all the bench-
marks, and most teams including the winning team
used an ensemble of techniques.

• Random forests (and decision trees) were very
popular and form a strong baseline, and may be
a useful technique for approximate logic synthesis.

• Sacrificing a little accuracy allows for a significant
reduction in the size of the circuit.

These findings suggest an interesting direction for future
work: Can machine learning algorithms be used for
approximate logic synthesis to greatly reduce power and
area when exactness is not needed?

Finally, we believe that the set of benchmarks used
in this contest along with the solutions provided by the
participants (based on the methods described in this paper)
provide an interesting framework to evaluate further
advances in this area. To that end we are making these
available at https://github.com/iwls2020-lsml-contest/.

II. BACKGROUND AND PRELIMINARIES

We review briefly the more popular techniques used.
Sum-of-Products (SOP), or disjunctive normal form,

is a two-level logic representation commonly used in
logic synthesis. Minimizing the SOP representation of an
incompletely specified Boolean function is a well-studied
problem with a number of exact approaches [4, 5, 6] as
well as heuristics [7, 8, 9, 10] with ESPRESSO [7] being
the most popular.

Decision Trees (DT) and Random Forests (RF) are
very popular techniques in machine learning and they
were used by many of the teams. In the contest scope,
the decision trees were applied as a classification tree,
where the internal nodes were associated to the function
input variables, and terminal nodes classify the function
as 1 or 0, given the association of internal nodes. Thus,
each internal node has two outgoing-edges: a true edge
if the variable value exceeds a threshold value, and a

Table I: An overview of different types of functions in
the benchmark set. They are selected from three domains:
Arithmetic, Random Logic, and Machine Learning.

00-09 2 MSBs of k-bit adders for k ∈ {16, 32, 64, 128, 256}
10-19 MSB of k-bit dividers and remainder circuits for k ∈ {16, 32, 64, 128, 256}
20-29 MSB and middle bit of k-bit multipliers for k ∈ {8, 16, 32, 64, 128}
30-39 k-bit comparators for k ∈ {10, 20, . . . , 100}
40-49 LSB and middle bit of k-bit square-rooters with k ∈ {16, 32, 64, 128, 256}
50-59 10 outputs of PicoJava design with 16-200 inputs and roughly balanced onset & offset
60-69 10 outputs of MCNC i10 design with 16-200 inputs and roughly balanced onset & offset
70-79 5 other outputs from MCNC benchmarks + 5 symmetric functions of 16 inputs
80-89 10 binary classification problems from MNIST group comparisons
90-99 10 binary classification problems from CIFAR-10 group comparisons

false value otherwise. The threshold value is defined
during training. Hence, each internal node can be seen
as a multiplexer, with the selector given by the threshold
value. Random forests are composed by multiple decision
trees, where each tree is trained over a distinct feature,
so that trees are not very similar. The output is given by
the combination of individual predictions.

Look-up Table (LUT) Network is a network of
randomly connected k-input LUTs, where each k-input
LUT can implement any function with up to k variables.
LUT networks were first employed in a theoretical
study to understand if pure memorization (i.e., fitting
without any explicit search or optimization) could lead
to generalization [11].

III. BENCHMARKS

The set of 100 benchmarks used in the contest can
be broadly divided into 10 categories, each with 10 test-
cases. The summary of categories is shown in Table I. For
example, the first 10 test-cases are created by considering
the two most-significant bits (MSBs) of k-input adders
for k ∈ {16, 32, 64, 128, 256}.

Test-cases ex60 through ex69 were derived from
MCNC benchmark [12] i10 by extracting outputs 91,
128, 150, 159, 161, 163, 179, 182, 187, and 209 (zero-
based indexing). For example, ex60 was derived using
the ABC command line: &read i10.aig; &cone -O 91.

Five test-cases ex70 through ex74 were similarly
derived from MCNC benchmarks cordic (both outputs),
too large (zero-based output 2), t481, and parity.

Five 16-input symmetric functions used in ex75
through ex79 have the following signatures:

00000000111111111, 11111100000111111,
00011110001111000, 00001110101110000, and
00000011111000000.

They were generated by ABC using command sym-
fun �signature�.

Table II shows the rules used to generate the last 20
benchmarks. Each of the 10 rows of the table contains
two groups of labels, which were compared to generate
one test-case. Group A results in value 0 at the output,
while Group B results in value 1. The same groups
were used for MNIST [13] and CIFAR-10 [14]. For
example, benchmark ex81 compares odd and even labels
in MNIST, while benchmark ex91 compares the same
labels in CIFAR-10.

