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Abstract—Deep Neural Networks are one of the machine
learning techniques which are increasingly used in a variety
of applications. However, the significantly high memory and
computation demands of deep neural networks often limit their
deployment on embedded systems. Many recent works have
considered this problem by proposing different types of data
quantization schemes. However, most of these techniques either
require post-quantization retraining of deep neural networks
or bear a significant loss in output accuracy. In this paper,
we propose a novel quantization technique for parameters of
pre-trained deep neural networks. Our technique significantly
maintains the accuracy of the parameters and does not require
retraining of the networks. Compared to the single-precision
floating-point numbers-based implementation, our proposed 8-
bit quantization technique generates only ∼ 1% and ∼ 0.4%,
loss in the top-1 and top-5 accuracies respectively for VGG16
network using ImageNet dataset.

Index Terms—machine learning, neural networks, quantization

I. INTRODUCTION

Deep neural networks (DNNs) are the machine learning
models which have achieved promising classification accura-
cies on different recognition problems such as images, speech,
and natural language processing [1]–[3]. However, the DNNs
are computationally expensive and have very high memory
footprints. For these reasons, high-performance parallel ar-
chitectures, such as graphics processing units (GPUs), are
typically used for the training of DNNs. Further, to provide
high computational accuracies, these systems typically use
single-precision floating-point numbers. However, the high
power consumption and memory requirements of these CPUs
and GPUs-based DNN models make them an infeasible choice
for embedded devices on edge. A plethora of recent works
has proposed different types of data representation techniques
and hardware accelerators to reduce the memory and power
budgets of trained DNN models. Most of these techniques
represent the parameters of a trained network in low precision
fixed-point number systems by utilizing different types of
quantization schemes. Decreasing the precision of parameters
helps in reducing the memory footprint, interconnect band-
widths for transferring the intermediate results, and the re-
quired computational complexity. However, the overall output
accuracy of a quantized DNN model is degraded due to the
errors induced by quantization. For some quantized DNNs, the
final output accuracy can be slightly improved by retraining the
network with quantized parameters and adjusting the quantized
parameters accordingly. However, the retraining of a quantized
DNN is a time, energy, and computational resource-consuming
operation. Therefore, there is always the need for defining
quantization methods which can produce high-quality results

without retraining the networks. To this end, we claim the
following contributions in this work:

• We present a novel quantization technique for pre-trained
DNNs. With our proposed quantization method, higher
output accuracies can be achieved than those obtained
with state-of-the-art methods.

• Our technique identifies the positions of the leading 1
and the following most significant bits in a fraction to
represent a quantized number. Our analysis shows that the
identification and processing of the most significant bits
can remarkably improve the precision of the quantized
number.

• Our proposed quantization technique is highly accurate
and significantly retains the precision of the parameters.
Therefore, retraining of the quantized network is not
required to recover from the quantization errors.

• Our proposed quantization technique replaces the com-
putationally intensive and resource-hungry Multiply-
operators in a DNN model with bit-shift and add op-
erators.

II. RELATED WORK

Quantization of neural networks can be achieved either by
training the networks with quantized parameters or applying
different quantization schemes on the trained network param-
eters. For example, the works in [4]–[9] utilize specialized
methods to train networks with different fixed-point low-
precision parameters. The techniques proposed in [6]–[9] have
even reduced the precision of trained parameters to only 1-
2 bits. As the training of a network is a learning process,
the in-training quantization can heal many of the quantization
induced errors in the final output of the network. However, this
technique cannot be utilized for the networks already trained
with floating-point numbers. To quantize the parameters of
a pre-trained network, the works in [10]–[14] have proposed
different quantization schemes. The technique proposed in [11]
utilizes different bit-widths for each layer to reduce the errors
in final output accuracy. To replace the computationally costly
multiply-operation with bit-shifts, the works in [10], [12]–
[14] have used the power of 2 quantizations for pre-trained
networks’ parameters. However, most of these techniques
require a fine-tuning (retraining) step to reduce the errors
induced due to quantization. The authors of [14] have avoided
the post-quantization fine-tuning step by computing the quan-
tization step size using an iterative approach. In their proposed
technique, the optimal quantization step sizes for features and
parameters are computed by iteratively adjusting the step size
for each data structure in each layer and recording the gener-
ated errors in the layer under consideration. The independent
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Fig. 1: Distribution of weights and biases for pre-trained VGG-
16 [15] (a) Conv1 2 layer (b) Conv4 1 layer

