
Using Monte Carlo Tree Search for EDA – A Case-study with
Designing Cross-layer Reliability for Heterogeneous Embedded

Systems
Siva Satyendra Sahoo, Akash Kumar

Chair of Processor Design, Center for Advancing Electronics Dresden (CfAED)
Technische Universität Dresden

Dresden, Germany
{siva_satyendra.sahoo,akash.kumar}@tu-dresden.de

Abstract—Continued transistor scaling and increasing power density
have led to considerable increase in fault-rates in silicon nanotechnology-
based real-time systems. Cross-layer fault tolerance techniques present
a more cost-efficient methodology for adapting to such increased fault
rates by distributing fault-tolerance to different layers. To this end, we
propose a methodology for integrating the design space exploration (DSE)
for task-mapping on heterogeneous hardware-platforms with designing
cross-layer reliability. Specifically, we model the DSE for task-mapping
with cross-layer reliability as a tree search problem and use Monte
Carlo Tree Search for task-mapping and scheduling applications with
specific reliability requirements. The proposed methodology results in
considerable improvements over a standalone approach to task-mapping
and implementing cross-layer reliability.

Index Terms—Cross-layer System Design, Reliability, Randomized
Algorithms, Design Space Exploration, System-level Design, Embedded
Systems

I. INTRODUCTION

Technology scaling and architectural innovations have been the
driving force behind the increasing ubiquity of embedded systems.
However, these approaches have also led to significant increase in
Soft Error Rate (SER) of logic circuits [1], [2] in addition to reliability
issues due to increased power density and manufacturing defects [3].
Traditional approaches to fault-aware design adopt a phenomenon-
based approach that focuses on mitigating all physical faults at
the hardware layer. However, hardware-only mitigation methods are
becoming increasingly infeasible due to the increasing complexity,
higher SER and tighter cost (power and area) constraints of embedded
systems.
In contrast, the cross-layer design approach involves distributing fault-
mitigation activities to several layers of the system stack [4] resulting
in a reduced fault-mitigation effort at hardware layer leading to more
cost-effective designs. Further, barring a few applications that require
high reliability in all three reliability metrics – Functional, Timing
and Lifetime – most applications, especially soft real-time systems, can
tolerate some degradation in one or all of those metrics [5]. The design
decisions w.r.t. selecting and configuring fault-mitigation methods at
different layers in heterogeneous MPSoCs add to the already vast
design space for task-mapping and scheduling. Therefore, efficient
DSE techniques that can incorporate effects of distributing fault-
tolerance activities to different layers, and leverage the application-
specific tolerances in reliability metrics can enable the design of
effective cross-layer reliability. To this end, we propose a novel
system-level DSE methodology for implementing application-specific
cross-layer reliability in embedded systems.
Contributions: Our contributions are listed below:

1) We model DSE for cross-layer reliability as a tree traversal
problem (TTP) and use the Monte Carlo Tree Search (MCTS)
method for determining the best selection of fault-mitigation
activities for each layer. We use task-mapping on heterogeneous

MPSoCs as a test case to evaluate the performance of the
proposed DSE method. The proposed methodology considers
application-specific requirements for each reliability metric.

2) We explore modifications to the pure, problem-agnostic MCTS
method to adapt the method to the cross-layer DSE problem.
Specifically, we investigate the implications of a constrained
MCTS approach on the performance of the DSE methodology.

The rest of the paper is organized as follows: In Section II, we provide
a brief background of cross-layer reliability and survey some state-
of-the-art approaches to designing cross-layer reliability. In Section
III, we describe the system model. We explain the representation of
DSE for cross-layer fault-mitigation as a TTP and detail our proposed
MCTS-based DSE approach in Section IV. The experiments and results
for evaluation of the proposed approach are discussed in Section V.
We conclude the paper in Section VI with the scope for related future
work.