In generating the benchmarks, the goal was to fulfill the
following requirements: (1) Create problems, which are
non-trivial to solve. (2) Consider practical functions, such
as arithmetic logic and symmetric functions, extract logic
cones from the available benchmarks, and derive binary
classification problems from the MNIST and CIFAR-10



Table II: Group comparisons for MNIST and CIFAR10

ex Group A Group B

0 0-4 5-9
1 odd even
2 0-2 3-5
3 01 23
4 45 67
5 67 89
6 17 38
7 09 38
8 13 78
9 03 89

machine learning challenges. (3) Limit the number of AIG
nodes in the solution to 5000 to prevent the participants
from generating large AIGs and rather concentrate on
algorithmic improvements aiming at high solution quality
using fewer nodes.

There was also an effort to discourage the participants
from developing strategies for reverse-engineering the
test-cases based on their functionality, for example, detect-
ing that some test-cases are outputs of arithmetic circuits,
such as adders or multipliers. Instead, the participants
were encouraged to look for algorithmic solutions to
handle arbitrary functions and produce consistently good
solutions for every one independently of its origin.

IV. OVERVIEW OF THE VARIOUS APPROACHES

Team 1’s solution is to take the best one among
ESPRESSO, LUT network, RF, and pre-defined standard
function matching (with some arithmetic functions). If
the AIG size exceeds the limit, a simple approximation
method is applied to the AIG.

ESPRESSO is used with an option to finish optimiza-
tion after the first irredundant operation. LUT network
has some parameters: the number of levels, the number
of LUTs in each level, and the size of each LUT. These
parameters are incremented like a beam search as long
as the accuracy is improved. The number of estimators
in random forest is explored from 4 to 16.

A simple approximation method is used if the number
of AIG nodes is more than 5000. The AIG is simulated
with thousands of random input patterns, and the node
which most frequently outputs 0 is replaced by constant-
0 while taking the negation (replacing with constant-1)
into account. This is repeated until the AIG size meets
the condition. The nodes near the outputs are excluded
from the candidates by setting a threshold on levels.
The threshold is explored through try and error. It was
observed that the accuracy drops 5% when reducing
3000-5000 nodes.

Team 2’s solution uses J48 and PART AI classifiers
to learn the unknown Boolean function from a single
training set that combines the training and validation
sets. The algorithm first transforms the PLA file in an
ARFF (Attribute-Relation File Format) description to
handle the WEKA tool [15]. We used the WEKA tool to
run five different configurations to the J48 classifier and
five configurations to the PART classifier, varying the
confidence factor. The J48 classifier creates a decision
tree that the developed software converts in a PLA file. In
the sequence, the ABC tool transforms the PLA file into
an AIG file. The PART classifier creates a set of rules that
the developed software converts in an AAG file. After,
the AIGER transforms the AAG file into an AIG file
to decide the best configuration for each classifier. Also,

we use the minimum number of objects to determine the
best classifier. Finally, the ABC tool checks the size of
the generated AIGs to match the contest requirements.

Team 3’s solution consists of decision tree based
and neural network (NN) based methods. For each
benchmark, multiple models are trained and 3 are selected
for ensemble. For the DT-based method, the fringe feature
extraction process proposed in [16, 17] is adopted. The
DT is trained and modified for multiple iterations. In
each iteration, the patterns near the fringes (leave nodes)
of the DT are identified as the composite features of
2 decision variables. These newly detected features are
then added to the list of decision variables for the DT
training in the next iteration. The procedure terminates
when there are no new features found or the number of
the extracted features exceeds the preset limit.

For the NN-based method, a 3-layer network is
employed, where each layer is fully-connected and uses
sigmoid as the activation function. As the synthesized
circuit size of a typical NN could be quite large, the
connection pruning technique proposed in [18] is adopted
to meet the stringent size restriction. The NN is pruned
until the number of fanins of each neuron is at most
12. Each neuron is then synthesized into a LUT by
rounding its activation [11]. The overall dataset, training
and validation set combined, for each benchmark is re-
divided into 3 partitions before training. Two partitions
are selected as the new training set, and the remaining one
as the new validation set, resulting in 3 different grouping
configurations. Under each configuration, multiple models
are trained with different methods and hyper-parameters,
and the one with the highest validation accuracy is chosen
for ensemble.

Team 4’s solution is based on multi-level ensemble-
based feature selection, recommendation-network-based
model training, subspace-expansion-based prediction, and
accuracy-node joint exploration during synthesis.