quantization of each data structure and the iterative approach
for finding the quantization step size may take a significantly
long time for the quantization of very deep neural networks.

The quantization technique proposed in this paper, referred
to as log 2 lead, can substantially maintain the precision
of pre-trained network parameters and therefore, does not
require retraining of the quantized network. The quantization
technique of log 2 lead is also independent of neurons’
criticalities and does not require any time consuming iterative
process for computing the quantized parameters.

III. QUANTIZED DNNS

In this section, we briefly present a description of the usually
employed techniques for the quantization of pre-trained DNNs.

A. Overview of DNNs
A typical DNN consists of multiple stacked layers of

primary computational units called Neurons. The commonly
used layers in a DNN are convolution, pooling, and optionally
a few fully connected layers. A DNN is trained using these
layers with floating-point numbers. For example, Fig. 1 shows
the distribution of weights and biases of two different layers
for a trained VGG16 [15] network. Next, we describe the
commonly used quantization schemes to reduce the memory
map of a trained DNN.

B. Commonly Used Quantization Techniques
Linear Quantization

The linear quantization of a data tensor x from floating-
point precision to N-bit fixed-point precision is described by
Eq. 1–3. The step size ∆ in the Eq. 1 represents the minimum
possible increment in the quantized value xquant. Eq. 2 is used
to align ∆ with the maximum and minimum allowed value in
N-bit precision1. Finally, the ∆ is used in Eq. 3 for computing
the quantized value xquant. As the computation of the ∆ is
based on the maximum absolute value of x, this method creates
robust quantization errors for far outliers in x. Fig. 2(a) and
Fig. 3(a) show the linear quantization of the weights and biases
presented earlier in Fig. 1. The linear quantization provides
a limited number of uniformly separated discrete fixed-point
values for representing the Float32 values.

∆ = clip

(
max (| x |)

2N−1
, 2N−1, 2−(N−1)

)
(1)

12** shows power of 2.

∆ = 2 ** clip (round(log2(∆)), N − 1,−N + 1) (2)

xquant = clip
(
round

( x

∆

)
,−2N−1, 2N−1 − 1

)
∆ (3)

Power of 2 Quantization (log2 Quantization)

The power of 2 quantization (also referred to as log2
quantization) has been used by many state-of-the-art works
to replace the multiplication operations in DNNs with bit-
shifts. Eq. 4 and Eq. 5 represent an elementary scheme of
power of 2 quantization for mapping a floating-point value
x to a power of 2 value xquant. Fig. 2(b) and Fig. 3(b)
show the power of 2 quantization of the Conv1 2 weights and
Conv4 1 biases of pre-trained VGG16 network. Compared to
the linear quantization, the power of 2 quantization have many
repeatedly occurring values which are not close to 0.

ˆxquant = clip (round (log2(| x |)) , 0, N) (4)

xquant = sign(x)2 ˆxquant (5)

IV. PROPOSED TECHNIQUE

The proposed fixed-point quantization technique attempts
to minimize the quantization induced errors by identifying
and storing the most significant 1’s in the parameters of
a pre-trained DNN. As the trained parameters are repre-
sented in single-precision floating-point scheme (32 bits), the
identification of the 1’s which have higher significance can
notably reduce the quantization generated errors. To identify
the significant 1’s in Float32-based parameters, Fig. 4 gives a
histogram of the leading 1’s in all the weights and biases of
two different layers of VGG16 network. As shown in Fig. 4(a),
the leading 1 for most of the weights of Conv1 2 layer occur
at bit position -6. However, there also some weights with
very low-values and having the leading 1 occurring at bit
position -15. A typical log2 quantization as described in Eq. 4
and Eq. 5 would only find a single leading one for each
weight and discard all other bit locations. Due to ignoring
all other bit locations for computing the quantized value, the
log2 quantization can introduce substantial quantization errors.