II. CROSS-LAYER RELIABILITY AND RELATED WORK

Unlike the single-layer phenomenon-based design approach, the
cross-layer approach provides a more application-specific and cost-
efficient method for reliability-aware system design. Since the fault-
mitigation activities are not limited the hardware layer, an appropriate
combination of methods that meets the design goals and constraints
can be implemented. As discussed in [6] and [5], implementing
separate fault tolerance stages at different layers can result in reduced
power and area overheads. Further, distributing fault tolerance tasks
to higher layers enable the designer to take advantage of the masking
effects of more layers [7].
In [4], the authors outline a methodology for implementing cross-layer
resilience. Additional subsystems – Error handler routine, Resource
Map, Hardware Configuration Routine, and Task Scheduler – in the
operating system are used to trigger the appropriate fault-tolerance
technique at the appropriate layer. In [8], the authors proposed new
techniques – Error-aware placement and Failure prediction – for
globally-optimized cross-layer resilience. Similarly, in [9], the authors
propose various cross-layer techniques – from microarchitecture to
application level – for both general purpose processor and reconfig-
urable processor based embedded systems. In all methods presented,
every layer takes advantage of the information available at its adjacent
layers. In [6], the authors present a cross-layer approach providing re-
silience in multimedia applications. Specifically, the proposed method
uses hardware layer for error detection, middleware for Drop and
Forward recovery and application layer for error resilient application
design. In [10], the authors provide a heuristic-based methodology for
combining several hardware and software techniques – Circuit-level
hardening, logic-level parity checking, microarchitectural recovery,
and Algorithm-based Fault Tolerance (ABFT) – to provide soft-error
tolerance in processor cores.
Most of the state-of-the-art cross-layer reliability techniques lack a978-1-6654-2614-5/21/$31.00 ©2021 IEEE

TASK_GRAPH 0
 Period= 600
 In/Out Degree Limits= 5 / 5

0

1

2

3 4

5

6

7

8

9

10

11

d=600

(a) Application model

TASK
ALLOCATION

UNIT

FAULT
MANAGEMENT

UNIT

PE PE PE

PE PE PE

PE PE PE

MPSoC

(b) Architecture model

Fig. 1: System model

holistic approach and do not consider all application-specific reliability
metrics – Functional, Timing and Lifetime. For instance, the approach
described in [10] involves maximizing the fault-mitigation by soft-
ware layers. Usually, software mitigation of hardware faults is based
on temporal redundancy resulting in lesser area/power overheads.
However, the increased execution time can lead to faster aging. In
[11], the authors show the adverse effects of increasing checkpoints,
a temporal redundancy-based method, on permanent fault tolerance.
Therefore, systems that have design constraints of system lifetime
have to use additional processing units. This can offset some of
the area/cost advantages. In [12], the authors presented a cross-
layer compositional analysis-based framework for reliability imple-
mentation in embedded systems. The proposed methodology involves
estimating the interference of fault-mitigation approaches at different
modeling levels. Our proposed approach for designing cross-layer
reliability involves finding the right selection and configuration of
fault-mitigation methods that should be implemented at each layer
to meet the application-specific reliability objectives and constraints,
and can be considered applicable to the system-level design in [12].

III. SYSTEM MODEL

A. Application model

Mathematically, we model the application as a task-graph Gapp,
represented by a tuple (T,E,D), the set of task nodes, the directed
connectivity of the nodes representing task dependencies, and the
deadline of the application respectively. Each task, Taskt in the task-
graph is characterized by the tuple (IDt, T ypet, Implt): the task
id, task type and the set of implementations for the task. Each ith

implementation of Taskt, Impl(t,i), is characterized by the minimum
execution time Tmin(t,i) and scale parameter of Weibull aging model
η(t,i). The scale parameter is a function of the thermal profile of
executing Impl(t,i) of Taskt. Fig. 1a shows a sample task-graph for
an application with 12 tasks and deadline of 600 time units.
B. Architecture Model

For the architecture model, we assume the hardware platform as a
NoC-based MPSoC with a mesh architecture, similar to the one shown
in Fig. 1b. The hardware platform has P processing elements (PEs),
each PEp characterized by the tuple (IDp, T ypep, βp,MFp): the
PE’s id, PE type, shape parameter and masking factor. Typep can
be used to denote the different type of PEs, such as general purpose
embedded processors, application specific instruction set processors
etc. The βp of Weibull model represents the aging-related fault profile
of the PE. Similarly, MFp represents the soft-error masking factor
for the PE and can be characterized by the Architectural Vulnerability
Factor (AVF) [13] of the PE. We consider heterogeneity among PEs
w.r.t. variation in βp and MFp in addition to PE type.
C. Reliability Model

Functional reliability (RelFR) refers to the probability of an
execution resulting in correct computation. The transient fault induced
computational errors reduce the functional reliability of the system.

We model RelFR as represented in Eq. 1. ERapp, ERt ERspec

represents the error-rate of the application, a task and the system
specifications respectively.

