
Emergent Design Challenges for Embedded Systems and Paths
Forward: Mixed-criticality, Energy, Reliability and Security

Perspectives
Special Session Paper

Siva Satyendra Sahoo1, Akash Kumar1, Martin Decky2, Samuel C.B. Wong3, Geoff V. Merrett3,
Yinyuan Zhao4, Jiachen Wang4, Xiaohang Wang4, Amit Kumar Singh5

Technische Universität Dresden1, Dresden Research Center of Huawei2, University of Southampton3, South China
University of Technology4, University of Essex5

{siva_satyendra.sahoo,akash.kumar}@tu-dresden.de,martin.decky@huawei.com,{scbw1g19,gvm}@ecs.soton.ac.uk
201630666455@mail.scut.edu.cn,jiachenwang3@gmail.com,xiaohangwang@scut.edu.cn,a.k.singh@essex.ac.uk

ABSTRACT
Modern embedded systems need to cater for several needs depend-
ing upon the application domain in which they are deployed. For
example, mixed-critically needs to be considered for real-time and
safety-critical systems and energy for battery-operated systems. At
the same time, many of these systems demand for their reliability
and security as well. With electronic systems being used for increas-
ingly varying type of applications, novel challenges have emerged.
For example, with the use of embedded systems in increasingly
complex applications that execute tasks with varying priorities,
mixed-criticality systems present unique challenges to designing
reliable systems. The large design space involved in implement-
ing cross-layer reliability in heterogeneous systems, particularly
for mixed-critical systems, poses new research problems. Further,
malicious security attacks on these systems pose additional extraor-
dinary challenges in the system design. In this paper, we cover both
the industry and academia perspectives of the challenges posed by
these emergent aspects of system design towards designing high-
performance, energy-efficient, reliable and/or secure embedded
systems. We also provide our views on paths forward.

CCS CONCEPTS
• Computer systems organization→ Embedded systems.

KEYWORDS
Mixed-criticality, reliability, energy-efficiency, aging attack, covert
channel attack, attack mitigation

ACM Reference Format:
Siva Satyendra Sahoo1, Akash Kumar1, Martin Decky2, Samuel C.B. Wong3,
Geoff V. Merrett3, Yinyuan Zhao4, Jiachen Wang4, Xiaohang Wang4, Amit
Kumar Singh5. 2021. Emergent Design Challenges for Embedded Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CODES/ISSS ’21, October 10–13, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9076-7/21/10. . . $15.00
https://doi.org/10.1145/3478684.3479246

and Paths Forward: Mixed-criticality, Energy, Reliability and Security Per-
spectives: Special Session Paper. In 2021 International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES/ISSS ’21), October
10–13, 2021, Virtual Event, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3478684.3479246
1 INTRODUCTION
It is well known that there are several emergent design challenges
for embedded systems. The reason being their increased usage in
many application domains, e.g. automotive and smart homes, and
their increased complexity to support a variety of applications or
features in these application domains. Performance that relates to
timing properties has always been of paramount importance in
time-critical systems. It has also been focused extensively of other
kinds of systems as well for better user experience, for example,
frame rendering speed while watching a video [45].

The reliance of embedded systems on battery has demanded for
energy-aware system design along with performance considera-
tions [2, 46]. Optimisation of both energy and performance imposes
challenges as the number of design points to be explored increases
and various design points typically represent a trade-off between
these two metrics. An embedded system consuming high energy
typically dissipates high power as well and thus results in high tem-
perature due to increased power density within the chip. Therefore,
join optimisation of energy and temperature management has been
extensively explored [47].

The rise in operating temperature of an embedded system leads
to bad user experience and reliability issues. Reliability consider-
ation during system design is being extensively explored [30, 41].
Modern embedded systems are also facing hardware security at-
tacks of various types, e.g. denial of service (DoS) attack [53], aging
attack [54] and covert channel attack [18]. In DoS, the needed ser-
vice is denied by various means like blocking packets reaching a
destination, and aging and covert channel attacks accelerate system
aging and leak sensitive information, respectively.

This paper discusses emergent design challenges faced by the
academia and industry while considering one or multiple metrics
based on the design requirement, which typically depends on the
application domain. Section 2 provides a industry perspective of the
challenges and paths forward in ensuring reliability in embedded
systems, particularly for mixed-criticality. Section 3 and Section
4 focus on the design space considerations and paths forward for
energy-efficiency and cross-layer reliability, respectively. Section

https://doi.org/10.1145/3478684.3479246
https://doi.org/10.1145/3478684.3479246
https://doi.org/10.1145/3478684.3479246

5 focuses on the aging and covert channel attacks, their novel
mitigation methods and paths forward. Finally, Section 6 concludes
the paper.
2 MIXED-CRITICALITY SYSTEMS: THEORY

VS. PRACTICE
The goal of mixed-criticality systems is to accommodate two types
of workloads with extremely diverse requirement sets side-by-side.
On the one hand, we have the high criticality workloads with strict
requirements on safety, security, real-time behavior, etc. On the
other hand, we have the low criticality workloads that prioritize raw
performance and vendor/user customization. This section presents
an overview of the industry best practices of designing and building
hardware platforms and operating systems that form the founda-
tion for mixed-criticality systems. We also discuss gaps between
research and practice and how these gaps could be bridged.

2.1 Problem Statement
In an ideal world, a system that meets the maximal possible set
of requirements in the domains of safety, security, integrity, relia-
bility and dependability (high criticality for short) would be also
considered a suitable system for the use cases where a lesser de-
gree of adherence to the mentioned (and related) requirements
is necessary (low criticality for short). Unfortunately, achieving
the high-criticality requirements is not only costly at the design
and implementation time, but a huge price needs to be also paid
repeatedly during the deployment time.

The costs of achieving high-criticality requirements are both
direct (e.g. the need to redo a labor-intensive and time-consuming
validation, verification and certification of the whole system with
each major change) and indirect (e.g. the increased and sometimes
even prohibitive cost of certified hardware that would meet the
performance requirements).

Moreover, high-criticality and low-criticality use cases differ
also in many practical aspects. While high criticality is defined by
a strict set of requirements that are well known at design time and
rarely change, low criticality could be readily defined by the “good
enough” criterion. This means a lack of a priori strict requirements
which are replaced by an ever-changing set of business-oriented
demands (time-to-market, user experience, etc.).

A system that is a mix of the high-criticality and low-criticality
workloads calls for a combination of quite incompatible develop-
ment processes and methodologies. High criticality typically re-
quires the Waterfall model, V-Model or other strict requirement-
driven approach. Low criticality typically requires a more iterative
and prototype-based, if not even agile approach. A straightforward
approach to reconcile these conflicting approaches is a complete
physical separation – designing, implementing and maintaining the
high-criticality and low-criticality parts as completely independent
systems. The drawback of this approach is obviously in increased
costs caused by the potential underutilization of resources and lit-
erally in the increased physical mass of the underlying hardware
(which is costly in industries like automotive/aerospace).

Current efficient mixed-criticality systems try to reconcile the
conflicting approaches in a different way: By providing a single
platform that does not compromise the goals of the high-criticality
and of the low-criticality parts and, at the same time, leverages the
benefits of the consolidation. But similarly to everything else in

life, there is no free lunch and the price that needs to be paid here
is the increased complexity of the mixed-criticality system. Where
the physically separated systems provide no mutual influence by
default and any kind of desired interaction between high criticality
and low criticality needs to be established explicitly, with mixed-
criticality systems we need to explicitly seal all potential (covert)
channels, leaving only those desirable channels open.

