
Knowledge Distillation and Gradient Estimation for
Active Error Compensation in Approximate Neural

Networks
Cecilia De la Parra
Robert Bosch GmbH
Renningen, Germany

cecilia.delaparra@de.bosch.com

Xuyi Wu
Technische Universität München

Munich, Germany
xuyi.wu@tum.de

Andre Guntoro
Robert Bosch GmbH
Renningen, Germany

andre.guntoro@de.bosch.com

Akash Kumar
Technische Universität Dresden

Dresden, Germany
akash.kumar@tu-dresden.de

Abstract—Approximate computing is a promising approach for
optimizing computational resources of error-resilient applications
such as Convolutional Neural Networks (CNNs). However, such
approximations introduce an error that needs to be compensated
by optimization methods, which typically include a retraining
or fine-tuning stage. To efficiently recover from the introduced
error, this fine-tuning process needs to be adapted to take CNN
approximations into consideration. In this work, we present a
novel methodology for fine-tuning approximate CNNs with ultra-
low bit-width quantization and large approximation error, which
combines knowledge distillation and gradient estimation to recover
the lost accuracy due to approximations. With our proposed
methodology, we demonstrate energy savings of up to 38% in
complex approximate CNNs with weights quantized to 4 bits and
8-bit activations, with less than 3% accuracy loss w.r.t. the full
precision model.

Index Terms—Approximate Computing, Neural Networks,
Quantization, Approximate multipliers.

I. INTRODUCTION

CNNs play an important role in the field of machine learning,
achieving near-human accuracy in tasks such as image classi-
fication. However, the implementation of CNN models in edge
devices is highly challenging because of large memory require-
ments, area and power consumption. One paradigm to reduce
such requirements is cross-layer approximate computing, which
comprises approximations at algorithmic and hardware level. In
this work, we focus on applying approximate computing to pre-
trained CNNs, which facilitates the use of general retraining or
fine-tuning schemes that deliver reproducible results, and that
can be applied in different application domains. We explore
two approximation approaches applied to pre-trained CNNs:
Low bit-width quantization at software level, and the use of
approximate multipliers at hardware level.

Quantization of CNN parameters to 8 bits has been widely
researched. It delivers the same accuracy as the Full Precision
(FP) model without additional retraining [1], [2]. However, the
use of lower bit-widths can achieve further reduction in memory
and power consumption. Therefore, we quantize CNN weights
to 4 bits, while maintaining 8-bit activations. We subsequently
refer to this configuration as 8A4W quantization.

After applying 8A4W quantization, we incorporate Approx-
imate Multipliers (AMs) in the computation of convolutional

and Fully Connected (FC) layers. The combination of ultra-low
bitwidth quantization and AMs makes it more challenging to
compensate for the approximation error, as we have less degrees
of freedom to ”move” to regions where the approximation error
is smaller. Furthermore, we are interested in using multipliers
with large Mean Relative Error (MRE), which have higher
energy savings, but which cause large accuracy degradation. To
recover from these approximation errors, a fine-tuning stage is
required. This stage consists in applying Stochastic Gradient
Descent (SGD) optimization to the approximated CNN for a
given number of training epochs. During fine-tuning, the SGD
method has to be adapted to take the CNN approximation
into account, and thus to perform a better compensation of
the approximation error. To this end, in this work we propose
a fine-tuning methodology which involves the combination of
Knowledge Distillation [3] for approximate CNNs, and the gra-
dient estimation of approximate General Matrix Multiplications
(GEMMs). We compare our proposals with two state-of-the-art
methodologies: passive retraining [4] and alpha-regularization
[5]. In summary, our contributions are:

• Novel two-stage Knowledge Distillation for optimized
cross-layer CNN Approximation (ApproxKD).

• Novel gradient estimation of approximate GEMMs for
error compensation in approximate CNNs by means of
SGD algorithms.

• A methodology combining ApproxKD and gradient esti-
mation for effective error recovery in drastically approxi-
mated CNNs.