ERapp = max
Taskt∈T

ERt ; RelFR =
1− ERapp

1− ERspec
(1)

Timing reliability (RelTR), of an application Gapp can be ex-
pressed as the probability of execution of Gapp completing within the
certain specified threshold. Due to the usage of temporal redundancy
based fault mitigation methods, RelTR can be a complex function
of the timing reliability of the tasks in Gapp. The dependencies
among the tasks, mapping, and scheduling of tasks on the PEs, and
the implemented fault-mitigation methods add to the complexity of
determining RelTR. Such an analysis is beyond the scope of the
current article. For the current article, we use the inverse of the average
completion time as the measure of timing reliability [11], as shown
in Eq. 2.

AvgEndTapp = max
Taskt∈T

{Average End time of Taskt}

RelTR = D/AvgEndTapp
(2)

We represent the expected lifetime of the system, SystemMTTF ,
by the Mean Time To Failure (MTTF) of the system. The reliability
model used is similar to that presented in [14]. Assuming a Weibull
distribution of failures, and considering the temporal variation in aging
effect, caused by the time multiplexing of different tasks on a PE, the
effective MTTF of a PE, MTTFp and can be expressed as shown in
Eq. 3. MTTF(t,i,p) refers to the MTTF for executing ith implemen-
tation of Taskt on PEp. Tp is the set of tasks mapped on PEp and
Tavgt refers to the average execution time of the implementation of
Taskt. Papp refers to the average makespan of the application. We
define the Lifetime Reliability (RelLR) as the fraction of required
MTTF for the system, MTTFspec. The RelTR with MTTF considers
the time to first failure. We assume that successive task mappings, in
the event of permanent faults, that optimize the MTTFSY S leads to
optimization of the overall system lifetime.

MTTF(t,i,p) = η(t,i) × Γ (1 + 1/βp) ; MTTFp =
Papp∑

Tp

Tavgt
MTTF(t,p)

SysMTTF = min
all PEs

(MTTFp);RelLR =
SystemMTTF

MTTFspec

(3)

IV. MCTS-BASED DSE

A. Modeling DSE as a TTP

Fault-mitigation involves implementing different fault-detection and
fault-tolerance methods for masking the effect of hardware faults.
The design of cross-layer reliability entails selecting and configuring
such methods at different layers of the system. The selection and
configuration can be represented as a sequence of design decisions.
This sequence can be modeled as moves of a single-player game
(like Sudoku). Consequently, the search for the optimal set of design
decisions can be modeled as a TTP, searching for the leaf node
with highest rewards. Figure 2a represents such a search tree for the
task-mapping and scheduling problem for MPSoCs [15]. The dotted
rectangular outline in the figure shows the design decisions associated
with mapping each task on the available hardware platform. The first
decision concerns selecting the appropriate task to be considered for
mapping and is determined by the task-level dependencies in the
application graph. Similarly, the second decision – selecting the PE to

����

1������	��

	
�� �?

��	��	
��	

���� �	?

1

1 � �

1
�

�

2������	��

	
�� �	?

	

1 � � � 1

	

	2

	�

��	��	
��	

����	���� �	?

(a) Task-mapping only

����

1������	

��	
�� �?

��	��	
��	

���� �	?

	

1
�

�

1

�
�

2������	��

	
�� �	?

	

������,��

������,	�

������,
�

�������

� �������

���	������� �	?	

Select and Configure
Fault-mitigation

method for each layer

1 �

� � 1

(b) Task-mapping
with fault-mitigation

�����

�����

�����

�����

����

����

�		��	��	

��� �	?

����

1 �
�

������,��

������,�� ������,��

(c) Cross-layer
fault-mitigation

Fig. 2: DSE for Cross-layer reliability as a TTP

map the selected task to – should consider the execution time of the
selected task on each PE and the next earliest execution-slot available
on the PE. Consequently, mapping T tasks on P processing elements
results in a search tree of depth 2T . The resulting branching factor
of the tree is up to T , decreasing from T to 1 as we go down the
tree from the Root node, for the first design decision and P for the
decision to select the PE. Hence, the number of possible design points
on the exploration space, represented by the possible number of leaf
nodes, is (PT × T !).

