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Abstract—Multiplication is one of the most extensively used1

arithmetic operations in a wide range of applications, such2

as multimedia processing and artificial neural networks. For3

such applications, multiplier is one of the major contributors to4

energy consumption, critical path delay, and resource utilization.5

These effects get more pronounced in field-programmable gate6

array (FPGA)-based designs. However, most of the state-of-the-7

art designs are done for ASIC-based systems. Furthermore, a few8

field-programmable gate array (FPGA)-based designs that exist9

are largely limited to unsigned numbers, which require extra cir-10

cuits to support signed operations. To overcome these limitations11

for the FPGA-based implementations of applications utilizing12

signed numbers, this letter presents an area-optimized, low-13

latency, and energy-efficient architecture for an accurate signed14

multiplier. Compared to the Vivado area-optimized multiplier IP,15

our implementations offer up to 40.0%, 43.0%, and 70.0% reduc-16

tion in terms of area, latency, and energy, respectively. The RTL17

implementations of our designs will be released as an open-source18

library at https://cfaed.tu-dresden.de/pd-downloads.19

Index Terms— Accelerator architectures, artificial neural20

networks (ANN), fixed-point arithmetic, field-programmable gate21

arrays (FPGAs), multiplying circuits.22

I. INTRODUCTION23

APPLICATIONS in the domain of digital signal process-24

ing and machine learning extensively use multiplication25

as one of the basic arithmetic operations. The architecture26

of a selected multiplier and its implementation directly affect27

the overall performance, resource utilization, and energy con-28

sumption of such applications. The FPGA synthesis tools tend29

to use DSP blocks for high-performance multiplication [1].30

However, two points are worth noting concerning the DSP31

blocks utilization.32

1) For many applications, such as artificial neural networks33

(ANNs), the 32-b floating-point precision is often not34

necessary for obtaining acceptable quality results. As35

discussed in Section III, our 8-b quantized implementa-36

tion of an ANN reduces the classification accuracy only37

by 0.42% when compared with full-precision classifi-38

cation accuracy. For implementing multipliers for these39

low-precision numbers, the synthesis tools opt to use40

lookup tables (LUTs) instead of DSP blocks.41
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2) As noted by Ullah et al. [2] and Kuon and Rose [3], due to 42

