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Abstract—Approximate Computing and Mixed Signal In-Memory accelerators are promising
paradigms to significantly reduce computational requirements of DNN inference without
accuracy loss. In this work, we present a novel in-memory design for layer-wise approximate
computation at different approximation levels. A sensitivity-based high-dimensional search is
performed to explore the optimal approximation level for each DNN layer. Our new methodology
offers high flexibility and optimal trade-off between accuracy and throughput, which we
demonstrate by an extensive evaluation on various DNN benchmarks for medium- and
large-scale image classification with CIFAR10, CIFAR100 and ImageNet. With our novel
approach, we reach an average of 5x and up to 8x speedup without accuracy loss.

EMBEDDED INFERENCE OF DEEP NEU-
RAL NETWORKS (DNNs) is highly challenging
due to their large computational and energy ef-
ficiency requirements. However, DNNs are re-
silient to errors, and therefore paradigms such as
approximate computing can significantly reduce
their computational requirements while maintain-
ing the accuracy. On the other hand, In-Memory
Computing (IMC) offers a potential solution to
the aforementioned requirements with increased
throughput and energy efficiency.

Approximate computing can take several
forms, from quantization [1], [2], to approximate
hardware such as approximate multipliers, pre-
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cision scaling [3] and approximate Processing
Element (PE) design [4].

In many cases, selected hardware approxi-
mations are applied to all DNN neurons within
the targeted network (full approximation). This
approach is beneficial specially in accelerators
where all features are computed with the same
PEs [5]. More recently, full approximation of in-
memory architectures has also been explored [4].
While significant energy savings can be reached,
full approximation usually results in accuracy
degradation that is not recoverable or requires
further DNN optimization, for example weight
tuning [6] or approximate DNN fine-tuning [5].

In contrast, partial approximation has been
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proposed [3] to maintain some computational sav-
ings, but without accuracy losses. In partial DNN
approximation, sensitive DNN neurons/layers are
computed with accurate PEs while resilient ele-
ments are computed with approximate ones [3].

Genetic search has also been used to find
optimal configurations of approximate PEs for
DNN computation [6]. However, these methods
only allow for a limited number of approximate
PEs, as the design space grows exponentially.
For example, there is a total of 524287 possible
configurations for VGG19 [7], in case of only
choosing between a single approximate multiplier
and an accurate one. Exploring such a design
space relies on accuracy evaluation of each pos-
sible configuration to determine the optimal re-
sult, making the design space exploration highly
prohibitive. Additionally, some of these methods
also require re-training or weight-tuning, which
significantly increases design space exploration
required effort, even with advanced simulation
frameworks for approximate computing [6], [5].

In this work, we present a novel DNN approx-
imation approach that addresses the aforemen-
tioned challenges for DNN accelerators based on
bit decomposition, especially in-memory archi-
tectures. We first quantize DNN activations and
weights to 8 and 4 bit-INT respectively to min-
imize PE size and memory costs. Based on this
data format, we approximate the product accu-
mulation at bit-decomposed architectures, which
allows for accurate or approximate computation at
runtime without hardware modification/overhead.
This additionally results in high flexibility, as
accurate as well as approximated operations are
computed with the same PEs. Inspired by the
work in [2], we perform a layer-wise approx-
imation sensitivity analysis with each possible
configuration. This is followed by our proposed
constrained graph search, which significantly re-
duces design space exploration efforts and de-
livers a Pareto set of accuracy vs. throughput.
Summarizing, our new contributions are:

• Leveraging in-memory architecture design for
flexible layer-wise accurate/approximate accu-
mulation of bit-decomposed partial products.

• Layer-wise approximation sensitivity analysis
of the proposed approximation scheme at dif-
ferent approximation levels.

• Multi-objective, sensitivity-based graph search
for fast throughput-accuracy optimization.

Our new approximation scheme is evaluated us-
ing various DNNs for medium and large-scale
image classification with CIFAR10, CIFAR100
[8] and ImageNet [9], where we are able to reach
an average speedup of 5×, and of up to 8× with
less than 1% accuracy loss.