For cross-layer fault-mitigation, the design decisions for each task
are shown in Figure 2b. The second decision refers to selecting among
various implementations of the task (Implt), followed by a set of
design decisions w.r.t. generic fault-mitigation methods at each layer,
shown in the figure as a collection of selection and configuration
decisions. The number of maximum possible leaf nodes can be
expressed as (PT ×T !×

∏t=T
t=1 (It FMCL)), where It is the number

of possible Implt choices for task Taskt and FMCL is the product
of the number of choices for generic fault-mitigation methods at each
layer.

B. Monte Carlo Tree Search (MCTS)

Tree search-based optimization involves finding an optimal leaf
node in the search tree. Exhaustive search approaches, such as Depth
First Search (DFS) and Breadth First Search (BFS) expand the whole
tree to find an optimal node and can be very costly for problem sizes
described in the previous sub-section. Heuristics based methods, such
as A-star [16] aim to expand fewer nodes in the tree while finding
an optimal node. The search tree expansion (adding a new node) is
usually guided by a heuristic measure that provides an estimation of
the reward for expanding a node. MCTS [17] is one such guided
search method where the reward for expanding a node, say NodeX , is
estimated through Monte Carlo simulation of design decisions starting
from NodeX . A brief description of the different stages in MCTS is
outlined below:

• Tree policy involves selecting the appropriate NodeX to perform
Monte Carlo simulations from. At each iteration, a new node is
added to the tree. The selection of NodeX is based on a parame-
ter, XploreF , that controls the balance between exploitation and
exploration.

• Default policy refers to the Monte Carlo simulation for design
decisions starting from NodeX until a leaf node is reached.

• Backpropagation entails estimating the reward of the leaf node

and updating the reward value and number of visits for all nodes
along the path form NodeX up to the Root node.

Similar to most DSE approaches based on randomization and evolu-
tionary algorithms, MCTS involves converting the NP-hard problem
of finding the best task-mapping into iteratively, and intelligently,
selecting and evaluating various feasible points on the design space
to provide a best-effort solution that may be sub-optimal. The MCTS-
based approach is scalable with the available computation budget.
Additional time for DSE leads to expanding and evaluating more
nodes, and with sufficient time, can lead to results similar to an
exhaustive search. The parameter XploreF can be used to control
the computation budget spent in exploiting more rewarding paths or
explore fewer rewarding ones.

C. Cross-layer DSE using MCTS

1) Implementing Cross-layer Reliability

Implementing a task involves designing cross-layer reliability for
the task, mapping the task to a PE and scheduling the task’s execution
on the PE. We implement decision-making w.r.t. cross-layer reliability
as a sequence of design decisions as shown in Fig. 2c. The fault/error
mitigation at each abstraction layer < X > can be modeled as a two-
step process – detection (< X > FD) and mitigation (< X > FM).
The reliability design for each layer is described below.
Task-specific Implementation (IMPL): In addition to selecting from
a set of implementations (varying in latency, power etc.), we use the
IMPL layer to represent the choices w.r.t. task-specific fault-mitigation
approaches (e.g. partial TMR, algorithms, etc.).
Hardware Fault-mitigation (HWFM): For our current work, we limit
the options for HWFM to the following:

• Using PEs with higher masking factor (MFp) for improving the
functional reliability of the task.

• Aging mitigation (AgMit) is implemented at the hardware layer
by using PEs with lower βp, signifying reduced aging effect. This
is integrated into the search tree as additional HWFM choices,
for each task type (Typet), with increased MTTF(t,i,p).

System Software Fault-mitigation (SSWFM): We model the
choices for fault-detection by system software (SSWFD) as a tuple
(CovFD, TOvFD), the coverage of the detection method and the
timing overheads for implementing the SSWFD method respectively.
TOvFD is expressed as a percentage of the duration of useful
computation time to which the detection applies. This lets us model
application specific methods in addition to generic methods like
dual temporal redundancy (DTR). The fault-tolerance step involves
selecting and configuring the fault tolerance (SSWFM) method. For
our current work, we limit SSWFM to checkpointing with rollback
recovery. The design choices are denoted by NChk, the number of
checkpoints and TOvchk, the overhead associated with creating a
checkpoint. TOvchk is expressed as a percentage of the minimum
execution time of the task. We denote the absence of SSWFM as
NChk = 0, with no overhead. Similarly, Retry with rollback can
be represented with NChk = 1 and TOvChk = 100.
Application Software Fault-mitigation (ASWFM): We model the
choices w.r.t. fault-mitigation at the application layer as additional
implementation choices for the task. Typical examples of ASWFM
are some algorithmic modifications (approximations, ABFT etc.) that
can result in different execution times on the same PE.