the nonuniform distribution of these DSP blocks across 43

the FPGA, the critical path delay could be adversely 44

affected when many of them have to be concatenated for 45

large multiplication operations. Moreover, DSP resources 46

are limited. On the other hand, the LUT resources are 47

much larger. They also offer comparable performance 48

with better energy-efficiency and flexibility than the 49

DSP blocks for small-sized multipliers. Therefore, it 50

is more advantageous to have the option to use the 51

low-area, high performance, and energy-efficient LUT- 52

based multiplier beside the DSP blocks. In this letter, we 53

provide area-optimized, low-latency, and energy-efficient 54

accurate signed multipliers for FPGA-based systems. 55

FPGA vendors, such as Xilinx and Intel, provide softcore 56

LUT-based multipliers (signed and unsigned) as described 57

in [4]. These multipliers can be either area or speed optimized. 58

Booth’s algorithm [5] is also a commonly used technique for 59

multiplication because it reduces the total number of generated 60

partial products by encoding the multiplier bits. The widely 61

known related works are [7]–[9] and [11]. Kumm et al. [7] 62

and Walters [8] have used Booth’s algorithm to present 63

area-efficient radix-4 multiplier implementations for Xilinx 64

FPGAs. However, these implementations do not use compres- 65

sor trees for adding the generated partial products and have 66

large critical path delays. More importantly, Kumm et al. [7] 67

has not discussed the implementations for signed numbers. 68

Parandeh-Afshar et al. [11] have proposed a partial product 69

compressor tree for Altera (now Intel) FPGAs. Nonetheless, 70

their generalized parallel counters underutilize LUTs in two 71

consecutive adaptive logic modules (ALMs). Their follow- 72

up work, Parandeh-Afshar and Ienne [9] have used the 73

Booth’s and Baugh-Wooley’s multiplication [6] algorithms for 74

area-efficient multiplier implementation. However, in order 75

to reduce the effective length of the carry chains, their 76

design limits the length of the ALM to five, resulting in the 77

underutilization of the FPGA resources. 78

On the other hand, Kakacak [12] and Kumm et al. [13] 79

utilized smaller multiplier blocks for designing higher order 80

multipliers. However, such techniques prove to be only useful 81

for small bit-width multipliers; for higher bit-width multipliers, 82

they consume more FPGA resources. For example, the logic- 83

based implementation (using the “*” operation) of an accurate 84

8 × 8 multiplier on Virtex-7 FPGA in Xilinx Vivado, with 85

default synthesis options, consumes 71 LUTs, whereas the 86

modular implementation of an accurate 8 × 8 multiplier using 87

accurate 4×4 multipliers consumes 82 LUTs. 88

A. Motivation for Signed Multipliers 89

For some signed numbers-based applications, it may still 90

be possible to implement the required hardware accelerators 91

utilizing unsigned multiplier designs. For example, we have 92

quantized the trained parameters (weights and biases) of a 93

1943-0663 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9774-9522
https://orcid.org/0000-0001-7125-1737
salim
Typewriter
 (Author-ready Version)



IEE
E P

ro
of

2 IEEE EMBEDDED SYSTEMS LETTERS

TABLE I
BOOTH ENCODING AND CORRESPONDING SE FOR PARTIAL PRODUCTS.

bm+1, bm , AND bm−1 ARE MULTIPLIER BITS. (a) RADIX-4
BOOTH ENCODING. (b) SE

(a) (b)

lightweight ANN to 8-b fixed-point numbers to implement94

the ANN on FPGA. These parameters are signed numbers.95

To implement the ANN hardware using unsigned multipliers,96

we require additional signed-unsigned converters to extract the97

sign bit from the operands and compute the final product sign.98

These converters receive 2’s complement numbers and produce99

corresponding numbers in sign–magnitude format. After mul-100

tiplication in sign–magnitude format, the result is converted101

back to the 2’s complement scheme using signed–unsigned102

converter. These additional modules have increased the critical103

path delay of each multiplier by 2.061 ns and LUTs utilization104

by 24. Therefore, for the hardware implementations of appli-105

cations utilizing signed numbers, it is always advantageous to106

have high performance signed arithmetic units.107

B. Novel Contributions108

Our contributions include the following.109

1) A Novel Architecture for Booth Multiplier: Using 6-input110

LUTs and associated fast carry chains of modern111

FPGAs, we present an architecture for signed multipliers112

that provides better performance1 than state-of-the-art113

designs.114

2) Parallel Generation of Partial Products: We eliminate115

the need for sequential computation of the partial prod-116

ucts and generate all Booth-encoded partial products117

in parallel; that significantly reduces the overall critical118

path delay of the multiplier.119

3) Efficient Partial Products Encoding: Our partial product120

encoding technique reduces the length of the carry chain121

in each partial product to further reduce the critical path122

of the multiplier.123

II. PROPOSED DESIGNS OF ACCURATE MULTIPLIERS124

Using the concepts of radix-4 Booth’s multiplication algo-125

rithm, we present our area-optimized, low-latency, and energy-126

efficient accurate signed multipliers. The correct sign of a127

partial product, in booth’s encoding (BE)-based multiplier, is128

decided by the sign of the multiplicand (the MSB) and the129

corresponding value of BE. Table I(a) and (b) shows the list130

of required sign extensions (SEs) for all possible combinations131

of BE’s values and MSB of the multiplicand. We have used132

Bewick’s SE technique [16] to implement the correct sign of133

a partial product. Unlike state-of-the-art implementations, our134

proposed architecture computes all partial products in parallel135

and then adds the generated partial products using multiple136

4:2 compressors and a ripple carry adder (RCA). The parallel137

generation of partial products significantly reduces the critical138

path delay of the multiplier. Our implementations provide opti-139

mized configurations for the 6-input LUTs and the associated140

1Collective performance considering the area, delay, and energy.