2.2 Constructing Mixed-criticality Systems in
Academia

Academia and industry have historically taken different approaches
towards constructing mixed-criticality systems. The pinnacle of
the academic approach are methods such as worst-case execution
time analysis, schedulability analysis and formal verification of
correctness. These methods stand clearly on the high-criticality
side of the mixed system and typically isolate the low-criticality
parts into virtual machines that are only allowed to consume the
spare resources of the system.

The benefits of the academic approach is the strength of the
guarantees it can provide and their exhaustiveness regarding the
individual properties they guarantee. The drawbacks are the practi-
cal limits of the scale and complexity of the systems (or, to be more
precise, of the individual components of the system that can be ana-
lyzed in isolation) where these methods can provide positive results.
The analyses typically cause some kind of state space explosion
where the time and storage space required to examine all inter-
esting cases grows exponentially. In case of applying abstractions
for limiting the state space explosion, the process often involves
a substantial amount of human labor that cannot be universally
automated and in the worst case even problems with decidability.

To avoid the drawbacks and leverage the benefits, the mixed-
criticality systems are designed within a carefully constrained de-
sign space. A textbook example is the seL4 microkernel [20] which
is not only designed as a typical microkernel, but whose design
and implementation has been completely subjected to the goals of
formal verification and the support for mixed criticality [12]: The
kernel is single-threaded, completely passive, reactive and static.
While the general notion of minimality is shared with most other
microkernels, the extreme simplification of the inner mechanisms
of the kernel leads to increased complexity of the user space up
to the point where the kernel-provided abstractions cause abstrac-
tion inversion anti-patterns where even trivial functionality needs
to be implemented by means of non-trivial interaction of many
underlying resources.

To rephrase, many of the academic approaches towards mixed-
criticality trade strong guarantees within the realm of their proof
assumptions for increased complexity outside of the realm of their
proof assumptions. It is arguable whether this leads to practically
more reliable and dependable systems overall unless compensated
by different means.

2.3 Constructing Mixed-criticality Systems in
Industry

The typical industrial approach towards mixed-criticality systems
is based on formalizing the best practices in software engineering
and carefully certifying the whole design/development process.
This is a rather holistic approach that mimics similar approaches
in other engineering fields: There is the fundamental theory on the

2

one hand, but on the other hand there are also countless examples
of good and bad designs in the history (or, to be more precise,
designs that stood and designs that did not stand the test of time)
and countless examples of past mistakes that can be avoided. A
common observation is that many mistakes happen either due to
negligence and poor craftsmanship. Failures also tend to happen
due to unforeseen combinations of otherwise benign circumstances.

These methods can be demonstrated, for example, on the safety
certification processes such as the ISO 26262 [14] in the automotive
industry and the DO-178C [13] in the aerospace industry. These
certification processes focus very strongly on the organizational
aspects and on due diligence (clear definition of responsibilities of
organizational roles, well-defined and documented organizational
processes, guaranteed escalation paths that make sure the safety
goals are never compromised due to business goals, use of qualified
tools in qualified configurations, etc.), on proper safety require-
ments and hazards analyses, tracking and traceability (every design
and implementation artifact needs to have a paper trail to a safety
goal, every safety-relevant aspect must have a complete test cover-
age, etc.) and on proper development guidelines (following a strict
coding standard such as MISRA, etc.).

The industrial certification approaches provide a relatively large
degree of flexibility for integrating low-criticality components into
the mixed-criticality system because they allow to individually
evaluate to what degree a component is critical (or which aspects of
the component are critical) and apply different certification means
accordingly. The essential requirement is that each such decision is
explicit, documented and confirmed by the organizational roles that
have proper authority. Given the practical and organizational nature
of the industrial approaches, they naturally incorporate aspects
such as the interaction with other systems and the interaction with
the users into the whole framework.

While many of the industrial certification processes allow and
encourage exhaustive formal verification methods, such formal
methods are mostly optional and non-essential. This is also the
source of the main drawback of the industrial approaches: They
mostly provide only statistical and probabilistic guarantees and
they are unable to go beyond that. This is especially problematic
with respect to the mixed-criticality systems because there are no
strong guarantees that a low-criticality component (which has been
subject to much less scrutiny than the high-criticality components)
cannot affect the system in a way that would jeopardize the goals
of the high-criticality components.

2.4 Paths Forward
The author believes strongly in the importance of incremental
progress, in cross-pollination of ideas, in the transfer of knowledge
and experience from industry to academia and vice versa. Thanks to
this progress, the academic approaches have grown over the years
from being useful on toy textbook examples to being useful on
real-world systems (or at least on a useful subset of them). Thanks
to this progress, the industrial approaches have matured over the
years from a set of well-meant but naïve guidelines to rigorous
standards with a solid track record.

However, the author also believes that our greatest enemies
are not bugs, failures and vulnerabilities. Our greatest enemy is
our own desire to always build new things that are just slightly

out of the reach of the current methods that should assure their
correctness. While inventing without a constraint is clearly a great
motivator for humans, it also means that we are always building
mixed-criticality systems that are potentially slightly unreliable. An
alternative would be to use our current methods and knowledge on
systems that are a few years old. Such systems are still operational
and both individuals and our entire society rely on them.

This voluntary “taming of complexity” would be obviously not
easy to defend from the short-term economic point of view, but
given the fact that our society relies heavily on high-criticality
and mixed-criticality systems, the long-term economic benefits of
decreased costs of failures, outages and other issues should prevail.

All methods for constructing sound mixed-criticality systems
have huge upfront costs, while the costs of failures, outages and
other issues are spread over time and in many cases are externalities
not paid directly by the original stakeholders. It is important to
change the default mindset of many users which says that failures of
computer systems are “normal” and essentially unavoidable. Prof.
Andrew Tanenbaum once asked the following question: “If one
in million car tires randomly exploding is not acceptable, why is
this still acceptable in software?” Finding the right answers to this
question will help us bridge the gaps in our knowledge.
3 ENERGY-DRIVEN DESIGN
The rapid expansion of embedded/IoT brings with it the additional
challenge of how to power the billions of anticipated devices. While
a majority is still likely to be tethered to mains power, a significant
proportion of devices will be locally powered – and this puts a
significant burden on both the sustainability of battery technology,
as well as the workforce required to replace and maintain them.
As such, the opportunity to power embedded devices from locally
harvested environmental energy is ever more attractive. This is,
however, not without its challenges including very low and highly
dynamic available power. This variability, coupledwith other design
constraints, can lead to the system being depleted of energy, causing
reliability and dependability issues and ultimately system failure.
As a result, the system needs to be designed around the properties of
the energy source, e.g. availability, timeliness, conversion efficiency,
storage capability etc. To this end, in this section we introduce an
energy-driven paradigm to effectively design such systems.

3.1 System Architecture and Computing
Landscape of Energy-Driven Systems

Energy-driven system design applies primarily to cyber-physical
systems (CPS) that are powered directly from ambient sources of
energy, such as solar, air flow, vibration and RF [25]. When an
energy-driven approach is taken to the design of these systems,
they differ from traditional CPS by focusing on power supply and
demand characteristics early in the design cycle, and directly along-
side application criteria. This may involve, for example, questioning
whether or not periodic sensing/reporting is necessary, or whether
instead the device functionality can be synchronised with energy
available. This may not be possible for many applications, and often
requires reconsidering the fundamental purpose of the application.

A typical energy harvesting IoT device is illustrated in Figure 1. It
consists of a compute/control core, sensing elements, a radio, power
management circuitry, the energy harvester, and some energy stor-
age. The compute capability of these systems is highly variable

3

Figure 1: A typical energy harvesting IoT device

Table 1: IETF classes of constrained devices
Name data size (e.g. RAM) code size (e.g. Flash)
Class 0 << 10 KiB << 100 KiB
Class 1 ∼ 10 KiB ∼ 100 KiB
Class 2 ∼ 50 KiB ∼ 250 KiB

to accommodate different uses cases. For example, the Internet
Engineering Task Force (IETF) define three classes of networked
constrained devices as summarised in Table 1 [5].