We perform an extensive analysis of our proposed method-
ology. For this, we use complex CNNs such as ResNet20,
ResNet32 [6] and MobileNetV2 [7] for image classification
with CIFAR10 [8]. After model compression through 8A4W
quantization, we are able to reach further energy savings of
up to 38% with an accuracy loss of 2.37% and 2.36% respec-
tively, when applying approximate multipliers to the evaluated
ResNets. We also reach energy savings of 28% with an accuracy
loss of 1.76% with the more complex MobileNetV2. To the best
of our knowledge, we are the first to sucessfully approximate
such highly complex CNNs after quantizing weights to less
than 8 bits.

II. RELATED WORK

Cross-layer approximate computing of CNNs comprises a
variety of methods for optimizing the trade-off between qual-
ity of application and computational requirements. Regarding
quantization of pre-trained CNNs, it has been proved by [1],
[2] that 8-bit quantization without accuracy loss is possible, and
it does not require fine-tuning. However, when using smaller
bitwidths, the accuracy degradation is larger and therefore fine-
tuning is required. Knowledge Distillation (KD) was proposed
in [3] for distilling the knowledge of an ensemble of CNN
models into a single model. Previous works about applying KD
for CNN quantization, without considering additional hardware
requirements, have been introduced in [10], [11].

Regarding the use of AMs in CNNs, these can either be used
to compute some neurons (partial approximation) or all neurons
in convolutional and FC layers (full approximation). Partial,
resiliency-based CNN approximation was introduced in [12].
Other examples of partial approximation based on resiliency
analysis are [13], [14]. In [15], a framework for layer-wise CNN
approximation based on genetic programming was proposed.
While partial approximation delivers acceptable trade-offs be-
tween accuracy and energy savings, these are bounded by the
amount of approximated neurons. Full approximation, on the
other hand, can deliver better energy savings, but usually results
in larger accuracy degradation. Thus, CNN weights must be op-
timized to recover from this accuracy loss. Approximate CNN
fine-tuning is an efficient optimization method for accuracy
recovery in fully approximated CNNs, as demonstrated in [4],
[5], [16]. In [4], passive and active retraining of approximate
CNNs were introduced for accuracy recovery and for improving
CNN robustness respectively. In [5], a regularization method for
approximate CNN retraining, known as alpha regularization,
was presented. All these works deal with CNNs quantized to
a minimum of 8 bits. In this work, we extend the state of the
art with our proposed fine-tuning strategies which allow more
drastic quantization and approximation of more complex CNNs,
such as ResNet [6] and MobileNetV2 [7].

III. PROPOSED METHODOLOGY

We propose an optimization flow to achieve low bitwidth
quantization and approximation of multiplications, without
accuracy loss. This flow is presented in Algorithm 1 and it
consists of two stages. First, the CNN weights and activations
are quantized to 4 and 8 bits respectively, and the weights
are then updated through fine-tuning and KD to recover the
lost accuracy after quantization. Our quantized model has the
following characteristics:

• Layer-wise quantization of parameters and activations.
• No zero-points. We use a symmetric linear quantizer,

which can be less precise, but which eliminates cross-
terms resulting from GEMM involving zero-points [17].

• The quantization step sizes needed for linear quantization
are computed using Minimization of the Propagated Quan-
tization Error (MinPropQE) [1].

• Quantization step sizes are rounded to the next power-of-
two, to quantize values with a simple shifting operation.

After quantization, we apply the corresponding approximations
to our CNN model and perform a second fine-tuning stage,
where we apply again KD and combine it with gradient
estimation. The details about this two-stage KD for approxi-
mate CNNs and its combination with gradient estimation are
described in the following sub-sections.

A. ApproxKD: Two-stage Knowledge Distillation
CNNs for image processing tasks, such as classification and

semantic segmentation, generally produce class probabilities at
the output layer. During CNN fine-tuning, the goal is then to
minimize the cross entropy between CNN outputs and labels.
This cross-entropy loss function is defined by:

C(y) = −
n∑

k=1

pk log σ(y)k , (1)

where n is the number of predicted classes, σ(·) is the softmax
function applied to the CNN output, p is the hard label or
expected probability value for each class, and y is the CNN
prediction or output vector. For computing the gradient of non-
differentiable functions in the quantization stage, such as round,
a Straight-Through-Estimator (STE) [18] is used.