IN-MEMORY ACCELERATION
Several in-memory accelerators have been re-

cently introduced to leverage especially emerg-
ing memory technologies to perform multiply
and accumulate (MAC) operations. However,
the Analog-to-Digital Converters (ADC) used in
these architectures usually represent a perfor-
mance bottleneck, e.g. in ISAAC [10] the 8-bit
ADC accounted for 58% of total power and 31%
of the area. These requirements can be reduced
by adopting different techniques at hardware-level
such as partitioning each multiplication in smaller
operands [11]. At bit level, such partitioning is
referred to as bit decomposition. Many state-
of-the-art architectures exploit bit-decomposition
based algorithms to perform the MAC operation
within the technology limitations such as single
bit storage and to enable lower precision ADCs.
The bit-decomposed MAC is computed by (1)
and (2), where f

(t)
inp,i

is the p bit of the input
feature i at cycle t, wir is the r-th bit of i-th
DNN kernel, p corresponds to the bit-significance
(0 corresponds to the LSB), q is the precision of
wi, k is the simultaneous possible activation and
D is the total number of MAC operations per
output feature fop .

f (t)
op

=

q∑
r=0

(
k−1∑
i=0

f
(t)
inp,i
∗ wir

)
<< q , (1)

fo =

D/k∑
t=0

P∑
p=0

f (t)
op

<< p , (2)

In result, several in-memory architectures per-
form the MAC operation using the structure
shown in Figure 1 where the DNN weights are
stored across the memory cells and the activations
are applied serially to stored weights to perform
AND operations. The results are accumulated and
further processed using adders and shifters to
yield the final output feature. These in-memory

2 IEEE Micro



Input 0

0/7 0/6 0/5 0/4 0/3 0/2 0/1 0/0

0

0/2 0/1 0/0

Output 0

0/3

0 1 2

3 4 5

6 7 8

0/0

1/0

2/0

0/1

1/1

2/1

0/2

1/2

2/2

0/3

1/3

1/3

BL0 BL1 BL2 BL3
WL0

WL1

WL2

0/1 0/0

1/1 1/1

2/1 2/1

... ... ... ...

Analog To Digital Converters (ADCs)

Adders & Shifters

1-bit
Memory Cell

IMC
PE

IMC
PE
IMC
PE

IMC
PE
IMC
PE

IMC
PE
IMC
PE

IMC
PE

IMC
PE

IMC
PE
IMC
PE

IMC
PE
IMC
PE

IMC
PE
IMC
PE

IMC
PE

IMC
PE

IMC
PE
IMC
PE

IMC
PE
IMC
PE

IMC
PE
IMC
PE

IMC
PE

IMC
PE

IMC
PE
IMC
PE

IMC
PE
IMC
PE

IMC
PE
IMC
PE

IMC
PE

Sy
st

em
 

B
u

ff
er

s

Control Unit Activation & Pooling Units

(a)

(b)

(c)

IMC
PE

IMC
PE
IMC
PE

IMC
PE
IMC
PE

IMC
PE
IMC
PE

IMC
PE

Figure 1: (a)Input and kernel words breakdown
for convolution. (b)IMC Processing Element (PE)
design where weight line applies the input signal
while the bit line accumulates the result which
is transferred to digital domain using ADC to be
further processed. (c)Typical In-memory architec-
ture including PEs enough to accommodate target
networks as well as buffers, processing blocks
and control unit.

architectures leverage such structure to enable
more efficient ADCs with lower precision range.
This has been explored with technologies such as
FeFETs[12] and SRAM[13].

Proposed in-memory approximation
In non-approximate in-memory computing ar-

chitectures, the precision of the connected ADCs
to the crossbar must match the maximum num-
ber of activated memory cells per clock cycle.
However, due to the resiliency of DNNs, it is
possible in some DNN layers to activate more
memory cells than the ADC precision which leads
to an approximate result in case the accumulated
value is larger than the ADC precision. Since
ADCs usually constitute a major part of area and

power consumption of the in-memory architec-
ture, such approximation has a direct influence
on the architecture efficiency. Additionally, this
approximation allows for exploitation of the bit-
level sparsity that can be offered by the decom-
position of the MAC operation. This approxi-
mation is not limited only to mixed-signal in-
memory computing architectures but also applies
to a wide range of accelerators. For example,
in digital based acceleration such approximation
can drastically reduce the adders and accumulator
size. We focus in this paper on applying our
proposed approximation to the mixed-signal in-
memory architectures as they show the highest
potential in terms of efficiency gains. As shown in
(3), the approximation can be applied by limiting
the accumulated bits sum to the precision of the
ADC represented by m.