2) Constrained Decision Making

The pure MCTS approach (pMCTS) is unconstrained and the
nodes are expanded and simulated irrespective of the feasibility
of the resulting system state. Only the leaf nodes are evaluated
for correctness and reward. While this approach makes the method
problem-agnostic, it can lead to wastage of computation resources

by evaluating infeasible regions of the search tree. We implemented
constrained MCTS (cMCTS) by constraining the decision-making
while selecting the next task to implement on the MPSoC. The feasible
options for selecting the task was based on the following criteria – a
task is considered a feasible for implementing if either of the following
conditions is satisfied:

• The task has no parent tasks defined by the application graph.
• All its parent tasks have already been implemented.

The constrained approach at an early stage of the design decision-
making restricts the number of possible child nodes and hence fewer
iterations are lost on simulating all nodes.

3) MCTS Node Reward

The rewards of leaf nodes of the search tree are used to guide
the tree traversal. We model the reward of a leaf node in the cross-
layer design tree as a weighted sum of the three reliability metrics,
as shown in Eq. 4. The implemented MCTS methodology aims to
maximize RewCL.

RewCL = WtFR RelFR +WtTR RelTR +WtLR RelLR

where, WtFR +WtTR +WtLR = 1,

and 0 ≤ WtFR ,WtTR ,WtLR ≤ 1

(4)

V. RESULTS AND DISCUSSIONS

A. Experiment Setup

1) Cross-layer Fault-Mitigation

The experimental evaluation of integrating implementation of
cross-layer reliability into task-mapping involved modeling the effects
of fault-mitigation at different layers as described below. The design
decisions are based on the methods and parameters described in
Section IV-C1.

• NoFM: This is the base case of implementing the tasks on
a homogeneous MPSoC without any fault-mitigation methods.
The PEs of the MPSoC do not have any additional soft-error
mitigation measures (MFp = 0). Similarly, the homogeneity of
the PEs w.r.t. aging is modeled by using a constant MTTF of the
task implementations for each PE. Further, the NoFM method
does not include any SSWFM measures and each of the task
types has only one application software implementation. For our
experiments, we use an MPSoC with 8 PEs with MTTF of
10 years for each implementation.

• SSWFM: The coverage of SSWFD was varied form 0 to 100 in
increments of 10. Similarly, the TOvFD was varied from 0 to
100%. The SSWFT involved varying NChk form 0 to 10 and a
fixed value for TOvChk of 2%.

• ASWFM: Additional implementation instances were added for
half the task types with minimum execution time reduced by
10% of that of the original implementations.

• HWFM: Functional reliability improvement by HWFM was
modeled by increasing the MFp of half the PEs in the MPSoC
to 20%, resulting in a heterogeneous hardware platform.

• AgMit: The heterogeneity of the MPSoC w.r.t. aging was mod-
eled by changing 2 PEs to a new type, with the implementation
of each task type on these PEs resulting in increased MTTF of
15 years.

• AllFM: The combination of all fault-mitigation methods de-
scribed above.

2) DSE for Cross-layer Fault Mitigation

The evaluation of MCTS-based design space exploration for cross-
layer reliability-based task-mapping involved comparison of the fol-
lowing approaches.

TABLE I: COMPARISON FOR pMCTS (M1) AND cMCTS (M2)

Fat Task-graphs Slim Task-graphs

Num
Tasks

Normalized
Makespan

Maximum
Branching

Num
Tasks

Normalized
Makespan

Maximum
Branching

M1 M2 M1 M2 M1 M2 M1 M2

10 1 1 10 8 13 1 1 13 8
22 1 1 22 12 24 1 1 24 8
34 1 1.03 34 24 35 1 1 35 8
42 1 1.06 42 30 46 1.36 1 46 8
50 1 1.07 50 38 54 1.74 1 54 8
110 1 1.07 110 88 106 2 1 106 8
212 1.29 1 212 85 206 1.9 1 206 8
317 1.59 1 317 57 306 1.99 1 306 8
407 1.89 1 407 111 406 2.17 1 406 8

1) Integrated MCTS (inMCTS): The inMCTS-based DSE involves
integrating the design decisions w.r.t. implementing cross-layer
reliability into the search tree for task-mapping, as shown in
Fig. 2b. This approach provides complete freedom for exploration
of all design decisions, including those for task to PE binding and
task scheduling on the PEs.