In previous works [10], [11], KD has been applied in a
single stage to optimizing quantized CNNs. However, when
introducing additional approximation errors, such as those
produced by approximate multipliers, a single KD stage is
not enough to distill knowledge from a Full-Precision (FP)
CNN modeL to an approximated model directly. This because
the quantiztion and approximation errors accumulate and thus
are more difficult to compensate. Therefore, we propose a
two-stage KD methodology for distilling information from a
FP into a quantized model and then into an approximated
model. This two-stage distillation scheme is further refered to
as ApproxKD. In ApproxKD, the FP model is used as a teacher
model, and its information is distilled at different temperatures
to train the student models. Our first student model is the CNN
model quantized to 8A4W, and our second student model is
the approximated CNN using AMs. These student models are
optimized in two sequential stages, subject to our imposed
quantization constraints mentioned at the beginning of section
III. These two stages are what we refer to as the Quantization
and Approximation stages.

1) Quantization stage: In this stage, the optimization of
the quantized model is performed. The final cost function
Cs1(yq) consists of adding a hard loss Chard(y) and a soft
loss Csoft(yq). The function Chard(yq), computed by (1), is
the traditional cross-entropy loss between the output yq of the
quantized model and the hard labels p, provided in the training
dataset. The cost function Csoft(yq) is computed using the
outputs from the teacher model y as soft labels, as in (2), where
a distillation temperature T1 is applied to adjust the probability
distributions of the teacher and student model. The magnitudes
of the gradients back-propagated by the soft loss Csoft(yq) are
scaled by T−2

1 , and therefore Csoft(yq) is multiplied with T 2
1 .

Csoft(yq) = −T 2
1

n∑
k=1

σ(y/T1)k log σ(yq/T1)k (2)

Inputs

Quantization Stage

Approximation Stage

y = CNN(x,w)

Teacher

yq = CNN(xq, wq)

Student 1

σ(y/T1)

σ(yq/T1)

σ(yq)

Hard labels

Csoft(yq) ×T 2
1

Chard(yq)

+ Cs1(yq)

σ(y/T2)
Freeze

yapprox = CNNapprox(xq, wq)

Approximate

Student 2

σ(yapprox/T2)

σ(yapprox)

Hard labels

Chard(yapprox)
+ Cs2(yapprox)

Csoft(yapprox) ×T 2
2

Fig. 1: Definition of cost functions using Knowledge Distilla-
tion for optimizing approximate CNNs.

2) Approximation Stage: After the quantization stage, we
optimize the approximated version of the quantized CNN. A
hard loss Chard(yapprox) and a soft loss Csoft(yapprox) for
the approximated model are defined as in Fig. 1. A second
distillation temperature T2 is applied in this stage. When
introducing approximation errors in a CNN and yapprox < yq ,
the output yapprox is significantly different from the output yq
of the quantized model. Therefore, the approximated model
benefits from a smoother distribution of the soft labels, which
is achieved by the condition T2 > T1. The total loss function
is then defined as follows:

Cs2(yapprox) =− T 2
2

n∑
k=1

σ(yq/T2)k log σ(yapprox/T2) (3)

−
n∑

k=1

pk log σ(yapprox)k

B. Gradient estimation of approximate GEMMs

Convolutional and FC layers can be computed using GEMM,
as in [5]. After transforming the input feature X and the weights
W for GEMM, the output of an approximate layer is computed
as follows:

ỹi,j =

n∑
k

g̃(Xik,Wkj) , (4)

where g̃(Xik,Wkj) is the approximate multiplication of
Xik,Wkj . During fine-tuning, the backward pass includes STEs
for computing the derivative of functions with undefined gradi-
ents, as proposed in [4]. In the case of approximate GEMMs,
their gradient is computed using that of the accurate GEMM.
If we consider the gradient of the cost function C(ỹ) w.r.t.
weights W , the STE of approximate GEMMs is computed as
follows:

∂C(ỹ)

∂W
→ ∂C(ỹ)

∂ỹ

∂y

∂W
=
∂C(ỹ)

∂ỹ
XT , (5)

where ỹ is the output of approximate GEMMs, y is the output
of the accurate GEMM, XT is the transposed input matrix, and
W is the weight matrix.