f̂ (t)
op

=

q∑
r=0

min

(
k−1∑
i=0

f
(t)
inp,i
∗ wir ,m

)
<< q ,

(3)

f̂o =

D/k∑
t=0

P∑
p=0

(
f (t)
op

+ ϵapprox

)
<< p (4)

The approximation error ϵapprox yielded by
(3) is then:

ϵapprox =

{
0 if

∑k−1

i=0 f
(t)
inp,i
∗ wir ≤ m∑k−1

i=0 f
(t)
inp,i
∗ wir −m otherwise

(5)
For efficient approximation, we propose to

increment the parallel possible activations k by
multiples of 2, while maintaining the ADC pre-
cision m. The used approximation, denoted by
the value k, is applied layer-wise. To compute a
DNN, we have a possible set of configurations
K = [k1, k2, ..., kc], E.g. with a 3-bit ADC, we
can have the set [8, 12, 16, 20, 24] (c = 5) where
k1 = 8 corresponds to the exact computation,
and kc = 24 is the maximum approximation
level with a possible speedup up to 3x. This
approach effectively increases throughput without
any additional modifications in hardware.

A major challenge is to find the optimal value
of k for each layer that can maximize the speedup
without compromising the network accuracy. A
further challenge is to apply such approxima-
tion on less resilient quantized networks. In the
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following Section, we explain the quantization
method applied to the DNN benchmarks in order
to reduce computational requirements before ap-
plying any approximation. Then, we present our
proposed method to determine the optimal value
of k ∈ K for each DNN layer.

LAYER-WISE OPTIMIZATION
Quantization

To significantly increase the throughput and
energy efficiency as well as insuring the ap-
plicability of our approximations to optimized
hardware implementations, we perform linear and
symmetric quantization computed by (6) [1],
where B is the number of bits and ∆z the quan-
tization step. We quantize DNN parameters to 4
bits and activations to 8 bits in INT format, and
consequently refer to this as 8A4W quantization
format. Quantization steps ∆z are optimized by
minimizing the propagated quantization error [1].
The quantized DNN is then re-trained to maintain
the proposed accuracy tolerance.

zq = clip
[

round
(

z

∆z

)
,−2B−1, 2B−1 − 1

]
∆z

(6)
This quantization approach can be scaled to

larger bit-widths for both weights and activations.
The use of more bits (e.g. 8-bit weights) will
result in reduced accuracy loss, and therefore
quantized re-training might not be necessary.

Methodology
The approximation of a DNN can be opti-

mized by minimizing: 1) the loss ϕ between the
outputs of the approximated model f̃(K, x) and
training samples y, and 2) the execution times
t(f̃(K)) of the approximated model:

min
K

(
1

N

∑
i∈N

ϕ(f̃(K, xi), yi), t(f̃(K))

)
, (7)

where K is the set of configurations used
for layer-wise approximation of the target DNN,
xi, yi represent the inputs and labels of train-
ing sample i respectively, of N total samples.
For classification tasks, the DNN outputs y and
f̃(K, xi) are probability distributions.

To efficiently minimize (7) we propose the
methodology shown in Alg. 1. This methodology

Algorithm 1 Sensitivity-based DNN approxima-
tion
Require: DNN model f(x) quantized to A8W4,

training mini-batch x, max. throughput tmax

Output: Pareto front of approximate configura-
tions P

1: for layer l in f(x) and k in K do
2: Compute KLl(k)
3: end for
4: Generate GRAPH with single NODE η0
5: for k in K do
6: for NODE j in GRAPH do
7: NODESnew ← []
8: for l in f(x) do
9: Generate NODE ηnew:

10: ηnew.cost = ηj .cost + tl(k)
11: ηnew.sens = ηj .sens + KLl(k)
12: Append ηnew to NODESnew