(a) (b) (c)

Fig. 1. Configuration of LUTs used in proposed design. (a) Type-A.
(b) Type-B. (c) Type-C.

carry chains in a logic slice of modern FPGAs such as Xilinx 141

Virtex-7 series. 142

A. Accurate Signed Partial Products Generation 143

Fig. 1 shows the configurations of the 6-input LUTs used for 144

the implementation of the proposed accurate multiplier. The 145

BE is implemented by LUT Type-A configuration, as shown 146

in Fig. 1(a). It receives five inputs, i.e., an and an−1 (from 147

multiplicand) and bm+1, bm and bm−1 (from multiplier). The 148

LUT internally implements three MUXes. Based on the value 149

of BE, the first MUX (controlled by s signal) decides whether 150

an or an−1 should be forwarded for partial product generation. 151

The second MUX, controlled by c signal, manages the inver- 152

sion of the output of the first MUX. Finally, the third MUX 153

can make the partial product zero depending upon the value 154

of the z signal. This information is forwarded to the associated 155

carry chain as carrying propagate signal “pout.” The input an 156

is used as the carry generate signal “gout” for the carry chain. 157

Bewick’s SE technique for each partial product row is 158

implemented by LUT Type-B and LUT Type-C configurations, 159

as shown in Fig. 1(b) and (c), respectively. The LUT Type-B 160

receives five inputs, i.e., bm+1, bm, and bm−1 (from multiplier), 161

an (the MSB of the multiplicand), and pin. The pin signal is 162

constant “1” for the first row of partial products and for all 163

other rows it is constant “0.” The LUT computes the SE signal, 164

performs the XOR operation on it and provides the result to the 165

associated carry chain as the carry propagate signal pout. The 166

carry generate signal gout is directly provided by the pin signal. 167

LUT Type-C is used to transfer the correct sign information 168

of its respective partial product row to the following partial 169

product row. 170

Utilizing LUTs of types A, B, and C, Fig. 2(a) shows the 171

first row of partial products for an 8 × 8 multiplier. The right- 172

most LUT of Type-A in each partial product row is used for 173

computing the required input carry. This input carry is applied 174

for representing a partial product in 2’s complement format. 175

For an 8×8 multiplier, a total of four partial product rows will 176

be generated. The last partial product row does not require an 177

LUT of Type-C. 178

B. Optimizing Critical Path Delay 179

For an N × M multiplier, the length of the carry chain in 180

each partial product row is N + 4 bits. To improve the critical 181

path delay of the multiplier, the length of the carry chain can 182

be reduced to N+1 bits. A critical path delay-optimized imple- 183

mentation of our novel multiplier is shown in Fig. 2(b). The 184

partial product terms pp(x,0) and pp(x,1), in each partial product 185

row, require one and two bits of the multiplicand, respectively. 186

These two partial product terms can be implemented by one 187

single 6-input LUT “A1.” Similarly, pp(x,2), in each partial 188

product row, can be independently implemented using another 189

6-input LUT “A2.” A separate 6-input LUT, “CG,” can be used 190

to compute the correct input carry for each partial product row. 191

Fig. 3 shows the internal configurations of LUT types A1, A2, 192
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(a)

(b)

Fig. 2. First partial product row for an 8 × 8 multiplier. (a) First version of
multiplier. (b) Optimized version of multiplier.