Since the STE of approximate GEMMs introduces noise in
the backpropagation during fine-tuning, we propose to estimate
the gradient of approximate GEMMs more precisely, by taking
the approximation error into account. For an element Wdc in
matrix W , the gradient of C(y) is defined as in (6), where
yij =

∑
kWikXkj , and all terms with the index i 6= d are

cancelled, according to (7).

∂C

∂Wdc
=
∑
i

∑
j

∂C

∂yij

∂yij
∂Wdc

(6)

∂yij
∂Wdc

=

{
∂ydj

∂Wdc
if i = d

0 otherwise
(7)

The element-wise gradient of an approximate GEMM is then
defined as follows:

∂C

∂Wdc
=
∑
i

∑
j

∂C

∂ỹij

∂ỹij
∂Wdc

, (8)

where ỹij = yij + εij . The approximation error εij is the
difference between yij and ỹij , given the same inputs X
and weights W . We propose to estimate εij as a function f
dependent on y. In this way, the gradient of C(ỹ) can be
estimated more accurately:

∂C

∂Wdc
=
∑
j

∂C

∂ydj

(
∂ydj
∂Wdc

+
∂ε

∂Wdc

)
(9)

=
∑
j

∂C

∂ydj

∂ydj
∂Wdc

(
1 +

∂

∂ydj
f(ydj)

)
(10)

To avoid large computational overhead required to compute
∂

∂ydj
f(ydj), the approximation error ε is estimated in this work

as a piecewise linear function. For example, in the case of the
approximation error depited in Fig. 2, the error is estimated as
follows:

εi,j ≈ f(yi,j) = min(a,max(k̃yi,j + c, b)) (11)

Thus, ∂C
∂W can be defined by:

∂C

∂W
= (1 +K)

∂C

∂ỹ
XT , (12)

where K is a matrix defined by the derivative of the piecewise
function (11):

ki,j =

{
k̃ if a < εi,j < b

0 otherwise
(13)

C. ApproxKD + Gradient Estimation
We now combine KD and the Gradient Estimation (GE)

of approximate GEMMs to minimize the approximation error
in a fully quantized and approximated CNN, as presented in
Algorithm 1. Note that if the derivative of the error funtion
f(yq) is non-zero, GE is applied each fine-tuning iteration
of the approximation stage. Otherwise, if ∂f(yq)

∂y = 0, this is
equivalent to using STE during back-propagation.

Algorithm 1: ApproxKD + Gradient Estimation
Data: FP CNN with weights w and inputs X ,

fine-tuning epochs e1, e2, distillation temp.
T1, T2, approximation error function f(yq)

Result: Optimized Approximate CNN
Quantization stage
for e1 epochs do

for each training minibatch do
Quantize x,w → xq, wq;
Compute yq = CNN(xq, wq) ;
Minimize Cs1(yq) with temperature T1 ;
Update w by computing ∂C(yq)

∂w ;
end

end
Approximation stage
Approximate CNN → CNNapprox ;
for e2 epochs do

for each training minibatch do
Quantize x,w → xq, wq;
Compute yapprox = CNNapprox(xq, wq) ;
Minimize Cs2(yapprox) with temperature T2;
if ∂f(yq)

∂y 6= 0 then
Compute ∂C(yapprox)

∂w using (10) with f(yq);
else

Compute ∂C(yapprox)
∂w with STE ;

end
Update w with ∂C(yapprox)