13: end for
14: end for
15: GRAPH ← Pareto-front(NODESnew)
16: end for
17: return P ← GRAPH

is designed to find an optimal trade-off between
throughput and accuracy, depending on the sys-
tem’s requirements. By applying our flexible ap-
proximation concept, throughput can be increased
by computing less sensitive layers with more
aggressive approximations, while sensitive layers
are computed more accurately. The challenge is
to find an optimal configuration K = k1, ..., kL
where kl ∈ K is the max. number of parallel
possible activations k for the computation of
layer l without compromising the model accuracy.
Although the ADC resolution m is fixed, the
search space grows exponentially with each possi-
ble configuration in K, which results in a highly
prohibitive design space exploration. For exam-
ple, in case of approximating VGG19 [7] with 5
different configurations that results in 19 trillion
possible configuration. To explore such design
spaces, we instead measure the sensitivity of the
8A4W quantized DNN to the approximation of
each layer with each different configuration. This
sensitivity measurement is used to estimate the
cumulative sensitivity, which is proportional to
the DNN accuracy degradation. Accuracy evalu-
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Figure 2: Sensitivity, accuracy and throughput of generated approximate configurations for ResNet20
and SqueezeNet, given the following configuration: [8, 16, 24, 28, 32]. The first column presents
the sensitivity of each DNN layer computed with each given configuration. In the second column,
accumulated DNN sensitivity vs. relative throughput of all generated solutions is plotted. In the third
column, the DNN accuracy of a small selection of the generated solutions is evaluated.

ation substantially increases design space explo-
ration experiments time, as this requires the DNN
evaluation over the complete dataset. Inspired by
the work in [2], we instead leverage the Kullback
Leibler (KL) divergence as sensitivity metric. The
KL divergence is defined by (8), where f(xi,q) is
the output of the quantized DNN model without
approximation, and f̃(kl;xi,q)k is the output of
the quantized model with l-th layer approximated
with k. The advantages of KL divergence against
other metrics, such as accuracy, are: 1) It is
more adequate to measure the difference between
probability distributions, such as the outputs of
the DNN models evaluated in this work. 2) To
obtain (8) we only require a mini-batch of training
samples (e.g. only 40 samples), which signifi-
cantly reduces space exploration efforts.

KLl(k) =
∑
i∈N

f(xi,q) log
f(xi,q)

f̃(kl;xi,q)k
(8)

Once the sensitivity of each layer computed
with each possible approximation k ∈ K is
obtained, we perform a graph search according to

Alg. 1 to solve the optimization problem in (7).
Here, a graph is defined as a set of nodes, each
one representing a possible approximate config-
uration k ∈ K for each DNN layer l. At each
iteration: 1) the graph is extended forward by
adding a new graph node. This node corresponds
to the current DNN layer and contains all possible
approximate configurations for said layer. 2) A
Pareto front of sensitivity vs. rel.throughput of
the existing nodes within the graph is generated.
Consequently, we prune inefficient nodes early
on, substantially reducing the design space.

The use of KL divergence as sensitivity met-
ric does not guarantee that the solution is the
actual Pareto-front of accuracy and throughput.
However, our experiments demonstrate that the
KL divergence is almost proportional to accuracy
and therefore a good metric to generate the set of
optimized solutions.

EVALUATION
In this Section, we present a) our experimental

setup and simulation details, and b) the results ob-
tained with our proposed flexible approximation
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methodology.

Setup
The approximate computing framework Prox-

Sim [5] was adapted for a bit-accurate simula-
tion of the proposed approximations. For this, a
custom CUDA operator was implemented to sim-
ulate the bit-decomposed IMC architecture from
Figure 1. As reported in [11], the Analog-Mixed
Signal (AMS) must be taken into account for
reliable IMC simulation. Therefore, we include
the AMS error from the target architecture in our
experimental setup. The simulation is performed
as illustrated in Figure 3. In case of the archi-
tecture from [12] (3-bit ADC), the AMS error is
obtained from the FeFET variability, using Monte
Carlo simulations of a single PE and confirmed
with taped-out wafer measurements, considering
all possible inputs and outputs (both Gaussian-
distributed). This noise model is injected at PE
level to the custom CUDA operator.

In [12], the 3-bit ADC accumulation noise
does not have any impact after digitalization, and
therefore is not included in the AMS noise model.
For the simulation of the 4-bit ADC architecture,
we assume that the non-linearity model from [13]
is considered during DNN training. The hardware
performance estimations were obtained from the
cell activation power as well as the architecture
performances published in [12], [13].