In our proposed log 2 lead technique, we also apply log2
to detect the position of the leading 1 in a fraction. However,
to heal the quantization errors, log 2 lead also observes the
following bits locations after the leading one location. For
N-bit fixed-point quantization, Fig. 5 shows the template of
our proposed log 2 lead quantization scheme. The first bit
is reserved for showing the sign of the quantized parameter.
Following

⌈
N−1
2

⌉
bits are reserved for storing the location

of the leading-1 in the original non-quantized parameter. The
remaining bits are used to store the values of the following⌊
N−1
2

⌋
bits after the leading 1. For example, for the leading-1

histograms in Fig. 4, the leading-1 at bit position −12 would
be represented as a binary number ‘1100’ by the ‘leading one
location’ field in the template shown in Fig. 5. Moreover,
to increase the precision of the quantized value, we always
analyze

⌊
N−1
2

⌋
+1 bits after the leading 1 and round the values

to
⌊
N−1
2

⌋
bits accordingly. A similar rounding technique is as

also discussed in [16]. The rounding of
⌊
N−1
2

⌋
+1 bits further

helps in retaining the precision of a rounded number. For
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(c) log 2 lead quantization

Fig. 2: Quantization of pre-trained weights of Conv1 2 layer of VGG-16 [15]
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Fig. 3: Quantization of pre-trained biases of Conv4 1 layer of VGG-16 [15]
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Fig. 4: Histogram of leading 1’s for all weights and biases
for pre-trained VGG-16 [15] (a) Conv1 2 layer (b) Conv4 1
layer
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Fig. 5: Template for proposed quantization technique

example, Fig. 6 shows an example of quantizing a fractional
number 0.217884 using the proposed log 2 lead technique.
The leading 1 is found at bit location −3 which is stored in
our template as a binary number 0011. After the leading 1,
following four bits are analyzed and rounded to binary pattern
110. The corresponding quantized value is 0.21875. Through
our testing on the trained parameters of different benchmark
DNNs, we have found that quantization errors can be healed
significantly in the final output of a DNN by utilizing 8 bits
for log 2 lead quantization. Fig. 2(c) and Fig. 3(c) shows

0.00110111110001110011111011101110…

2�� + 2�� + 2��

Fig. 6: log 2 lead quantization example

the quantization of weights and biases of two different layers
of VGG16 (already presented in Fig. 1). It can be observed
that the proposed log 2 lead technique provides more discrete
fixed-point values and better coverage for quantizing Float32-
based parameters than the linear and power of 2 quantization
schemes.

V. EXPERIMENTAL SETUP AND RESULTS

For the application-level evaluation of log 2 lead, linear
quantization, and power of 2 quantization, we have used
TensorFlow framework [18]. Using the framework, we have
implemented on VGG16 Network [15] with ImageNet dataset
[17] to test the efficacy of our proposed quantization technique
for classification accuracy of quantized netwroks. These results
are discussed in Section V-A. The proposed log 2 lead tech-
nique replaces the resource-demanding multiply operation with
bit-shifts and add operations. Using these two operations, we
have implemented a Processing Element (PE) for the multi-
plication of log 2 lead-based weights and features. The PE is
implemented in VHDL for Xilinx Virtex-7 xc7v585tffg1157-
3 FPGA using Xilinx-Vivado-17.4. The resource utilization of
our proposed PE is compared with Vivado standard multiplier
IPs. The implementation results are presented in Section V-B.