∂w ;
end

end

TABLE I: Evaluated CNNs

CNN #Params(×106) #MAC Ops(×109) FP Acc.[%]

ResNet20 0.3 0.041 91.04
ResNet32 0.5 0.069 91.88
MobileNetV2 2.2 0.296 94.89

IV. EXPERIMENTAL RESULTS

The CNNs used for evaluation are presented in Table I. All
experiments were performed using a GPU Nvidia GTX 1080 Ti
and Tensorflow [19]. We evaluate the performance of 8A4W
quantized CNNs computed with approximate multipliers. We
perform our experiments with ResNet20, ResNet32 and Mo-
bileNetV2 trained with CIFAR10. For improved computational
efficiency, we fold all Batch Normalization (BN) layers in
the evaluated ResNets [9]. On the other hand, BN layers are
kept in MobileNetV2 to avoid a large accuracy drop. To limit
the number of experiments, we approximate using only one
multiplier type to compute all neurons (uniform approxima-
tion). All experiments with approximate CNNs are performed
in the simulation framework ProxSim [5]. The accuracies of
the 8A4W quantized CNNs before and after Fine-Tuning (FT)
using KD (quantization stage) with T1 = 1 are reported in
Table II.

For the experiments with approximate CNNs, we use mul-

TABLE II: 8A4W Quantization - Results

CNN Acc.
before FT[%]

Acc. after
normal FT[%]

Acc. after
FT w/KD[%]

ResNet20 82.88 90.51 90.60
ResNet32 83.66 91.23 91.29
MobileNetV2 10.01 93.70 93.81

tipliers from the EvoApprox library [20], adapted for 8×4
bit multiplication, as well as 8×4 truncated multipliers [21],
without bias correction. All relevant multipliers used in our
experiments, together with their MRE and estimated energy
savings from [20], [21] are reported in Table V. Note that
the number assigned to the truncated multipliers refers to the
number of Least Significant Bits (LSB) truncated from the
multiplication product. The multipliers from the EvoApprox
library are selected from the Pareto front of CNN accuracy and
energy savings [20]. The provided MRE is formally computed
for all possible values by (14), where NX and NW are the
bitwidths of activations X and weights W , g(·) represents the
accurate multiplication function and g̃(·) denotes the approxi-
mate multiplication. In this work, the reported energy savings in
multiplications are estimated using those of a single multiplier.

MRE =
1

2NX ∗ 2NW

2NX−1∑
j=0

2NW −1∑
k=0

|g(j, k)− g̃(j, k)|
max(g(j, k), 1)

(14)

A. Ablation study - ApproxKD

We evaluate the influence of the distillation temperature
T2 in ApproxKD for approximate CNNs, using the hereby
proposed approximate multipliers, and temperature parameters
T = {1, 2, 5, 10} over 60 epochs. For this evaluation, we use
ResNet20. The results obtained with the proposed tempera-
ture settings are reported in Table III. It is evident that the
temperature value T2 plays an important role when retraining
approximate CNNs using ApproxKD. The accuracy difference
between the best and the worst final accuracy is more than
4% when the multiplier’s MRE is larger than 18%. A high
temperature T2 is required for multipliers with large MRE,
while a lower T2 is suitable for multipliers with small MRE.
This correlation, as explained in sub-section III-A2, can be
explained by the flattening effect of high temperatures on the
probability distribution of the teacher model’s output. When
using an approximate multiplier with large MRE, yapprox
has a different distribution compared to yq . Therefore, the
optimization worsens when using lower values of T2, which
maintains the original probability distribution of yq .

B. Evaluation of ApproxKD + GE

We now evaluate GE and ApproxKD separately, as well
as their combination (ApproxKD + GE), using the best tem-
peratures T2 obtained in the previous sub-section. Regarding
GE, the function f(yq) was estimated using 50 MonteCarlo
simulations of a single convolution with values drawn from
normal distributions, within the corresponding quantization
ranges, which takes less than 1 second with our experimental
settings. Examples of the estimated functions are depicted in

TABLE III: Ablation results - Fine-tuning approximate
ResNet20 with ApproxKD

Multiplier MRE[%] Savings[%] worst
Temp.

best
Temp.