Results
We evaluate various DNNs for large-scale

image classification with CIFAR10/100 and Im-
ageNet: ResNet [14], Network-in-Network [15],

VGG19 [7] and SqueezeNet [9]. Their Floating-
point (FP) accuracies as well as the 8A4W quan-
tized accuracies before and after fine-tuning (FT)
are presented in Figure 4a). We observe that the
performed fine-tuning successfully compensates
the quantization error with negligible accuracy
losses. The 8A4W accuracy is consequently con-
sidered as baseline for the evaluation of the pro-
posed approximation technique. We evaluate the
impact of several per-layer combinations of accu-
mulated activations, presented in Figure 4b). With
this, we aim to demonstrate that our approach
is not only applicable to our target in-memory
architecture with 3-bit ADC [12], but can also
be applied to 4-bit ADC in-memory architectures
such as [13]. The performance of the target 3-bit
ADC macro based on [12] is presented in Figure
4f).

To illustrate the optimization process from
Alg. 1, we present in Figure 2 the sensitivity,
accuracy and throughput values obtained when
approximating ResNet20 and SqueezeNet with
K = [8, 16, 24, 28, 32]. In the first plot column,
the layer-wise sensitivity computed by (8) is pre-
sented. For both plotted layers, as well as in the
rest of the evaluated DNNs in this work, the first
layer is by far the most sensitive and therefore is
computed accurately or at limited approximation
configuration. Additionally, we observe that for
large-error approximations (in this example of 24
or more activation accumulation), the sensitivity
is similar for most of the layers, which allows to
apply more drastic approximations without sig-
nificant accuracy loss. In the second plot column,
we present all auto-generated solutions using Alg.
1, which build a pseudo-Pareto front of relative
throughput and accumulated sensitivity of all
possible configurations within the design space.
We select a representative number of all auto-
generated solutions to evaluate the final DNN
accuracy after approximation. As expected, the
accumulated DNN sensitivity is proportional to
the accuracy degradation due to our proposed
approximations, and therefore the solution found
by Alg. 1 delivers an optimal accuracy-throughput
trade-off. When the AMS error model is included
in the computation, the final accuracy has a max.
deviation of ±0.1%. An example of a found
configuration by our proposed methodology is
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[8,12,16]

4-bit ADC
[16,24,32]

1st 8 16
2nd 16 24
rest 16 32

e) Example of found config.

Figure 4: a) Evaluated DNNs num. of parameters, MAC ops and accuracies at Floating point(FP)
representation as well as at 8A4W before and after fine-tuning (FT). b) All evaluated approximate
configurations for 3-bit and 4-bit ADCs. c) 3-bit ADC solutions with best accuracy/speedup trade-off
for each configuration in b) that maintains the 8A4W DNN accuracy. d) 4-bit ADC solutions with best
accuracy/speedup trade-off for each configuration in b) that maintains the 8A4W DNN accuracy. e)
Example of found configurations for model VGG19 for CIFAR10 (3-bit and 4-bit architecture, 1st set
of possible configurations): 1st and 2nd layers require more accuracy, rest of layers can be computed
with max. approximation level. f)Performance of 3-bit ADC in-memory accelerator from [12] with
each possible activation configuration.

provided in Figure 4e).

For each configuration given in Figure 4b),
we obtain the optimal configurations by applying
Alg. 1. In Figure 4c) and 4d), we present the
accuracy and throughput of the solutions that
provided the best accuracy-speedup trade-off with
each given configuration, while maintaining the
original accuracy. Additionally, the last bar in
each chart represents the next possible speedup
and its corresponding accuracy drop. The high-
est speedup is reached with VGG19 (7.6x for
CIFAR10 and 7.3x for CIFAR100). The reason
for this is: The VGG19 has a large number of

parameters and MAC operations compared to
the other evaluated models. This results in a
high redundancy of convolutional features that
contribute to the accuracy of the DNN output.
In consequence, this increases the model’s ro-
bustness towards errors in the DNN computation,
including approximation errors. For the rest of the
evaluated models, we are able to reach an average
of 5x speedup without accuracy loss.

CONCLUSION
In this work, we present a novel layer-wise

approximate computing technique targeting in-
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memory architectures as well as accelerators
based on bit decomposition of MAC operation.
Using a sensitivity-based search, we identify the
optimal approximation level for each DNN layer.
We performed several experiments with a wide
variety of approximate configurations to validate
our approach at various DNN benchmarks for
image classification. With the obtained results,
we reached an average speedup of 5x without
accuracy loss and without any change to the
accelerator or the architecture itself, demonstrat-
ing the suitability of our proposed approximation
approach for accuracy-throughput trade-off opti-
mization.
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