Class 2 systems are less resource constrained and are fully capa-
ble of performing IP-style networking. They are likely to be mains-
tethered, and hence not the target of energy-driven design. Class 0
systems are severely constrained sensor-like nodes, which acts as a
peripheral with simple communication links to Class 1 or Class 2
devices that act as gateways to the Internet. Numerous examples of
the application of energy-driven paradigms to Class 0 systems have
been reported, for example battery-less speedometer/odometer [4],
footstep-powered pedometer [31], solar-powered wild-life moni-
toring cameras [26], etc. Class 1 systems are constrained nodes
that are capable of hosting a fairly robust networking stack, but
fall short of being able to support the traditional Internet Proto-
col (IP). This class of systems are the main target for IoT-style IP
such as 6LowPAN and CoAP and the applicability of energy-driven
frameworks to this class of systems is an area of active research.

Energy harvesting was initially introduced as a means of increas-
ing operational life-time. If energy harvested is greater than energy
consumed within the target deployment life-cycle, energy neutral-
ity is said to have been achieved. Energy neutrality is a typical
constraint and design target for self-powered devices, expressed as:∫ 𝑛𝑇

(𝑛−1)𝑇
𝑃ℎ (𝑡)𝑑𝑡 =

∫ 𝑛𝑇

(𝑛−1)𝑇
𝑃𝑐 (𝑡)𝑑𝑡 (1)

where 𝑃ℎ is the power harvested, 𝑃𝑐 is the power consumed, and
𝑇 is a period of interest. Traditional systems also require that the
following inequality holds:

𝐸0 +
∫ 𝑇

0
𝑃ℎ (𝑡) − 𝑃𝑐 (𝑡)𝑑𝑡 > 𝐸𝑚𝑖𝑛,∀𝑇 (2)

where 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial state of charge at deployment time, e.g.
a fully charged battery, and 𝐸𝑜𝑛 is the minimum energy that needs
to be in the storage element (e.g. a supercapacitor) to power on
the system. This means that the storage never depletes past the
turn-off threshold at any point during the deployment life-cycle.
One approach to energy-driven design is to relax the constraint
in Equation 2, such that the system sustains operation through
intermittent power supply failures.

Figure 2: Contrasting the behaviour of the three IC classes

3.2 Intermittent Computing
Intermittent computing (IC) is a key enabler of energy-driven sys-
tems, because it caters for the case when Equation 2 does not hold.
It addresses the problem of sustaining forward progress in com-
putation through intermittent power cycles. At one extreme, IC
serves as a fail-safe backup-restore mechanism during rare power
failure events. However, contemporary research addresses the other
extreme where frequent but often unpredictable power failure is the
norm. It is thus important to ensure that the mechanism used for
IC is efficient, i.e. minimises overhead, and can ensure correct oper-
ation [23][22][17]. IC schemes can be classified into the following
classes [48], and are illustrated graphically in Figure 2:

(1) Static Checkpointing: Snapshots of the system state are stat-
ically inserted into the code at design-time, e.g. at the be-
ginning of every function call. Execution rolls-back to the
previous checkpoint after recovering from a power failure.

(2) Task-based: A runtime, perhaps as part of the operating sys-
tem, manages the task graphs of atomic tasks that constitute
the application. A power interruption causes a reissue of the
uncompleted task.

(3) Reactive: Snapshots are saved when an imminent power fail-
ure is detected, e.g. by monitoring changes in the supply
voltage. On recovery, execution continues from the instruc-
tion that was interrupted.

Challenges in IC include ensuring their correctness, maximis-
ing performance/efficiency, and compatibility/scalability considera-
tions. Example of ensuring correctness include mitigating idempo-
tency violations, i.e. errors due to re-execution of code, and handling
live-locks due to Sisyphean tasks that require more energy in an
atomic fashion to complete than can be harvested [29]. Maximising
performance/efficiency means achieving the greatest amount of for-
ward progress in terms of computation and use the least amount of
system resources such as memory and non-volatile memory, given
the power and energy constrains/properties of the system. Finally,
it is desirable to contain/hide the complexity due to the IC strategy
and the underlying intermittent physical properties exposed from
the application programmer.

Another concept that is often discussed in the context of IC
is maintaining peripheral consistency. An external peripheral, for
example a radio module, would have its own state machine, and
the peripheral may be at an unknown state after an intermittent
power failure. A mechanism is therefore required to keep track of
the peripherals’ states and recover them to the state prior to the
power failure [1] [6].

4

3.3 Closed-loop Modelling of Power and Device
Functionality

As there is inherent cross-coupling between device power supply
and consumption behaviour, modelling such systems with existing
simulation frameworks is unfeasible. Functional simulators, such
as QEMU, do not capture the performance and power consumption
behaviour of the compute block and so are ill-suited for energy-
driven design. Furthermore, cycle-level performance simulators,
such as gem5 and MSPSim, do not capture power consumption
characteristics and are thus also unsuitable.

For energy-driven design, a closed-loop functional, performance,
and energy simulation tool is required, e.g. Fused [49]. As IC is an in-
tegral component of energy-driven design, the tool was built specif-
ically to simulate power-supply dependent compute behaviour as
illustrated in Figure 3. Performance events and states, e.g. memory
accesses and cache hit/miss, are generated in a cycle-accurate man-
ner and these statistics are used to estimate the the system’s power
consumption. The power consumption expressed as a current draw
affects the properties of the power delivery circuitry and would for
example result in a decaying 𝑉𝑐𝑐 if demand is greater than supply
thus resulting in intermittent operation.

Figure 3: Intermittent computing as simulated on Fused.

Extensions to Fused were introduced in [52] to enable virtual
prototyping of complete energy harvesting devices, including both
on-chip and off-chip peripherals, the power management circuitry,
the harvesters, and the ambient condition. An example of such a
system modelled is shown in Figure 4.

Figure 4: Virtual prototype of an IC system in Fused

Fused can form an integral part of an energy-driven design flow,
as illustrated in Figure 5. Power supply and consumption char-
acteristics are made explicit as a major component in the design
repository, on par with the application specifications, hardware
components, and software components. In this framework, Fused
acts as a virtual prototyping platform and an emulator, allowing
the exploration of different architectural, hardware, and software
solutions or optimization points. Multiple iterations of application
mapping, optimization, evaluation, validation, and tests can then
be carried out against the virtual prototype before implementation.

Figure 5: Design flow of energy-driven systems featuring
Fused as an integral virtual prototyping tool

3.4 Paths Forward
Emerging uses cases driven by IoT introduces new demands on
energy-driven design. The explosion of data generated by the IoT
is increasing the motivation for performing greater computation
at the edge, meaning that energy-driven systems will need to cope
with an ever-increasing compute load (e.g. inference and perhaps
even distributed learning). IC approaches will also need to adapt
to the properties of emerging nonvolatile memory technologies
beyond flash and FRAM, such as STT-MRAM, ReRAM, and phase
change memory, ensuring correctness, reliability and efficiency [9].
IoT devices inherently need to communicate as part of a larger net-
work, and additional challenges are posed as the nodes in a network
of energy harvesting devices frequently, and often unpredictably,
go offline due to scarcity in harvested energy. From the perspec-
tive of maintaining peripheral consistency, communications and
networking present an extremely challenging case, due to a combi-
nation of local state (the radio module), volatile data currently being
transmitted/received, and the state of other nodes in the network.
An intermittent network implies the following:

(1) Many links are intermittent; special treatment is required to
maintain the always-on abstraction that the data link layer
is supposed to provide to upper layers.

(2) The power budget of the nodes are asymmetric and time-
varying, i.e. some nodes can harvest more energy that other
nodes, but there is a temporal and spatial variation.