Initial
Acc.[%]

worst Final
Acc.[%]

best Final
Acc.[%]

Truncated
3 5.5 16 10 2 84.61 89.95 90.41
4 9.6 28 1 5 37.57 89.54 89.65
5 18.1 38 1 5 10.70 87.02 87.99

EvoApprox8b

470 2.3 1 10 2 89.16 89.57 90.55
29 7.9 9 10 5 59.06 89.72 89.99
111 11.6 12 1 5 41.18 88.52 89.25
104 19.2 18 1 10 51.53 83.60 86.77
469 20.5 18 1 10 47.14 81.25 85.51
228 20.4 19 1 10 47.65 81.33 85.65
145 20.5 21 1 10 46.70 81.10 85.37
249 48.8 61 – – 10.00 10.02 10.02

Figs. 2 and 3. The truncated multipliers have a biased error,
and therefore we observe a negative slope of the approximated
function. On the other hand, the error of EvoApprox multipliers
(see Fig. 3) can only be estimated as a constant, due to the
unbiased nature of its approximation error. Thus, ∂f(yq)

∂y = 0
for AMs from the EvoApprox library, and therefore fine-tuning
with ApproxKD and ApproxKD+GE delivers the same results.

We perform fine-tuning according to the approximation stage
from Algorithm 1. Note that we only fine-tune with approxi-
mate multipliers that cause an accuracy degradation larger than
1% w.r.t. the FP accuracy. We compare the obtained results
with other two methods from the literature: normal or passive
retraining [4] and alpha-regularization [5], consequently refered
to as normal and alpha respectively. The number of epochs is
30, the mini-batch size is 128, and we apply learning rates of
{1e − 4, 1e − 5} with a decay of 0.1 every 15 epochs. For
alpha reg., we use α = 1e − 11, which generally delivers the
best results (from a set of values α = 1e− 6, ..., 1e− 12).
The obtained results with ResNet20 are reported in Table V.
While KD and GE outperform the other approaches separately,
the combination of both, (ApproxKD + GE), always delivers
the best results. The largest difference in accuracy between
normal and ApproxKD + GE fine-tuning is of 3.16%, with the
truncated multiplier 5. The fine-tuning accuracy over all epochs
using this multiplier is depicted in Fig. 4. We observe that from
the first epoch, ApproxKD + GE and ApproxKD consistently
have the best accuracy improvements, followed by GE. While
alpha achieves slightly better accuracy than normal fine-tuning
during the first 5 epochs, afterwards both have a similar
behavior, which indicates that alpha underfperforms when more
drastic approximations are applied. Another observation is that
the final accuracy of the approximated CNN strongly depends
on the multiplier’s MRE, and not on the accuracy before
retraining. Most notable is the case of truncated multiplier 5
and EvoApprox 249. Both have the same initial accuracy, but
while the first can reach acceptable accuracy after fine-tuning,
the second multiplier, having an MRE of 48.8%, can only
perform ”random guessing”, even after optimization. Regarding
retraining time, ApproxKD + GE has a computational overhead
of only 17% w.r.t. normal fine-tuning, which takes 2027 sec.
for 30 epochs in ProxSim (see Table IV).

The results obtained with ResNet32 using the same hyper-
parameters as ResNet20 are reported in Table VI. Overall, we
observe the same tendency of ApproxKD + GE outperforming
the other fine-tuning approaches. Based on these results, we

TABLE IV: Computational overhead of ApproxKD and GE

fine-tuning method time [s]

Normal 2027
Gradient Estimation 2169
Alpha-Regularization 2312
ApproxKD 2365
ApproxKD + GE 2386

−3000 −2000 −1000 0 1000 2000 3000
accurate output of GEMM

−600

−400

−200

0

200

400

600

m
ea

n
ap

p
ro

xi
m

at
io

n
er

ro
r

Approximation error - Truncated multiplier 5

polynomial estimation

piecewise linear estimation

approximation error

Fig. 2: Estimation of approximation error of truncated multi-
plier 5.

evaluate only normal fine-tuning and ApproxKD + GE with
MobileNetV2, with similar hyperparameters as before. As this
CNN has larger accuracy degradation, we increase T2 by 1,
for all AMs. The obtained accuracies are presented in Table
VII. In general, ApproxKD + GE achieves improved accuracy
recovery even in highly complex CNNs such as MobileNetV2.