2) Binding-constrained MCTS (bcMCTS): The bcMCTS approach
constrains the design decision w.r.t. mapping tasks to PEs based
on the already existing task-binding information. Hence, the DSE
is limited to scheduling tasks on the PEs and cross-layer reliability
design.

3) GA-based parameter variation (pvGA): The pvGA approach
entails using Genetic Algorithm (GA) based DSE of design
choices w.r.t. cross-layer reliability only. These choices were
encoded as a sequence of parameters (one individual of a gener-
ation) for all tasks. The pvGA approach uses already existing task
to PE bindings and task-schedules for each PE of the MPSoC.

The proposed MCTS-based approaches for DSE were implemented as
a C++ application. The pvGA approach was implemented in Python
using DEAP [18] package.

3) Application-specific Reliability

The test applications for the experiments were generated using Task
Graphs For Free (TGFF) tool [19]. The execution times for the tasks
were also obtained from the TGFF tool. The proposed methodology
was evaluated for application-specific cross-layer reliability design
by varying the weights associated with each type of reliability.
Specifically, the values used for the tuple (WtTR,WtFR,WtLR) are:
• Optimizing Timing Reliability (forTR): (1, 0, 0)
• Optimizing Functional Reliability (forFR): (0, 1, 0)
• Optimizing Lifetime Reliability (forLR): (0, 0, 1)
• Optimizing Balanced Reliability (forBR): (0.33, 0.33, 0.33)

B. Results and Discussions

1) Constrained MCTS

The effectiveness of the constrained MCTS (cMCTS) approach
was evaluated based on the comparison of its performance against that
of the pure MCTS (pMCTS) approach in minimizing the makespan
of an application. The number of tasks in the applications was varied
from 10 to 400 and two types of application task-graphs were used in
the evaluation – Fat, ones with more task-level parallelism than the
other type, Slim. The pure MCTS (pMCTS) approach involves list
scheduling of tasks on reaching a leaf node by random simulation. The
tasks are scheduled after all the tasks have been mapped to PEs. As a
result, the number of maximum possible branches while selecting the
task is always equal to the number of tasks in the application. This is
evident from the performance results for both the approaches shown
in Table I. For cMCTS, the possible choices while selecting the next
task for implementing are based on the criteria discussed in Section
IV-C2. This leads to a reduced maximum branching, more evident

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

1 6 11 16 21

Fat Task-graph pMCTS

Fat Task-graph cMCTS

Slim Task-graph pMCTS

Slim Task-graph cMCTSN
or

m
al

iz
ed

 M
ak

es
pa

n

Observation sequence

Fig. 3: Progress of MCTS-based makespan minimization

in the case of Slim task-graphs, where the maximum branching is
fixed by the number of PEs in the hardware platform (i.e. 8). The
effect of the increased branching is clearly shown in Table I, where
the cMCTS performance is almost always better than the pMCTS.
The results reported in the table are based on the best result for
both approaches after 50000 iterations. In cMCTS, fewer nodes
are evaluated at the initial portion of the search tree allowing the
search path to go deeper down the tree and get better estimates of
the leaf nodes. For pMCTS, most of the computations are wasted
in evaluating all the possible branches closer to the RootNode. The
progress of each approach for both Slim and Fat application task-
graphs with ∼ 100 tasks is shown in Fig. 3. For Slim task-graphs, the
pMCTS approach does not let the search path go sufficiently deep
down the tree to get better estimates of the leaf nodes. However, for
Fat task-graphs, the pMCTS approach performs marginally better
than the cMCTS approach for smaller graphs but does not scale
beyond ∼ 100 tasks. For smaller task-graphs, the reduced depth of
the search tree enables the pMCTS approach to search the tree more
effectively. However, with increasing depth of the search tree, the
performance of the cMCTS approach is markedly better than that
of the pMCTS approach.

2) Comparing DSE Approaches

For our experiments, a combination of the DSE approaches, as
shown in Table II, were evaluated. List refers to the task to PE binding
and task-scheduling information generated from an iterative list-based
mapping of tasks to PEs and scheduling the tasks based on task-level
dependencies of the application graph. Similarly, Int refers to the
same information generated by an initial run of inMCTS. Fig. 4 shows
the results of DSE for cross-layer reliability in an application with 100
tasks on a hardware platform with 8 PEs implementing AllFM. Each of
the sub-figures shows the variation of a performance metric associated
with one type of reliability – AvgEndTapp, ERapp and SysMTTF
for timing, functional and lifetime reliability respectively. The bar-
graphs in the figures show the variation of these metrics with different
DSE methods and optimization modes described in Section V-A3,
after 1 million design point evaluations. The wall-clock runtime is
approximately 15 minutes on a computer with two CPUs – IntelTM

XeonTM E5-2609 v2 @ 2.50GHz (each CPU is quad-core) and 32
GB of memory. The following points about the results are noteworthy:

• As intended, for all DSE methods the optimization of any specific type
of reliability leads to most improved results for the metric associated
with that type.