Fig. 3. Configuration of LUTs types A1, A2, and CG. (a) LUT A1. (b) LUT
A2/CG.

and CG, respectively. LUT types A2 and CG only differ in the193

output signals pp(x,2) and cgout. LUT type A2 utilizes pp(x,2)194

signal solely, whereas LUT type CG uses cgout signal exclu-195

sively. For an N ×M multiplier, the number of LUTs required196

to generate partial products is (N + 3) × �M/2� − 1.197

C. Accumulation of Generated Partial Products198

For the reduction of generated partial products to compute199

the final product, binary adders, ternary adders, and 4:2 com-200

pressors [15] can be utilized. A 4:2 compressor is capable201

of reducing four partial product rows to two output rows.202

During our experiments, we observe that the deployment of203

ternary adders might reduce the overall resource utilization.204

However, they have higher critical path delays than binary205

adders. Therefore, in this letter, the 4:2 compressors and binary206

adders are used for the reduction of the generated partial prod-207

ucts. We have used the 6-input LUTs and the associated carry208

chains to implement them.209

III. RESULTS AND DISCUSSION210

We have used VHDL for the RTL implementations of all211

presented multipliers. The proposed designs have been syn-212

thesized and implemented using Xilinx Vivado 17.4 for the213

Virtex-7 xc7v585tffg1157-3 FPGA (unless stated otherwise).214

Power values are estimated by the simulator and power215

analyzer tools provided by Vivado.216

We have compared the implementation results of our217

proposed multiplier with the Vivado’s area/speed-optimized218

multiplier IPs [4], “R1” [8], “R5” [7], and “R7” [14].2219

Furthermore, the proposed design is also evaluated against the220

state-of-the-art approximate multipliers “R2” [17], “R3” [2],221

“R4” [18], and an 8 × 8 multiplier “R6” from [14].3 For the222

2A generic and open-source implementation for every size of multiplier is
not available. Signed multiplier “mul8s_1KV8.v” from the library is used.

3For “R6” approximate “mult_000.v” from the library is used.

Fig. 4. Comparison of the proposed signed multipliers with the
unsigned multipliers (without the signed–unsigned converters). The results
are normalized to our proposed multipliers.