V. CONCLUSION AND OUTLOOK

In this work, we present an optimization flow which com-
bines efficient retraining methodologies for cross-layer ap-
proximation of pre-trained CNNs. This flow allows to apply
drastic approximations in neural networks quantized to ultra
low bit-widths. More specifically, after applying 8A4W linear
quantization, we explore the use of approximate multipliers
with large MRE. By using two-stage knowledge distillation
combined with gradient estimation for cross-layer approximate
CNN retraining, we demonstrate energy savings estimated to
38%, using truncated multipliers (with an MRE close to 20%),
with an accuracy loss of up to 2.37% and 2.36% (ResNet32
and ResNet20 respectively), w.r.t. the 8A4W accurate CNN.
We are also able to reach energy savings of 28% with an
accurcy loss of 1.76% using the complex MobileNetV2. The
proposed methodologies will be further extended for lower

−4000 −3000 −2000 −1000 0 1000 2000 3000 4000
accurate output of GEMM

−600

−400

−200

0

200

400

600

m
ea

n
ap

p
ro

xi
m

at
io

n
er

ro
r

Approximation error - EvoApprox 228

approximation error

Fig. 3: Error of EvoApprox 228.

TABLE V: Comparison of retraining methods for Approximate CNNs with 8A4W linear quantization using ResNet20

Multiplier MRE [%] Savings[%] Initial
Acc[%]

Final
Normal

Final
GE

Final
alpha

Final
ApproxKD

Final
ApproxKD+GE

Trunc.

1 0.5 2 90.54
2 2.1 8 89.67 90.31 90.35 90.29 90.39 90.44
3 5.5 16 84.61 90.17 90.23 90.16 90.39 90.41
4 11.0 28 40.22 89.33 89.45 89.32 89.44 89.51
5 19.8 38 10.00 84.63 86.25 84.96 87.56 87.79

EvoA.
470 2.1 1 89.16 90.50 – 90.47 90.55 90.55
29 7.9 9 59.06 89.90 – 89.93 89.99 89.99

228 18.9 19 47.65 84.09 – 83.93 85.65 85.65
249 48.8 61 10.02 10.00 – 10.04 10.02 10.02

0 5 10 15 20 25 30
epochs

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

ac
cu

ra
cy

[%
]

Fine-tuning accuracy - ResNet20, truncated multiplier 5

normal

alpha-reg

GE

KD

approxKD

Fig. 4: Fine-tuning accuracy vs. epoch of ResNet20 approxi-
mated with truncated multiplier 5.

TABLE VI: Results of training approximate ResNet32

Multiplier Initial
Acc.[%]

Final
Normal

Final
GE

Final
alpha

Final
ApproxKD

Final
ApproxKD+GE

Trunc.

1 91.11 – – – – –
2 90.79 91.19 91.21 91.18 91.28 91.29
3 87.40 90.56 90.72 90.61 90.84 90.96
4 45.37 89.54 90.08 89.75 90.10 90.19
5 10.01 86.77 87.95 86.78 88.12 88.93

EvoA.

29 54.92 89.73 – 89.72 90.32 90.32
111 63.43 88.13 – 88.16 89.05 89.05
104 58.70 82.29 – 83.33 86.11 86.11
469 48.73 81.67 – 82.95 84.57 84.57
228 48.70 81.61 – 82.70 84.29 84.29
145 48.81 80.75 – 81.45 84.19 84.19

bitwidth quantization, as well as for the incorporation of more
than one approximation technique into the CNN computation.