Current research to address the first issue are exploring ap-
proaches such as the use of wake-up receivers (WuRx); low-power
radio hardware that can listen on a physical channel constantly
[24]. The second issue is a network layer problem as it affects
routing, latency, throughput, and congestion, and approaches from
energy-aware networking may be tailored to specific challenges
[3] [15]. The applicability of an energy-driven paradigm to IP-style
networking, as envisioned for IoT, is yet to be demonstrated.
4 CROSS-LAYER RELIABILITY-AWARE

DESIGN
Widely usedmethods for low-power/energy design such asDynamic
Voltage and Frequncy Scaling (DVFS) can adversely affect the func-
tional reliability of systems, especially in harsh operating environ-
ment. The traditional phenomenon-based approach to improving
reliability by redundancy results in power and timing overheads—
both critical factors in resource constrained embedded real-time

5

Task-Mapping,

HW/SW Co-design

Run-time DSE

Run-time

aging

Estimation

Design-time DSE

Modelling for

Analysis and

Estimation

Design-time Models

Run-time Models

Architectures

Applications

QoS Specs

Run-time

Adaptation

Reliability

Methods

Figure 6: CLR-integrated system-level design methodology

𝐸𝑥𝑒𝑐𝐼𝐶𝐼 𝐻𝑊𝑅𝑒𝑙 𝑆𝑆𝑊𝐼𝑚𝑝𝑙 𝐴𝑆𝑊𝑅𝑒𝑙

𝑝𝑛𝑒 𝑚𝐻𝑊 𝑚𝐼𝑚𝑝𝑙𝑆𝑆𝑊

𝑆𝑆𝑊𝐷𝑒𝑡 𝑆𝑆𝑊𝑇𝑜𝑙

1 − 𝑐𝑜𝑣𝐷𝑒𝑡

𝑚𝑇𝑜𝑙

𝐸𝑛𝑑

𝐶ℎ𝑘𝑝𝑛𝑡

𝐸𝑥𝑒𝑐𝐼𝐶𝐼 𝐻𝑊𝑅𝑒𝑙 𝑆𝑆𝑊𝐼𝑚𝑝𝑙 𝐴𝑆𝑊𝑅𝑒𝑙

𝑝𝑛𝑒 𝑚𝐻𝑊 𝑚𝐼𝑚𝑝𝑙𝑆𝑆𝑊

𝑆𝑆𝑊𝐷𝑒𝑡 𝑆𝑆𝑊𝑇𝑜𝑙

1 − 𝑐𝑜𝑣𝐷𝑒𝑡

𝑚𝑇𝑜𝑙

0 0 00 𝕋𝑇𝑜𝑙

𝕋𝐸𝑥𝑒𝑐
+𝕋𝐷𝑒𝑡

0 0 00 𝕋𝑇𝑜𝑙

𝕋𝐸𝑥𝑒𝑐
+𝕋𝐷𝑒𝑡

𝕋𝐶ℎ𝑘

(a) Timing Reliability

𝐸𝑥𝑒𝑐𝐼𝐶𝐼 𝐻𝑊𝑅𝑒𝑙 𝑆𝑆𝑊𝐼𝑚𝑝𝑙 𝐴𝑆𝑊𝑅𝑒𝑙

𝐸𝑟𝑟𝑜𝑟

𝑝𝑛𝑒 𝑚𝐻𝑊 𝑚𝑆𝑆𝑊 𝑚𝐴𝑆𝑊

𝑆𝑆𝑊𝐷𝑒𝑡 𝑆𝑆𝑊𝑇𝑜𝑙

1 − 𝑐𝑜𝑣𝐷𝑒𝑡

𝑚𝑇𝑜𝑙

𝑛𝑜 𝐸𝑟𝑟𝑜𝑟

𝐶ℎ𝑘𝑝𝑛𝑡

𝐸𝑥𝑒𝑐𝐼𝐶𝐼 𝐻𝑊𝑅𝑒𝑙 𝑆𝑆𝑊𝐼𝑚𝑝𝑙 𝐴𝑆𝑊𝑅𝑒𝑙

𝑝𝑛𝑒 𝑚𝐻𝑊 𝑚𝑆𝑆𝑊 𝑚𝐴𝑆𝑊

𝑆𝑆𝑊𝐷𝑒𝑡 𝑆𝑆𝑊𝑇𝑜𝑙

1 − 𝑐𝑜𝑣𝐷𝑒𝑡

𝑚𝑇𝑜𝑙

𝑝𝐶ℎ𝑘𝑒

(b) Functional Reliability

Figure 7: Markov Chain-based reliability modeling for
implementing checkpointing along with HWRel and
ASWRel [39]

systems. Over the past decade, Cross-Layer Reliability (CLR) has
opened up new opportunities for designing application-specific
reliability in resource-constrained embedded systems [34]. This
approach allows the designer to leverage the tolerances of an appli-
cation to degradation of some form of reliability—timing, functional,
lifetime—while improving the other(s). However it also results in a
tremendous increase in the Design Space Exploration (DSE) com-
plexity by introducing design decisions of selecting and tuning the
fault-tolerance methods to be implemented at each abstraction layer.
This section presents some of the results from the state-of-the-art
research into Cross-layer Reliability (CLR)-integrated system-level
design methodology for heterogeneous embedded systems. The
constituent topics of the methodology are shown in Figure 6. The
section briefly presents the results related to each of the topics fol-
lowed by a discussion on the path forward for building cost-efficient
and reliable embedded systems.

4.1 Modeling and Analysis
The research into building reliable electronic systems has resulted
in the development of various fault-mitigation methods employ-
ing different types of redundancy and resulting in varying levels
of efficacy and resource overheads. For instance, improving func-
tional reliability with temporal redundancy based methods such
checkpointing with rollback/recovery can result in lower power
dissipation overheads than some spatial redundancy based method
such as Triple Modular Redundancy (TMR), albeit at the cost of
higher timing overheads. Similarly, a combination of both such
methods can be deployed at separate layers to improve the func-
tional reliability even further. In order to analyze the effect of using
such combination of fault-mitigation approaches, appropriate mod-
els need to be designed. Such models should be able to integrate
the effect of the overheads and the varying efficacy of tunable
fault-tolerance methods.

1 2 3 4 5 6 7 8
Average Makespan(us) ×106

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ap
pl

ica
tio

n
Er

ro
r P

ro
ba

bi
lit

y

Agnostic
CLR
DVFS

HWRel
SSWRel
ASWRel

Figure 8: Comparison of Pareto-front obtained from cross-
layer optimization and the combination of points obtained
from single-layer optimizations.

Figure 7a and 7b show the Markov Chain-based models for
timing and functional reliability respectively, as a result of the
combination of redundancy type—information, temporal and spa-
tial at the application software (ASW) system software (SSW) and
hardware (HW) layers respectively [35, 39]. As seen in the figure,
the model accounts for factors such as imperfect fault-detection
(𝑐𝑜𝑣𝐷𝑒𝑡) and partial masking at HW and ASW layers (𝑚𝐻𝑊 ,𝑚𝐴𝑆𝑊)
along with implicit fault-masking at SSW layer (𝑚𝐼𝑚𝑝𝑙𝑆𝑆𝑊) [44].
Such Markov chain-based models allow the estimation of reliability
metrics—both analytically and by using simulations [40].