Given the high sparsity in the high-dimensional boolean
space, a multi-level feature importance ranking is adopted
to reduce the learning space. Level 1: a 100-ExtraTree
based AdaBoost [19] ensemble classifier is used with
10-repeat permutation importance [20] ranking to select
the top-k important features, where k ∈ [10, 16]. Level 2:
a 100-ExtraTree based AdaBoost classifier and an
XGB classifier with 200 trees are used with stratified 10-
fold cross-validation to select top-k important features,
where k ranges from 10 to 16, given the 5,000 node
constraints.

Based on the above 14 groups of selected features, 14
state-of-the-art recommendation models, Adaptive Factor-
ization Network (AFN) [21], are independently learned
as DNN-based boolean function approximators. A 128-
dimensional logarithmic neural network is used to learn
sparse boolean feature interaction, and a 4-layer MLP is
used to combine the formed cross features with overfitting
being handled by fine-tuned dropout. After training, a
k-feature trained model will predict the output for 2k

input combinations to expand the full k-dimensional
hypercube, where other pruned features are set to DON’T
CARE type in the predicted .pla file to allow enough
smoothness in the Boolean hypercube. Such a subspace
expansion technique can fully-leverage the prediction
capability of our model to maximize the accuracy on the
validation/test dataset while constraining the maximum



number of product terms for node minimization during
synthesis.

Team 5’s solution explores the use of DTs and RFs,
along with NNs, to learn the required Boolean functions.
DTs/RFs are easy to convert into SOP expressions. To
evaluate this proposal, the implementation obtains the
models using the Scikit-learn Python library [22]. The
solution is chosen from simulations using Decision-
TreeClassifier for the DTs, and an ensemble of Decision-
TreeClassifier for the RFs – the RandomForestClassifier
structure would be inconvenient, considering the 5000-
gate limit, given that it employs a weighted average of
each tree.

The simulations are performed using different tree
depths and feature selection methods (SelectKBest and
SelectPercentile). NNs are also employed to enhance
our exploration capabilities, using the MLPClassifier
structure. Given that SOPs cannot be directly obtained
from the output of the NN employed, the NN is used as a
feature selection method to obtain the importance of each
input based on their weight values. With a small sub-
set of weights obtained from this method, the proposed
solution performs a small exhaustive search by applying
combinations of functions on the four features with the
highest importance, considering OR, XOR, AND, and
NOT functions. The SOP with the highest accuracy
(respecting the 5001-gate limit) out of the DTs/RFs
and NNs tested was chosen to be converted to an AIG
file. The data sets were split into an 80%-20% ratio,
preserving the original data set’s target distribution. The
simulations were run using half of the newly obtained
training set (40%) and the whole training set to increase
our exploration.

Team 6’s solution learns the unknown Boolean func-
tion using the method as mentioned in [11]. In order to
construct the LUT network, we use the minterms as input
features to construct layers of LUTs with connections
starting from the input layer. We then carry out two
schemes of connections between the layers: ‘random
set of input’ and ‘unique but random set of inputs’. By
‘random set of inputs’, we imply that we just randomly
select the outputs of preceding layer and feed it to the next
layer. This is the default flow. By ‘unique but random set
of inputs’, we mean that we ensure that all outputs from a
preceding layer is used before duplication of connection.

We carry out experiments with four hyper parameters to
achieve accuracy– number of inputs per LUT, number of
LUTS per layers, selection of connecting edges from the
preceding layer to the next layer and the depth (number
of LUT layers) of the model. We experiment with varying
number of inputs for each LUT in order to get the
maximum accuracy. We notice from our experiments that
4-input LUTs returns the best average numbers across
the benchmark suite.

Once the network is created, we convert the network
into an SOP form using sympy package in python. This
is done from reverse topological order starting from the
outputs back to the inputs. Using the SOP form, we
generate the verilog file which is then used with ABC to
calculate the accuracy.

Team 7’s solution is a mix of conventional ML and
pre-defined standard function matching. If a training set
matches a pre-defined standard function, a custom AIG
of the identified function is written out. Otherwise, an
ML model is trained and translated to an AIG.

Team 7 adopts tree-based ML models for the straight-
forward conversion from tree nodes to SOP terms. The
model is either a decision tree with unlimited depth, or
an extreme gradient boosting (XGBoost) of 125 trees
with a maximum depth of five, depending on the results
of a 10-fold cross validation on training data.