REFERENCES

[1] S. Vogel, J. Springer, A. Guntoro, and G. Ascheid, “Self-supervised quan-
tization of pre-trained neural networks for multiplierless acceleration,” in
DATE’19.

[2] S. Ullah, S. Gupta, K. Ahuja, A. Tiwari, and A. Kumar, “L2l: A highly
accurate logg 2 lead quantization of pre-trained neural networks,” in
DATE’20, March 2020.

TABLE VII: Results of training approximate MobileNetV2

Multiplier Initial
Acc.[%]

Final
Normal

Final
ApproxKD+GE

Truncated 1 93.64 93.91 94.07
2 92.94 93.87 94.02
3 76.62 93.24 93.58
4 10.00 92.82 93.13
5 10.00 85.79 87.01

EvoApprox8b 470 91.76 93.43 93.78
228 24.19 86.79 87.26

[3] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in NIPS Deep Learning and Representation Learning
Workshop, 2015. [Online]. Available: http://arxiv.org/abs/1503.02531

[4] X. He, L. Ke, W. Lu, G. Yan, and X. Zhang, “Axtrain: Hardware-oriented
neural network training for approximate inference,” Proceedings of the
International Symposium on Low Power Electronics and Design, Jul 2018.

[5] C. D. L. Parra, A. Guntoro, and A. Kumar, “Proxsim: Simulation
framework for cross-layer approximate dnn optimization,” in DATE’20.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR’16, 2016.

[7] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Inverted residuals and linear bottlenecks: Mobile networks for
classification, detection and segmentation,” IEEE Conference on
Computer Vision and Pattern Recognition, 2018. [Online]. Available:
http://arxiv.org/abs/1801.04381

[8] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 2009.

[9] M. Nagel, M. V. Baalen, T. Blankevoort, and M. Welling,
“Data-free quantization through weight equalization and
bias correction,” ICCV’19, Oct 2019. [Online]. Available:
http://dx.doi.org/10.1109/ICCV.2019.00141

[10] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distil-
lation and quantization,” ArXiv, vol. abs/1802.05668, 2018.

[11] M. Haroush, I. Hubara, E. Hoffer, and D. Soudry, “The knowledge
within: Methods for data-free model compression,” arXiv preprint,
arXiv:1912.01274, 2019.

[12] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “Axnn:
Energy-efficient neuromorphic systems using approximate computing,”
in 2014 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), Aug 2014, pp. 27–32.

[13] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann: An
approximate computing framework for artificial neural network,” in
DATE’15, 2015.

[14] M. A. Hanif, A. Marchisio, T. Arif, R. Hafiz, S. Rehman, and M. Shafique,
“X-dnns: Systematic cross-layer approximations for energy-efficient deep
neural networks,” J. Low Power Electron., vol. 14, no. 4, pp. 520–534,
2018.

[15] V. Mrazek, Z. Vasicek, L. Sekanina, M. A. Hanif, and M. Shafique,
“Alwann: Automatic layer-wise approximation of deep neural network
accelerators without retraining,” ICCAD’19, Nov.

[16] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan, and K. Roy,
“Energy-efficient neural computing with approximate multipliers,” J.
Emerg. Technol. Comput. Syst., 2018.

[17] S. R. Jain, A. Gural, M. Wu, and C. Dick, “Trained uniform quantiza-
tion for accurate and efficient neural network inference on fixed-point
hardware,” arXiv preprint, arXiv:1903.08066, 2019.

[18] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,” vol.
abs/1308.3432, 2013. [Online]. Available: http://arxiv.org/abs/1308.3432

[19] M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-
geneous systems,” 2015. [Online]. Available: https://www.tensorflow.org/

[20] V. Mrázek, R. Hrbáček, Z. Vašı́ček, and L. Sekanina, “Evoapprox8b:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in DATE’17.

[21] S. S. Kidambi, F. El-Guibaly, and A. Antoniou, “Area-efficient multipliers
for digital signal processing applications,” IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing, 1996.