4.2 Design-time Task-mapping
For embedded systems, task-mapping—the allocation of the lim-
ited compute resources to the system’s workload—forms an inte-
gral aspect of system level design. Reliability-aware task-mapping
has been an active field of research for quite a few years. How-
ever, CLR provides an additional scope for application’s Quality
of Service (QoS)-specific allocation of the systems resources to
provide varying types and levels of redundancy. The correspond-
ing DSE problem, however, has the additional challenge of joint
optimization of fault-mitigation methods across multiple layers.
Naive application and extensions of Multi-Objective Evolutionary
Algorithms (MOEA)-based methods can be insufficient for such
complex DSE problems [7]. Similarly, the traditional approach of
other-layer-agnostic optimization can result in degraded quality
of the solutions obtained in multi-objective optimizations during
design/compile time. As shown in Figure 8, the joint optimization
across DVFS and fault-mitigation at multiple layers shows better
Pareto-front optimization than collecting the results from multi-
ple other-layer-agnostic DSE runs. Similar CLR-aware design time
optimization, when applied to hardware-hardware partitioning
in Dynamic Partial Reconfiguration (DPR) enabled FPGA-based
embedded systems, can result in improved lifetime reliability and
performance [33, 36, 37].

4.3 Dynamic Run-time Adaptation
The DSE for CLR results in design points that can provide bet-
ter reliability-performance trade-offs than single-layer approaches.
Similarly, the joint optimization across multiple layers can result
in a larger number of feasible design points at a finer granularity.
However, the most efficient usage of such high quality Pareto fronts
requires optimal adaptation of the system to dynamic variations

6

Arrival times

(a) Low-overhead aging estimation [43](b)HybridDSE for reconfiguration cost-
aware dynamic adaptation [38]

Figure 9: Hybrid DSE for CLR-aware system design

ComplexityPseudocode

LatencyFunctions

IPCInstructions

CPD
Logic

Behavior

VI char
VI char
(switch)

Application Software

Architecture

Devices

System stack

System Software

Circuits

Algorithms

Abstraction Interfaces

Functionality Performance

?? ?

Reliability

Functional Timing Lifetime

?FVI ?

?IVI ?

?AVF ?

?SER ?

Figure 10: Designing Cross-layer Reliability: Abstractions
and Interfaces [41]
in the embedded systems operating environment—both internal
and external. Internal variations include the gradual wear-out of
the systems hardware resources—Processing Element (PE), on-chip
interconnects and memory elements. While the designer may in-
clude aging sensors [16] for a more accurate estimation, low-cost
methods using the fault behavior of the PEs have also been pro-
posed [11, 43]. Figure 9a shows the process of using the Centroid
test [27] over the arrival times of the intermittent faults in each PE
to estimate the aging of individual PEs and remap tasks to improve
the system’s useful lifetime.

In addition to aging of PEs, the system should also be able to
adapt to changes in the application’s QoS requirements by switch-
ing to the appropriate design point determined during design/compile-
time DSE. However frequent changes in the system’s run-time con-
figuration can also result in high reconfiguration costs. As shown
in Figure 9b, the design/compile-time DSE can be used to generate
additional non-dominating design points that can result in lower
average reconfiguration cost. Similarly, agent-based methods can be
used to determine the appropriate long-term efficacy of the stored
design points during hybrid DSE and perform dynamic adaptation
accordingly [38].

4.4 Paths Forward
4.4.1 Methods and Paradigms. With electronic component becom-
ing increasingly unreliable, considerable research is required for the
development of low-overhead and tunable fault-mitigation meth-
ods. Modern approaches such as CLR work best in the presence of
more degrees of freedom—both in terms of the number of methods
available at each layer and the granularity of the parameters of
those methods. Further, more recent paradigms of computing such
as approximate computing can be used to reduce the overheads of
the redundancy-based methods [50].
4.4.2 Modeling and Abstraction. While the Markov Chain-based
models for timing and functional reliability provides a good first
order method for analysis and estimation, more holistic approaches

need to be developed for more complex cross-layer interactions
such as integrating the impact of multiple reliability methods at
each layer. As shown in Figure 10, having reliability interfaces,
similar to those used for functionality and performance, can enable
far better DSE than current state-of-the-art works [41].
4.4.3 Design Space Exploration. The development of more fault-
mitigation methods with tunable efficacy will result in an expo-
nentially increasing design space complexity. While MOEA-based
methods provide a generic set of tools for such large search spaces,
they will need to be augmented with more modern techniques such
as Monte Carlo Tree Search (MCTS) [42] and Machine Learning
(ML)-based estimation. Similarly, agent-based techniques can be
used to provide more self-sufficient systems deployed in widely
varying operating environments.
5 AGING AND COVERT CHANNEL ATTACKS

AND MITIGATIONS
Aging and covert channel attacks can cause several damages such
as financial, health and emotional. Therefore, timely detection of
these attacks and their prevention is of utmost importance.
5.1 Aging Attack
To accelerate aging, planned obsolescence in industrial design and
marketing is a notorious strategy to deliberately set product to
malfunction within a certain period of time [8]. Quite a few con-
sumer electronics vendors have been reported of engaging in such
practice of obsolescence by downgrading their old products to drive
customers to move to their newer versions of products [8].

A manufacturer often favours this type of obsolescence by ei-
ther deliberately crafting malicious programs or inserting hardware
backdoors that can be exploited to accelerate aging of key compo-
nents, such as cores and some of the critical links in many-core
chips [8] [19]. Targeting a hotspot node and making it age faster
can certainly cause a product to obsolete fast. However, if the chip
wears out before its warranty expires, the manufacturer is obli-
gated to refund consumers or replace/repair the product, which
undermines the purpose of planned obsolescence. In a simple word,
blindly accelerating aging does not serve the best interest of the
manufacturer. Instead, manufacturer prefers to have its compo-
nent/product work perfectly at the customer end when it is still
under the warranty, but it would wear out as soon as the warranty
expires.

In what follows, a profit model of the manufacturer is first pro-
posed, followed by the routing algorithms to launch planned obso-
lescence attack.
5.1.1 Profit Model. It has been shown in [32] that the routers in
a NoC age differently at different paces as they handle different
amount of traffic. In XY routing, central routers handle more traf-
fic and can be referred to as “hotspot nodes”, which experience
accelerated aging due to the exponential nature of the NBTI effect.

Note that an NoC system’s lifetime is bounded by the hotspot
node, which is the router with the lowest MTTF. That is, the MTTF
of the entire chip system, MTTFsys, can be written as,

𝑀𝑇𝑇𝐹𝑠𝑦𝑠 = min
∀𝑖∈[1,𝑁]

𝑀𝑇𝑇𝐹𝑖 (3)

where 𝑁 is the number of routers.
The profit of the manufacturer for the 𝑖𝑡ℎ-version devices can

be written as,
𝑊𝑖 = (𝑃𝑖 −𝐶𝑖) × 𝑆𝑖 (4)

7

where 𝑃𝑖 , 𝐶𝑖 , and 𝑆𝑖 are the price, the cost, and the number of sold
copies of the 𝑖𝑡ℎ-version devices, respectively. The sales volume 𝑆𝑖
is written as,

𝑆𝑖 =

𝑖−1∑
𝑙=1

𝜌𝑖−𝑙 × 𝑆𝑖−𝑙 + 𝑆0 (5)

where 𝜌𝑖−𝑙 is the probability that customers who bought the (𝑖−𝑙)𝑡ℎ-
version of the devices would switch to the new-version, and 𝑆0 is
the number of new clients who have never bought any previous
version of the product.

Let event 𝐵 be the occurrence of an event that a customer buys
a new version of the device, and let event 𝐴 be the occurrence of
an event that a customer’s old version device is worn out. In this
case, 𝜌𝑖−𝑙 in Eqn. (5) can be further written as,

𝜌𝑖−𝑙 = 𝜌 (𝐵 |𝐴) × 𝜌 (𝐴) + 𝜌 (𝐵 |1 −𝐴) × 𝜌 (1 −𝐴) (6)
where 𝜌 (𝐵 |𝐴) × 𝜌 (𝐴) is the probability that a customer buys a new
version of device given that his/her old-version device malfunctions,
and 𝜌 (𝐵 |1−𝐴) × 𝜌 (1−𝐴) is the probability that a customer buys a
new device, even though his/her old-version device still functions.