With the learned model, all underlying tree leaves
are converted to SOP terms, which are minimized and
compiled to AIGs with ESPRESSO and ABC, respectively.
If the model is a decision tree, the converted AIG is final.
If the model is XGBoost, the value of each tree leaf is
first quantized to one bit, and then aggregated with a
3-layer network of 5-input majority gates for efficient
implementation of AIGs.

Tree-based models may not perform well in symmetric
functions or complex arithmetic functions. However,
patterns in the importance of input bits can be observed
for some pre-defined standard functions such as adders,
comparators, outputs of XOR or MUX. Before ML, Team
7 checks if the training data come from a symmetric
function, and compares training data with each identified
special function. In case of a match, an AIG of the
identified function is constructed directly without ML.

Team 8’s solution is an ensemble drawing from
multiple classes of models. It includes a multi-layer
perceptron (MLP), binary decision tree (BDT) augmented
with functional decomposition, and a RF. These models
are selected to capture various types of circuits. For all
benchmarks, all models are trained independently, and the
model with the best validation accuracy that results in a
circuit with under 5000 gates is selected. The MLP uses a
periodic activation instead of the traditional ReLU to learn
additional periodic features in the input. It has three layers,
with the number of neurons divided in half between
each layer. The BDT is a customized implementation
of the C4.5 tree that has been modified with functional
decomposition in the cases where the information gain
is below a threshold. The RF is a collection of 17 trees
limited to a maximum depth of 8. RF helps especially
in the cases where BDT overfits.

After training, the AIGs of the trained models are
generated to ensure they are under 5000 gates. In all cases,
the generated AIGs are simplified using the Berkeley
ABC tool to produce the final AIG graph.

Team 9’s proposes a Bootstrapped flow that explores
the search algorithm Cartesian Genetic Programming
(CGP). CGP is an evolutionary approach proposed as
a generalization of Genetic Programming used in the
digital circuit’s domain. It is called Cartesian because the
candidate solutions are composed of a two-dimensional
network of nodes. CGP is a population-based approach
often using the evolution strategies (1+λ)-ES algorithm
for searching the parameter space. Each individual is a
circuit, represented by a two-dimensional integer matrix
describing the functions and the connections among
nodes.

The proposed flow decides between two initialization:
1) starts the CGP search from random (unbiased) indi-
viduals seeking for optimal circuits; or, 2) exploring a
bootstrapped initialization with individuals generated by
previously optimized SOPs created by decision trees or
ESPRESSO when they provide AIGs with more than
55% of accuracy. This flow restricts the node functions
to XORs, ANDs, and Inverters; in other words, we may
use AIG or XAIG to learn the circuits. Variation is



Table III: Performance of the different teams

team ↓ test accuracy And gates levels overfit

1 88.69 2517.66 39.96 1.86
7 87.50 1167.50 32.02 0.05
8 87.32 1293.92 21.49 0.14
3 87.25 1550.33 21.08 5.76
2 85.95 731.92 80.63 8.70
9 84.65 991.89 103.42 1.75
4 84.64 1795.31 21.00 0.48
5 84.08 1142.83 145.87 4.17

10 80.25 140.25 10.90 3.86
6 62.40 356.26 8.73 0.88

added to the individuals through mutations seeking to
find a circuit that optimizes a given fitness function. The
mutation rate is adaptive, according to the 1/5th rule
[23]. When the population is bootstrapped with DTs or
SOP, the circuit is fine-tuned with the whole training
set. When the random initialization is used, it was tested
with multiple configurations of sizes and mini-batches
of the training set that change based on the number of
generations processed.

Team 10’s solution learns Boolean function representa-
tions, using DTs. We developed a Python program using
the Scikit-learn library where the parameter max depth
serves as an upper-bound to the growth of the trees,
and is set to be 8. The training set PLA, treated as a
numpy matrix, is used to train the DT. On the other hand,
the validation set PLA is then used to test whether the
obtained DT meets the minimum validation accuracy,
which we empirically set to be 70%. If such a condition
is not met, the validation set is merged with the training
set. According to empirical evaluations, most of the
benchmarks with accuracy < 70% showed a validation
accuracy fluctuating around 50%, regardless of the size
and shapes of the DTs. This suggests that the training
sets were not able to provide enough representative cases
to effectively exploit the adopted technique, thus leading
to DTs with very high training accuracy, but completely
negligible performances. For DTs having a validation
accuracy ≥ 70%, the tree structure is annotated as a
Verilog netlist, where each DT node is replaced with a
multiplexer. The obtained Verilog netlist is then processed
with the ABC Synthesis Tool in order to generate a
compact and optimized AIG structure. This approach has
shown an average accuracy over the validation set of 84%,
with an average size of AIG of 140 nodes (and no AIG
with more than 300 nodes). More detailed information
about the adopted technique can be found in [24].