unsigned numbers-based architectures in “R1,” “R2,” “R3,” 223

“R4,” and “R5,” we have implemented signed–unsigned con- 224

verters. To show a fair comparison, we have reported the 225

performance results of the state-of-the-art multipliers with and 226

without using these signed–unsigned converters. 227

A. Implementation Results 228

Table II presents the resource consumption (LUTs), CPD, and 229

EDP requirements of our proposed design and different state- 230

of-the-art accurate and approximate multipliers. In the table, 231

the results for “R2,” “R3,” “R4,” “R5,” and “R6” multipliers 232

are inclusive of the signed–unsigned converters. For “R6” 233

multiplier, there is only one design point with the input bit-width 234

of 8 × 8. 235

As shown in Table II, except for “R1” [8] and “R5” [7], 236

our proposed multiplier always requires less number of LUTs 237

than other state-of-the-art multipliers for different bit-widths. 238

“R1” and “R5” multipliers utilize sequential computation of 239

partial products to obtain area gains at the cost of high critical 240

path delays. The area savings offered by our designs increase 241

with the size of the multiplier, up to 16% when compared with 242

Vivado 32 × 32 area/speed-optimized IP. 243

Our proposed multiplier provides higher performance than 244

state-of-the-art accurate and approximate multipliers. For exam- 245

ple, compared to the 8 × 8 Vivado speed-optimized multiplier 246

IP, our multiplier reduces the critical path delay by 21%. “R1” 247

and “R5” accurate multipliers have higher critical path delays 248

among all presented multipliers. 249

The energy efficiency of the presented multiplier designs is 250

characterized by the EDP as illustrated in Table II. It can be 251

drawn from the table that our proposed multipliers have better 252

energy efficiency than state-of-the-art across different sizes. For 253

example, our 16×16 multiplier delivers up to 23.6% reduction 254

in EDP when it is compared against “R1.” 255

To further elaborate on the efficacy of our proposed imple- 256

mentation, Table II shows the averages of the products of 257

the normalized values of LUTs utilization, CPD, and EDP 258

(Average [Norm. LUTs × Norm. CPD × Norm. EDP]) across 259

different sizes of multipliers. All individual performance met- 260

rics of each multiplier have been normalized with respect 261

to the corresponding performance metrics of Vivado area- 262

optimized multiplier IP. Our proposed multiplier outperforms 263

state-of-the-art implementations in the overall score. 264

We have also compared our proposed signed multipliers 265

to the state-of-the-art accurate and approximate unsigned 266

multipliers without deploying signed–unsigned converters. 267

Fig. 4 presents the resource utilization, CPD, and EDP of 8×8 268

and 16 × 16 proposed implementations, “R2,” “R3,” “R4,” 269

“R5,” and “R6” multipliers. These results have been normalized 270

to the implementation results of our proposed implementations. 271

Compared to the accurate 16 × 16 “R5” multiplier, our imple- 272

mentation provides 39.0% and 42.0% reduction in CPD and 273

EDP, respectively. 274
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TABLE II
IMPLEMENTATION RESULTS OF DIFFERENT MULTIPLIERS. “R2,” “R3,” “R4,” “R5,” AND “R6” MULTIPLIERS ARE IMPLEMENTED WITH THE

SIGNED–UNSIGNED CONVERTERS. THE RESULTS WITH SHADING ARE THE LOWEST IN THEIR RESPECTIVE COLUMN

Fig. 5. Results of the neural network use-case. The LUT resources and EDP
obtained for designs with different multiplier are normalized to Vivado-area.

B. Case Studies275

1) Artificial Neural Network’s Inference With Small-Size276

Multiplier: We have also applied our multiplier for the infer-277

ence stage of a neural network [19]. The network is used for the278

classification of handwritten digits from MNIST database. The279

inference accuracy of the ANN for 10 000 images with 8-b fixed280

point numbers and our 8 × 8 multiplier is 96.67%. The original281

accuracy with 64-b number and multiplier is 97.09%. The loss282

in classification accuracy for the multiplier is negligible. If the283

network was implemented on the FPGA with our proposed accu-284

rate multiplier instead of the Vivado’s area-optimized multiplier,285

the estimated LUT saving is 17.5%.286

2) Artificial Neural Network’s Inference Implementation on287

FPGA: The target FPGA is Xilinx Zynq Ultrascale xczu3eg288

used in the Ultra96 evaluation platform. The network has one289

fully connected layer. Inside each neuron, beside the MAC290

unit, there are also activation and quantization modules. The291

activation function is ReLU. The quantization module converts292

the MAC results (which are represented in a wider bit width)293

back to the original fixed-point format.294

First, we implement the network with the Vivado’s speed-295

optimized multiplier with as many number of neurons as296

possible in three different input sizes, 8 × 8, 16 × 16, and297

32 × 32. The timing constraint is 4 ns. After that, the same298

setups are applied for the Vivado-area multiplier, R6 [9], and299

ours. The results are presented in Fig. 5. In the combined300

LUTxEDP average across all input sizes, ours offers the best301

results. Our multiplier is 5%, 43%, and 37% better than Vivado-302

speed, Vivado-area, and R6 [9], respectively. While R6 [9] has303

the lowest LUT counts, its EDP is the worst among all when304

the input size increases. In comparison with Vivado-speed,305

ours is comparable in EDP but requires an average of 8%306

less number of LUTs. These results imply that with the same307

amount of fixed FPGA resources, more of our multipliers can308

be instantiated to further exploit the available parallelism of309

the application with only a slight increase in energy (if any).310

Our multiplier also fits well with various modern Xilinx FPGA311

architectures.312

IV. CONCLUSION 313

This letter presented a novel area-optimized, low-latency, 314

and energy-efficient accurate signed multiplier architecture for 315

FPGA-based systems. We have also evaluated the benefits of 316

our multipliers in neural network applications. The RTL models 317

of our designs will be released as an open-source library at 318

https://cfaed.tu-dresden.de/pd-downloads. 319
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