Taking the warranty into account, one can see that, with the
version 𝑔 as its latest model, the profit for the 𝑖𝑡ℎ-version can be
calculated as,

𝑊𝑖 = {
𝑔∑
𝑙=1

[𝑝𝑀𝑙 × 𝑥𝑖−𝑙 + 𝑝𝑊𝑙 × (1 − 𝑥𝑖−𝑙)] × 𝑆𝑖−𝑙 + 𝑆0}

×(𝑃𝑖 −𝐶𝑖) −
𝑤∑

𝑚=1

𝑤−𝑚∑
𝑛=0

(𝑥𝑖−𝑚 × 𝑆𝑖−𝑔+𝑛) ×𝐶𝑖

(7)

where 𝑥𝑖 is the failing rate of the 𝑖𝑡ℎ-version of the device, 𝑆0 is
the number of new customers,𝑤 is the product warranty and 𝑝𝑀𝑙

and 𝑝𝑊𝑙 are the respective (𝑖 − 𝑙)𝑡ℎ-version device’s probabilities,
𝜌 (𝐵 |𝐴) and 𝜌 (𝐵 |1 −𝐴) as defined in Eqn. (6).

The failing rate 𝑥𝑖−𝑙 in Eqn. (7) is assumed to follow the Gaussian
distribution denoted as G(𝜇,𝜎2). Here the mean 𝜇 is obtained from
Eqn. (3), and the variance 𝜎2 is a random variable. By setting 𝛼 = 0.5
as the testing condition, 𝑥𝑖−𝑙 is generated by randomly sampling
from G(𝜇,𝜎2). For the proposed planned obsolescence, the value of
𝑥𝑖−𝑙 depends on the triggering condition of aging acceleration.
5.1.2 Aging Attack Algorithms. The aging controller module is de-
signed to use router aging acceleration during a time trigger thresh-
old, and router aging deceleration after the time trigger threshold,
which is set according to the terms of the warranty agreement.

Placed at each router, the control module, shown in Fig. 11, con-
sists of the trigger and the routing computation (RC) submodules.
When the product is still under warranty, the routers will adopt a
routing strategy that helps decelerate aging. This module continu-
ously compares the trigger threshold with the system clock, and
forces routers to switch to a different routing strategy to accelerate
aging, once the trigger threshold is reached.

The NoC is assumed to have a mesh topology. Once the trigger
module activates the aging acceleration signal, the RC module se-
lects the aging acceleration routing algorithm to route data packets,
which stipulates the packets’ routing paths to include the hotspot
node. That is, the hotspot node is set as the temporary destination
of a packet, and the packet is first transmitted to this hotspot node
by XY routing, after which it will be delivered to the destination
node.

Decision maker

Trigger

Acceleration

routing

Deceleration

routing

RC stage

accelerate

decelerate

Figure 11: Architecture of the control module

Sensor

recording

FIR/Demo-

dulation

ECC

validating
Data output

Data input
ECC

calculating
Modulation

Temperature

signal

generation

Heat Transfer

Coding

Decoding

Protocol

processing

Protocol

processing

Digital Signal

Digital Signal
Temperature Signal

Temperature Signal

Transmitter

Receiver

(a)

(b)

Figure 12: The flow of a baseline thermal covert channel
transmission from the (a) transmitter to the (b) receiver end.

Once the trigger module activates the aging deceleration signal,
the RC module selects the aging deceleration routing algorithm,
which diverts packets to be routed along the paths away from the
hotspot nodes. A specific region that runs YX routing algorithm,
named as YX region, is composed of given by Eqn. (8), assuming
the hotspot node is (𝑥0, 𝑦0). The YX region forms a triangle shape,
and it shall be able to generate more evenly distributed traffic [32].

|𝑦0 − 𝑦 | < 𝑥0 − 𝑥 (8)
The planned aging can be achieved with the two proposed routing
algorithms: accelerated aging when the warranty expires, and decel-
erated aging when the warranty is still in effect. Adding the product
warranty into the aging model, a manufacturer can maximize its
profit by altering the sales volume, the price, the cost, the warranty,
and the network size of a device.
5.2 Thermal Covert Channel Attack and

Countermeasure
5.2.1 Thermal covert channel attack. The baseline thermal covert
channel (TCC) attack [21] links a transmitter and a receiver, as
shown in Fig. 12. The transmitter and receiver run on different cores
or on different hardware threads of a physical core if the processor
supports multi-threading. The transmitter sends the sensitive data
via the heat transfer. The receiver records the temperature signal
by reading its thermal sensor, and decodes the signal to recover the
original data.

In [51] an enhanced attack using communication protocol is
proposed to dynamically change the transmission frequency with a
very low implementation overhead, and without involving any ex-
tra channel. They use three detectionmechanisms to detect whether
the channel is jammed. Once the channel is found to be jammed, it
will trigger a dynamic frequency changing module to change the
transmission frequency to avoid jamming. In essence, It is a polling
based frequency changing protocol and the available transmission
frequencies are stored by both the transmitter and receiver in ad-
vance. In the worst case that the channel is severely jammed, both

8

Sensor

recoding

Scanning based

approach

Decision

making

Modulation

Random noise

jamming

Temperature

signal

generation

Jamming

Single-tone

jamming

Detection

Recording

based approach

Figure 13: Workflow of the proposed countermeasure.
the transmitter and the receiver poll the next available frequency
iteratively and send a series of packets as an attempt to set up their
connection over that channel. Once they find a channel available
for connection, communication resumes in this new channel.

In the environment with fixed-frequency jamming noise, the
packet error rate (PER) of enhanced TCC [51] is 5%, while the PER
of baseline TCC [21] is over 85%. The reason is that the jammer
detects the thermal covert channel and emits the noise signal with
the same transmission frequency as the thermal covert channel.
The receiver of the baseline TCC [21] reads both the noise and
the packets from the transmitter, which results in decoding errors.
However, the dynamic frequency changing protocol can detect the
jamming and changes the transmission frequency dynamically to
avoid being jammed. Once the transmission frequency moves to a
new frequency, the fixed-frequency jammer loses its target to jam.
5.2.2 Countermeasure with Scanning and Channel-aware Jamming.
To countermeasure the above thermal covert channel, an intuitive
approach is to use a full-band jamming, that that thermal noise
will flood the entire band [𝑓𝑙 , 𝑓ℎ] occupied by the thermal covert
channel, where 𝑓𝑙 is the lowest frequency in the entire band, 𝑓ℎ
is the highest frequency. However, such a naive approach causes
excessive power consumption. Instead, A lightweight countermea-
sure [51] is proposed as shown in Fig. 13 which periodically scans
the frequency spectrum to check if there exists a potential thermal
covert channel attack or not. If such a channel is identified, a noise
is emitted with the same frequency of the covert channel. With a
high scanning speed, all the thermal covert channels shall be able
to be detected and jammed. Two detection approaches are used for
detecting TCC. (1) Scanning-based approach. In this approach,
the jammer changes the center frequency of the Finite Impulse Re-
sponse (FIR) filter to scan the entire frequency spectrum of interest.
The linear scan method changes the center frequency sequentially
from the lowest frequency 𝑓𝑙 to the highest frequency 𝑓ℎ . The dif-
ference between two adjacent center frequencies is referred as the
frequency increment Δ𝑓 . A larger Δ𝑓 results in fewer scanning
steps and higher probability of failing to detect the covert channel,
but with a lower runtime cost. For each core 𝑖 , an FIR with center
frequency 𝑓𝑐𝑒𝑛𝑡𝑒𝑟 and bandwidth of Δ𝑓 is used to filter the thermal
signal. If themaximum amplitude of the filtered signal is higher than
threshold𝑇𝑟 , it is deemed as amalicious core involved in the thermal
covert channel attack. The center frequency of FIR sweeps from 𝑓𝑙

to 𝑓ℎ with an incremental of Δ𝑓 . (2) Recording-based approach.
In this approach, the temporal temperature signal is recorded for 1
second, and transformed into frequency domain using fast Fourier
transform (FFT). The frequency spectrum of the signal is checked
whether there is a potential attack or not. The advantage of this
approach is that it can check the full spectrum. However, since
recording a long temperature sequence takes time, the attack might
already transmit sensitive data before being detected.