V. RESULTS

A. Accuracy
Table III shows the average accuracy of the solutions

found by all the 10 teams, along with the average circuit
size, the average number of levels in the circuit, and
the overfit measured as the average difference between
the accuracy on the validation set and the test set. The
following interesting observations can be made: (i) most
of the teams achieved more than 80% accuracy. (ii) the
teams were able to find circuits with much fewer gates
than the specification.

When it comes to comparing network size vs accuracy,
there is no clear trend. For instance, teams 1 and 7 have

✔ ✔ ✔✔
✔
✔

✔

✔
✔

✔
✔

✔

✔

✔

✔

✔

✔

✔

Fig. 1: Representation used by various teams

��� ���� ���� ���� ����

�������������������

��

��

��

��

��

���

��
�
��
�
�
�
�
��
�
�

���������������������������

�����������������������������

������������������������

�������������������������������

Fig. 2: Acc-size trade-off across teams and for virtual best

similar accuracy, with very divergent number of nodes,
as seen in Table III. For teams that have relied on just
one approach, such as Team 10 and 2 who used only
decision trees, it seems that more AND nodes might lead
to better accuracy. Most of the teams, however, use a
portfolio approach, and for each benchmark choose an
appropriate technique. Here it is worth pointing out that
there is no approach, which is consistently better across
all the considered benchmarks. Thus, applying several
approaches and deciding which one to use, depending
on the target Boolean functions, seems to be the best
strategy. Fig. 1 presents the approaches used by each
team.

While the size of the network was not one of the
optimization criteria in the contest, it is an important
parameter considering the hardware implementation, as
it impacts area, delay, and power. The average area
reported by individual teams are shown in Fig. 2 as ‘×’.
Certain interesting observations can be made from Fig. 2.
Apart from showing the average size reached by various
teams, it also shows the Pareto-curve between the average
accuracy across all benchmarks and their size in terms of
number of AND gates. It can be observed that while 91%

� �� �� �� �� ���

����������

��

��

��

��

��

���

��
�
��
�
�
�
�
��
�
�

Fig. 3: Maximum accuracy achieved for each example



� � � � � � � � � ��

����

�

��

��

��

��

��

��

��

�
�
�
�
�
��
�
��
�
�
�
�
�
��
�
��

��
�
��
��
�
�
�
��
�
�
�
�
��
�
�

����

��������������

Fig. 4: Top-accuracy results achieved by different teams

accuracy constraint requires about 1141 gates, a reduction
in accuracy constraint of merely 2%, requires a circuit
of only half that size. This is an insightful observation
which strongly suggests that with a slight compromise
in the accuracy, much smaller size requirements can be
satisfied.

Besides area, it is also worth to look for the number
of logic-levels in the generated implementation, as it
correlates with circuit delay. Similar to the number of
nodes, there is no clear distinction on how the number of
levels impacts the final accuracy. Team 6 has delivered
the networks with the smallest depth, often at the cost
of accuracy. In practice, the winning team has just the
4th larger depth among the 10 teams.

Finally, Fig. 3 shows the maximum accuracy achieved
for each benchmarks. While most of the benchmarks
achieved a 100% accuracy, several benchmarks only
achieved close to 50%. That gives an insight on which
benchmarks are harder to generalize, and these bench-
marks might be used as test-case for further developments
on this research area.
B. Generalization gap

The generalization gap for each team is presented in
the last column of Table III. This value presents how
well the learnt model can generalize on an unknown set.
Usually, a generalization gap ranging from 1% to 2% is
considered to be good. It is possible to note that most of
the teams have reached this range, with team 7 having
a very small gap of 0.05%. Furthermore, given that the
benchmark functions are incompletely-specified, with
a very small subset of minterms available for training,
reaching generalization in small networks is a challenge.
Therefore, a special mention must be given to Team 10,
who reached a high level of accuracy with extremely
small network sizes.
C. Win-rate for different teams

Fig. 4 shows a bar chart showing which team achieved
the best accuracy and the top-1% for the largest number
of benchmarks. Team 3 is the winner in terms of both
of these criteria, achieving the best accuracy among all
the teams for 42 benchmark. Following Team 3, is Team
7, and then the winning Team 1. Still, when it comes to
the best average accuracy, Team 1 has won the contest.
This figure gives insights on which approaches have been
in the top of achieved accuracy more frequently, and
give a pointer to what could be the ideal composition of
techniques to achieve high-accuracy. As shown in Fig. 1,
indeed a portfolio of techniques needs to be employed to
achieve high-accuracy, since there is no single technique
that dominates.