TABLE I: Classification accuracy of VGG16 network [15] on
ImageNet dataset [17] with different quantization schemes

Quantization VGG16 [15] Top-1 [%] Top-5 [%]
Float32 64.72 85.74

weights, biases
quantized

8-bit linear 59.8 82.55
Power of 2 0.1 0.63
log 2 lead 64.51 85.64

Float32 vs log 2 lead -0.21 -0.1

weight, biases
and activations

quantized

8 bit linear 59.83 82.55
Power of 2 1.16 7.48
log 2 lead 64.05 85.34

Float32 vs log 2 lead -0.67 -0.4

TABLE II: Resource utilization of proposed PE and Vivado
multiplier IPs along with corresponding classification accura-
cies for VGG16 [15] network on ImageNet dataset [17]

Achieved
AccuracyDesign Quantization

Scheme
Feature size

(bits)
Weight size

(bits)
Resources

(LUTs) Top-1 [%] Top-5 [%]
PE log 2 lead 8 8 67 64.47 85.63
IP Linear 8 8 85 59.83 82.55
IP Linear 8 9 89 64.26 85.34
IP Linear 8 10 109 64.52 85.56
IP Linear 8 11 111 64.65 85.72
IP Linear 8 18 166 64.67 85.7

A. Image Classification
To evaluate the efficacy of our proposed technique on clas-

sification task, we have also tested it on ImageNet dataset [17].
For the 50, 000 validation images, the pre-trained network
has 64.72% and 85.74% Top-1 and Top-5 classification ac-
curacies using the single-precision Float32-based parameters
and activations. We have applied various 8-bit quantization
schemes on the pre-trained parameters and evaluated for
classification accuracy. These results are presented in Ta-
ble I. For the first experiment, the activations have Float32
precision, and the weights and biases are quantized to 8-
bit precision. Compared to the linear quantization and power
of 2 quantization, our proposed technique log 2 lead pro-
duces better Top-1 and Top-5 classification accuracies. The
log 2 lead scheme reduces the Top-1 and Top-5 percentage
classification accuracy only by 0.21 and 0.1, respectively.
For the second experiment, all data structures are quantized
to 8-bit precision. The log 2 lead quantization scheme still
produces better classification accuracy than the power of 2
and linear quantization schemes. Compared to the baseline
Float32-based classification, log 2 lead has only 0.67 and
0.4 drops in the Top-1 and Top-5 percentage classification
accuracies, respectively.

B. Hardware Implementation Results
Utilizing the 6-input lookup tables (LUTs) and the asso-

ciated carry chains of Xilinx FPGAs, we have implemented
a processing element (PE) for the log 2 lead-based multi-
plication. Table II compares the implementation results of
our proposed 8-bit PE with Xilinx Vivado area-optimized
multiplier IP for various sizes. It also shows the corresponding
classification accuracy of quantized VGG16 for ImageNet
dataset for log 2 lead and linear quantization with different
data sizes for weights. The activations (feature size) are 8-bit
linear quantized. The baseline Float32-based Top-1 and Top-5
classification accuracies are 64.72% and 85.74%, respectively.
The log 2 lead scheme provides better classification accuracy

with a fewer number of utilized LUTs for its PE than the
linear quantization with 8× 8 multipliers. Even with 18 bits
of precision, the accuracy of linearly quantized weights design
is only marginally better than log 2 lead, despite consuming
more than twice the area of log 2 lead design.

VI. CONCLUSION

In this paper, we presented a novel quantization scheme
for deep neural network. Our proposed technique analyzes
Float32-based parameters of a trained network and records the
bit positions of the most important bits. Our proposed tech-
nique is highly accurate and does not require the traditional
accuracy-recovery retraining of the quantized network. Using
bit-shifts and addition operations, we have also presented an
efficient implementation of a PE for the multiplication of
weights and features.
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