Given the output of the FIR filter (approach 1) or the spectrum
(approach 2), a decision should be made by comparing the signal
amplitude with a given threshold 𝑇𝑟 . If the amplitude exceeds the
threshold, it can conclude that an attack has been discovered, and
the signal frequency and core number (𝑓𝑑𝑒𝑡𝑒𝑐𝑡 and 𝐿), are passed to
the jamming process for action. Once the thermal covert channel
is detected, a random bit sequence of ‘1’s and ‘0’s is generated as
noise at the random noise generation module. This random
noise sequence 𝑠 (𝑡) can be expressed as

𝑠 𝑗𝑎𝑚 (𝑡) = 𝑟𝑛𝑔 𝑗𝑎𝑚 (𝑡 − 𝑛𝑇𝑗𝑎𝑚) (9)

where 𝑇𝑗𝑎𝑚 is the period of one bit (symbol width), 𝑔 𝑗𝑎𝑚 (𝑡) is the
baseband pulse waveform with duration of𝑇𝑗𝑎𝑚 , and 𝑟𝑛 is the value
of the n-th bit of the random sequence which is defined as follows:

𝑟𝑛 =

{1 𝑤𝑖𝑡ℎ 𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜 𝑓 0.5
0 𝑤𝑖𝑡ℎ 𝑎 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜 𝑓 0.5 (10)

The single-tone noise generationmodule, unlike randomnoise,
continuously sends bit sequence of ‘1’s, i.e., 𝑟𝑛 = 1.

At the modulation module, the sequence generated by the
noise generation module is modulated by the carrier that has the
same frequency as the transmission frequency 𝑓𝑑𝑒𝑡𝑒𝑐𝑡 occupied by
the detected covert channel. The output of the modulation module,
𝑒 𝑗𝑎𝑚 (𝑡), is thus

𝑒 𝑗𝑎𝑚 (𝑡) = 𝑠 𝑗𝑎𝑚 (𝑡) × 𝑐 (𝑡) (11)
where 𝑠 𝑗𝑎𝑚 (𝑡) is the noise generated by the noise generation mod-
ule, and 𝑐 (𝑡) is the carrier with a frequency of 𝑓𝑑𝑒𝑡𝑒𝑐𝑡 .

Finally, the thermal signal is generated following the same tem-
perature signal generation approach as baseline TCC.

The detection error of the two detection approaches is less than
3Hz. After the signal is detected, the jamming process can increase
the packet error rate to 85%. Experimental results confirmed that
when the countermeasure is applied, its PER jumps to 85%, effec-
tively shut down thermal covert channel attacks even with en-
hanced capabilities.

5.3 Paths Forward
Based on the observations and expectations, we see the following
paths forward for emerging aging and covert channel attacks.
Increasing types of aging and covert channel attacks. With advance-
ment of defence mechanisms for one type of attack, attackers are
able to devise new types of attacks [51, 54]. It is expected that
this trend is going to continue and thus design challenges arising
will need continued innovations in defence mechanisms to address
them.

It is also evident that there is widespread adoption of embedded
AI in various application domains, e.g. audio [28] and video [10]
analytics. Thus, a new or enhanced type of attacks on such systems
are also effected. This will drive development of novel defence
mechanisms while addressing involved challenges.

9

Joint consideration of various attacks. It is expected that an em-
bedded system can encounter various attacks at the same time, e.g.
aging and cover channel, and thus a joint consideration is important.
With this, it is evident that the complexity of defence mechanisms
and involved challenges to be addressed are expected to rise.
Cost-effective countermeasures. Hardware based countermeasures
are being extensively explored but they are costly. Based on the
anticipated increasing attacks, we expect that security solutions
will jointly consider software and hardware to achieve the best pro-
tection mechanism at a minimal cost. This will require addressing
several challenges like identifying the defence components to be
run on the hardware and software, and their adaptation on them.
6 CONCLUSIONS
The paper provides insight into design challenges and paths for-
ward for embedded systems. Various aspects of embedded systems
design are considered from both industrial and academic point
while reviewing state-of-the-art approaches. Though the design
aspects are considered separately due to their importance in a given
application domain and research focus by different groups, we ex-
pect the future lies in joint consideration of all possible aspects, i.e.
metrics, needed for an application domain.
ACKNOWLEDGMENTS
We acknowledge financial support from the following: the UK
Engineering and Physical Sciences Research Council under Plat-
form grant EP/P010164/1, National Natural Science Foundation of
China 61971200, Open Research Grant of State Key Laboratory
of Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences CARCH201916, and Zhejiang Lab
2021LE0AB01.
REFERENCES
[1] Rodriguez Arreola et al. 2018. RESTOP: Retaining External Peripheral State in

Intermittently-Powered Sensor Systems. Sensors 18, 1 (2018), 172.
[2] Karunakar R Basireddy et al. 2019. AdaMD: adaptive mapping and DVFS for

energy-efficient heterogeneous multicores. IEEE TCAD 39, 10 (2019).
[3] Aruna Prem Bianzino et al. 2012. A Survey of Green Networking Research. IEEE

Communications Surveys Tutorials 14, 1 (2012), 3–20.
[4] Samuel Wong Chang Bing et al. 2018. An Energy-Driven Wireless Bicycle Trip

Counter with Zero Energy Storage. In Proceedings of the SenSys. 404–405.
[5] C. Bormann et al. 2014. Terminology for Constrained-Node Networks. RFC 7228.
[6] Adriano Branco et al. 2019. Intermittent asynchronous peripheral operations. In

Proceedings of the 17th Conference on Embedded Networked Sensor Systems. 55–67.
[7] A. Das et al. 2014. Combined DVFS and mapping exploration for lifetime and

soft-error susceptibility improvement in MPSoCs. In DATE. 1–6.
[8] Sourav Das et al. 2018. Abetting planned obsolescence by aging 3D networks-

on-chip. In IEEE/ACM Int’l Symp. Networks-on-Chip.
[9] Timothy Daulby et al. 2020. Comparing NVM technologies through the lens of

Intermittent computation. In Proceedings of the ENSsys. 77–78.
[10] Somdip Dey et al. 2020. Temporal motionless analysis of video using cnn in

mpsoc. In IEEE ASAP.
[11] L. A. R. Duque et al. 2015. Improving MPSoC reliability through adapting runtime

task schedule based on time-correlated fault behavior. 818–823.
[12] Kevin Elphinstone and Gernot Heiser. 2013. From L3 to SeL4 What Have We

Learnt in 20 Years of L4 Microkernels?. In Proceedings of the SOSP. 133–150.
[13] Radio Technical Commission for Aeronautics. 2012. Software Considerations in

Airborne Systems and Equipment Certification.
[14] International Organization for Standardization. 2018. Road vehicles — Functional

safety.
[15] Soheil Ghiasi et al. 2002. Optimal Energy Aware Clustering in Sensor Networks.