VI. CONCLUSION

In this work, we explored the connection between
logic synthesis of incompletely specified functions and
supervised learning. This was done via a programming
contest held at the 2020 International Workshop on Logic
and Synthesis where the objective was to synthesize small
circuits that generalize well from input-output samples.

The solutions submitted to the contest used a variety
of techniques spanning logic synthesis and machine
learning. Portfolio approaches ended up working better
than individual techniques, though random forests formed
a strong baseline. Furthermore, by sacrificing a little
accuracy, the size of the circuit could be greatly reduced.
These findings suggest an interesting direction for future
work: When exactness is not needed, can synthesis be
done using machine learning algorithms to greatly reduce
area and power?

Future extensions of this contest could target circuits
with multiple outputs and algorithms generating an
optimal trade-off between accuracy and area (instead
of a single solution).

REFERENCES
[1] Satrajit Chatterjee. “On Algorithms for Technology Mapping”.

PhD thesis. University of California, Berkeley, 2007.
[2] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER

1.9 And Beyond. Tech. rep. Institute for Formal Models and
Verification, Johannes Kepler University, 2011.

[3] ESPRESSO(5OCTTOOLS) Manual Page. https://ultraespresso.
di.univr.it/assets/data/espresso/espresso5.pdf.

[4] Olivier Coudert. “Two-level logic minimization: an overview”.
In: Integration (1994).

[5] O. Coudert. “On Solving Covering Problems”. In: DAC. 1996.
[6] Goldberg et al. “Negative thinking by incremental problem

solving: application to unate covering”. In: ICCAD. 1997.
[7] Robert K Brayton et al. Logic minimization algorithms for

VLSI synthesis. Vol. 2. 1984.
[8] R. L. Rudell and A. Sangiovanni-Vincentelli. “Multiple-Valued

Minimization for PLA Optimization”. In: IEEE TCAD (1987).
[9] P. C. McGeer et al. “ESPRESSO-SIGNATURE: a new exact

minimizer for logic functions”. In: IEEE TVLSI (1993).
[10] J. Hlavicka and P. Fiser. “BOOM-a heuristic Boolean mini-

mizer”. In: ICCAD. 2001.
[11] S. Chatterjee. “Learning and memorization”. In: ICML. 2018.
[12] Saeyang Yang. Logic synthesis and optimization benchmarks

user guide: version 3.0. Microelectronics Center of North
Carolina (MCNC), 1991.

[13] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST hand-
written digit database”. In: ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist (2010).

[14] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple
layers of features from tiny images”. In: (2009).

[15] Mark Hall et al. “The WEKA Data Mining Software: An
Update”. In: SIGKDD Explor. Newsl. (2009).

[16] Giulia Pagallo and David Haussler. “Boolean Feature Discovery
in Empirical Learning”. In: Machine Learning (1990).

[17] Arlindo L. Oliveira and Alberto Sangiovanni-Vincentelli.
“Learning Complex Boolean Functions: Algorithms and Appli-
cations”. In: NeurIPS. 1993.

[18] Song Han et al. “Learning Both Weights and Connections for
Efficient Neural Networks”. In: NeurIPS. 2015.

[19] Yoav Freund and Robert E. Schapire. “A Decision-Theoretic
Generalization of On-Line Learning and an Application to
Boosting”. In: JCSS (1997).

[20] Leo Breiman. “Random Forests”. In: Machine Learning (2001),
pp. 5–32.

[21] Weiyu Cheng, Yanyan Shen, and Linpeng Huang. “Adaptive
Factorization Network: Learning Adaptive-Order Feature Inter-
actions”. In: Proc. AAAI. 2020.

[22] Fabian Pedregosa et al. “Scikit-learn: Machine learning in
Python”. In: JMLR (2011).

[23] Benjamin Doerr and Carola Doerr. “Optimal parameter choices
through self-adjustment: Applying the 1/5-th rule in discrete
settings”. In: ACGEC. 2015.

[24] R. G. Rizzo, V. Tenace, and A. Calimera. “Multiplication by
Inference using Classification Trees: A Case-Study Analysis”.
In: ISCAS. 2018.