• In almost all cases, the constrained DSE methods perform better while
using the constraints obtained from the inMCTS approach than those
from the List method. Therefore, integrating the design of cross-layer
reliability into task-mapping provides a better starting point for further
improvements by either bcMCTS or pvGA.

• The values for ERapp, the maximum error rate, are an effect of the
functional reliability modeling. The constant high values in Fig. 4b,
except in forFR, signify the avoidance of using any SSWFM meth-

TABLE II: DSE METHODS

Method Task to PE binding Task-scheduling
Cross-layer

Fault-mitigation
inMCTS inMCTS inMCTS inMCTS

bcMCTS(List) List bcMCTS bcMCTS
pvGA(List) List List GA

bcMCTS(Int) inMCTS bcMCTS bcMCTS
pvGA(Int) inMCTS inMCTS GA

ods (with high timing overheads) while optimizing for other non-
functional-reliability metrics. Similarly, in forFR mode, both SSWFM
and masking effect of HWFM methods are utilized.

• The forBR results show better improvements in timing and lifetime
than functional reliability. This can be attributed to the high timing
overheads associated with improving functional reliability by SSWFM.
Instead, better RewCL values are obtained by improving the aver-
age makespan and the resulting reduced aging leads to improved
SystemMTTF .
The improved results of bcMCTS, and pvGA over inMCTS can be
viewed as an extension of the cMCTS approach described in Section
V-B1 (and demonstrated in Section V-B1) which lets the method
explore more of the non-constrained design decisions in the available
computational budget. Further, the pvGA approach provides better
improvements than bcMCTS by fine-tuning the results from inMCTS.

3) Estimating Fault-mitigation Effects

The proposed MCTS-based DSE methodology can be used to
estimate the effect of fault-mitigation methods, implemented at dif-
ferent layers and their combinations, on system-level reliability. Fig. 5
shows the percentage improvements in the reliability metrics over
NoFM implementation by using the fault-mitigation methods and
optimization modes described in Section V-A. The hardware platform
and the application are same as the one used for discussions in the
previous sub-section. The following observations from the results are
noteworthy:

• As shown in Fig. 5a, ASWFM shows maximum improvements for
RelFR as it reduces the execution time of some tasks by 10% without
adversely affecting other reliability metrics. Higher makespan values
for SSWFM can be attributed to the increased average execution time
of tasks due to detection and checkpointing. Further, the increased
average execution results in a reduction of SysMTTF ; this effect is
observed for all optimization modes.

• As shown in Fig. 5b, the maximum improvements to RelFR is
observed for AllFM, where both SSWFM and masking effect of HWFM
are utilized. However, as evident from the figure, unlike the case of
HWFM-only, using SSWFM-only leads to increased average makespan
for the application leading to a major reduction in RelTR and RelLR.

• The maximum RelLR improvement is observed with AgMit, as shown
in Fig. 5c. The resulting reduced RelTR can be attributed to more
tasks being mapped to the PEs with higher MTTF leading to increased
average makespan.

• As shown in Fig. 5d, and described in the previous experiment’s
discussion, in the forBR mode, the improvements to RewCL is
obtained by improving timing and lifetime reliability, while keeping
the maximum error rate same as that of NoFM.

VI. CONCLUSION

With increasing susceptibility of hardware to physical faults, a com-
prehensive fault-aware cross-layer design approach is necessary. To en-
able such an approach, a Monte Carlo Tree Search-based application-
specific DSE methodology for designing cross-layer reliability in
embedded systems is proposed. Further, a second-level fine-tuning by
using Genetic Algorithms was introduced. Experimental evaluations
show maximum improvements in reliability metrics using an integrated