Sensors 2, 7 (2002), 258–269.
[16] Adam S. Hartman and Donald E. Thomas. 2012. Lifetime Improvement through

Runtime Wear-Based Task Mapping. 13–22.
[17] Josiah Hester et al. 2017. Timely Execution on Intermittently Powered Batteryless

Sensors. In Proceedings of the SenSys. 1–13.
[18] Hengli Huang et al. 2021. Detection of and Countermeasure against Thermal

Covert Channel in Many-core Systems. IEEE TCAD (2021).
[19] Naghmeh Karimi and Xueyang Wang. 2015. MAGIC: Malicious aging in cir-

cuits/cores. In ACM Trans. Architecture Code Optimization.

[20] Gerwin Klein et al. 2009. SeL4: Formal Verification of an OS Kernel. In Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. 207–220.

[21] Zijun Long et al. 2018. Improving the efficiency of thermal covert channels in
multi-/many-core systems. In DATE.

[22] Brandon Lucia et al. 2017. Intermittent Computing: Challenges and Opportunities.
In 2nd Summit on Advances in Programming Languages, Vol. 71. 8:1–8:14.

[23] Kiwan Maeng et al. 2017. Alpaca: intermittent execution without checkpoints.
Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 96:1–96:30.

[24] Michele Magno et al. 2016. Design, Implementation, and Performance Evaluation
of a Flexible Low-Latency Nanowatt Wake-Up Radio Receiver. IEEE Transactions
on Industrial Informatics 12, 2 (2016), 633–644.

[25] Geoff V. Merrett and Bashir M. Al-Hashimi. 2017. Energy-driven computing:
Rethinking the design of energy harvesting systems. In DATE. 960–965.

[26] Matteo Nardello et al. 2019. Camaroptera: A Batteryless Long-Range Remote
Visual Sensing System. In Proceedings of the ENSsys. 8–14.

[27] Patrick P. O’Connor and Andre Kleyner. 2012. Practical Reliability Engineering
(5th ed.). Wiley Publishing.

[28] Jordi Pons and Xavier Serra. 2019. Randomly weighted cnns for (music) audio
classification. In IEEE ICASSP. IEEE.

[29] Benjamin Ransford and Brandon Lucia. 2014. Nonvolatile Memory is a Broken
Time Machine. In Proceedings of the MSPC. Article 5, 3 pages.

[30] Vijeta Rathore et al. 2020. Longevity Framework: Leveraging Online Integrated
Aging-Aware Hierarchical Mapping and VF-Selection for Lifetime Reliability
Optimization in Manycore Processors. IEEE Trans. Comput. 70, 7 (2020).

[31] Alberto Rodriguez et al. 2017. Intermittently-powered energy harvesting step
counter for fitness tracking. In 2017 IEEE Sensors Applications Symposium (SAS).

[32] Nezam Rohbani et al. 2017. LAXY: A location-based aging-resilient xy-yx routing
algorithm for network on chip. In IEEE TCAD.

[33] S.S. Sahoo et al. 2018. Multi-objective design space exploration for system parti-
tioning of FPGA-based Dynamic Partially Reconfigurable Systems. Integration
(2018).

[34] Siva Satyendra Sahoo et al. 2016. Cross-layer fault-tolerant design of real-time
systems. In DFTS.

[35] Siva Satyendra Sahoo et al. 2018. CLRFrame: An Analysis Framework for De-
signing Cross-Layer Reliability in Embedded Systems. In VLSID.

[36] Siva Satyendra Sahoo et al. 2018. Lifetime-aware Design Methodology for Dy-
namic Partially Reconfigurable Systems. In ASP-DAC.

[37] S. S. Sahoo et al. 2018. QoS-Aware Cross-Layer Reliability-Integrated FPGA-Based
Dynamic Partially Reconfigurable System Partitioning. In FPT.

[38] S. S. Sahoo et al. 2019. A Hybrid Agent-based Design Methodology for Dynamic
Cross-layer Reliability in Heterogeneous Embedded Systems. In DAC. 6.

[39] S. S. Sahoo et al. 2020. CL(R)Early: An Early-stage DSE Methodology for Cross-
Layer Reliability-aware Heterogeneous Embedded Systems. In DAC.

[40] Siva Satyendra Sahoo et al. 2020. Markov Chain-based Modeling and Analysis
of Checkpointing with Rollback Recovery for Efficient DSE in Soft Real-time
Systems. In DFT.

[41] Siva Satyendra Sahoo et al. 2021. Reliability-Aware Resource Management in
Multi-/Many-Core Systems: A Perspective Paper. JLPEA 11, 1 (2021), 7.

[42] Siva Satyendra Sahoo and Akash Kumar. 2021. Using Monte Carlo Tree Search for
CAD - A Case-study with Designing Cross-layer Reliability for Heterogeneous
Embedded Systems. In VLSI-SOC.

[43] Siva Satyendra Sahoo, Akash Kumar, and Bharadwaj Veeravalli. 2016. Design and
Evaluation of Reliability-oriented Task Re-Mapping inMPSoCs using Time-Series
Analysis of Intermittent faults. In DATE. IEEE.

[44] T. Santini et al. 2015. Evaluation of Failures Masking Across the Software Stack.
MEDIAN (2015).

[45] Amit Kumar Singh et al. 2017. A survey and comparative study of hard and soft
real-time dynamic resource allocation strategies for multi-/many-core systems.
ACM Computing Surveys (CSUR) 50, 2 (2017).

[46] Amit Kumar Singh et al. 2019. Collaborative adaptation for energy-efficient
heterogeneous mobile SoCs. IEEE Trans. Comput. 69, 2 (2019).

[47] Amit Kumar Singh et al. 2020. Dynamic energy and thermal management of
multi-core mobile platforms: A survey. IEEE Design & Test 37, 5 (2020).

[48] Sivert T. Sliper et al. 2020. Energy-driven computing. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences 378 (2020).

[49] Sivert T. Sliper et al. 2020. Fused: Closed-Loop Performance and Energy Simula-
tion of Embedded Systems. In ISPASS. 263–272.

[50] Shyamsundar Venkataraman et al. 2016. A Flexible Inexact TMR Technique for
SRAM-based FPGAs. In DATE. IEEE.

[51] JiachenWang et al. 2020. Combating Enhanced Thermal Covert Channel in Multi-
/Many-Core Systems With Channel-Aware Jamming. IEEE TCAD 39 (2020).

[52] Samuel C.B. Wong et al. 2020. Energy-aware HW/SW Co-modeling of Batteryless
Wireless Sensor Nodes. In Proceedings of the ENSsys. 57–63.

[53] Li Zhang et al. 2018. Effectiveness of HT-assisted sinkhole and blackhole denial
of service attacks targeting mesh networks-on-chip. JSA 89 (2018).

[54] Yinyuan Zhao et al. 2021. An enhanced planned obsolescence attack by aging
networks-on-chip. Journal of Systems Architecture 117 (2021).

10

	Abstract
	1 Introduction
	2 Mixed-criticality Systems: Theory vs. Practice
	2.1 Problem Statement
	2.2 Constructing Mixed-criticality Systems in Academia
	2.3 Constructing Mixed-criticality Systems in Industry
	2.4 Paths Forward

	3 Energy-Driven Design
	3.1 System Architecture and Computing Landscape of Energy-Driven Systems
	3.2 Intermittent Computing
	3.3 Closed-loop Modelling of Power and Device Functionality
	3.4 Paths Forward

	4 Cross-layer Reliability-aware Design
	4.1 Modeling and Analysis
	4.2 Design-time Task-mapping
	4.3 Dynamic Run-time Adaptation
	4.4 Paths Forward

	5 Aging and Covert Channel Attacks and Mitigations
	5.1 Aging Attack
	5.2 Thermal Covert Channel Attack and Countermeasure
	5.3 Paths Forward

	6 Conclusions
	Acknowledgments
	References