0

1000

2000

3000

4000

5000

6000

7000

inMCTS bcMCTS(List) pvGA(List) bcMCTS(Int) pvGA(Int)
forTR forFR forLR forBR

(a) AvgEndTapp: Lower values for improved
RelTR

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

inMCTS bcMCTS(List) pvGA(List) bcMCTS(Int) pvGA(Int)
forTR forFR forLR forBR

(b) ERapp: Lower values for improved RelFR

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

inMCTS bcMCTS(List) pvGA(List) bcMCTS(Int) pvGA(Int)
forTR forFR forLR forBR

(c) SysMTTF : Higher values for improved RelLR

Fig. 4: Comparison of DSE methods for designing Cross-Layer Reliability

-20.00

-15.00

-10.00

-5.00

0.00

5.00
NoFM

SSWFM

HWFM

ASWFM

AgMit

AllFM

FuncRel TimeRel LifeRel

(a) forTR: Optimizing RelTR

-70.00
-60.00
-50.00
-40.00
-30.00
-20.00
-10.00

0.00
10.00

NoFM

SSWFM

HWFM

ASWFM

AgMit

AllFM

FuncRel TimeRel LifeRel

(b) forFR: Optimizing RelFR

-40.00
-30.00
-20.00
-10.00

0.00
10.00
20.00
30.00

NoFM

SSWFM

HWFM

ASWFM

AgMit

AllFM

FuncRel TimeRel LifeRel

(c) forLR: Optimizing RelLR

-25.00

-15.00

-5.00

5.00

15.00

25.00
NoFM

SSWFM

HWFM

ASWFM

AgMit

AllFM

FuncRel TimeRel LifeRel

(d) forBR: Optimizing with equal
weightage to RelTR, RelFR and
RelLR

Fig. 5: Percentage improvements over NoFM reliability metrics for different fault-mitigation methods and their combination

MCTS approach followed by GA-based parameter variations. The
proposed methodology provides a high-level DSE methodology for
implementing application-specific cross-layer reliability in embedded
systems and can be used for early-stage design space pruning by esti-
mating system-level effects of introducing fault-mitigation at different
layers. Further, the methodology can be coupled with more complex
system models to obtain better realizable system designs.

REFERENCES

[1] A. Geist. Supercomputing’s monster in the closet. IEEE Spectrum, March
2016.

[2] P. Shivakumar, et al. Modeling the effect of technology trends on the soft
error rate of combinational logic. In Dependable Systems and Networks,,
2002.

[3] C. Constantinescu. Trends and challenges in vlsi circuit reliability. IEEE
Micro, 2003.

[4] N. P. Carter, et al. Design techniques for cross-layer resilience. In DATE,
2010.

[5] S. S. Sahoo, et al. Cross-layer fault-tolerant design of real-time systems.
In DFTS, 2016.

[6] K. Lee, et al. Mitigating the impact of hardware defects on multimedia
applications: a cross-layer approach. In Proceedings of the 16th ACM
international conference on Multimedia, 2008.

[7] T. Santini, et al. Evaluation of failures masking across the software stack.
MEDIAN, 2015.

[8] L. Leem, et al. Cross-layer error resilience for robust systems. In ICCAD,
2010.

[9] J. Henkel, et al. Multi-layer dependability: From microarchitecture to
application level. In DAC, 2014.

[10] E. Cheng, et al. CLEAR: Cross-Layer Exploration for Architecting
Resilience - Combining Hardware and Software Techniques to Tolerate
Soft Errors in Processor Cores. In Proceedings of the 53rd Annual Design
Automation Conference, DAC, 2016.

[11] A. Das, et al. Aging-aware hardware-software task partitioning for reliable
reconfigurable multiprocessor systems. In CASES, 2013.

[12] M. Glaß, et al. Cross-level compositional reliability analysis for embedded
systems. Computer Safety, Reliability, and Security, pages 111–124, 2012.

[13] S. S. Mukherjee, et al. A systematic methodology to compute the
architectural vulnerability factors for a high-performance microprocessor.
In Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 36, 2003.

[14] Y. Xiang, et al. System-level reliability modeling for MPSoCs. In CODES,
2010.

[15] A. K. Singh, et al. Mapping on multi/many-core systems: Survey of
current and emerging trends. DAC, 2013.

[16] P. E. Hart, et al. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, July 1968.

[17] C. B. Browne, et al. A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in Games, 4(1), 2012.

[18] F. Fortin, et al. DEAP: Evolutionary algorithms made easy. Journal of
Machine Learning Research, July 2012.

[19] R. P. Dick, et al. TGFF: task graphs for free. In CODES, pages 97–101.
IEEE Computer Society, 1998.

