Improving Technology Mapping for
And-Inverter-Cones

Martin Thiimmler, Shubham Rai, Akash Kumar
Chair for Processor Design, CFAED Technische Universitit Dresden, Germany

Abstract—AND-inverter-cones (AICs), proposed in 2012, offer a
suitable alternative to Look-Up-Tables (LUTs) as the basic building
block for FPGAs. They support tapping of multiple side outputs
and are intrinsically fracturable which favours reduction of logic
duplication. Unlike k-inputs LUTs, their area scales linearly with
the number of inputs. Technology mapping is one of the crucial
tasks to realize the full power of AIC-based FPGAs. However,
the current state-of-the-art implementations suffers two main
drawbacks as they do not account for the AIC properties fully:
(i) The required time set for each node is suboptimal in the
context of AIC and that impairs the mapping quality; (ii) they
rely on priority cuts, which are unnecessarily runtime-intensive
in the context of AIC mapping. To improve the mapping quality,
we propose and proof a new method to calculate the maximal
required time for each node purely based on its graph depth
and height. We propose an asymptotically runtime-optimal in-
memory direct cut selection method which leads to similar area
numbers (~ 1% area overhead) as our reference priority cut
implementation. Combining these improvements with a second
area recovery round leads to a final area reduction of 16.4%
and 3% for the MCNC and VTR benchmarks respectively as
compared to our reference implementation of the latest known
technology mapper, while leaving the delay unaltered.

I. INTRODUCTION

Traditionally, the functional flexibility offered Look-Up-
Tables (LUTs) makes FieldProgrammable Gate Arrays (FPGAs)
reconfigurable. A LUT is a multiplexer, where for each input
signal combination the resulting output is stored in a static
random-access memory (SRAM) cell. This exhaustive functional
richness comes at the cost of exponential area scaling in terms
of the number of inputs. In 2012, And-Inverter-Cones (AICs) [1]
were proposed as an alternative to LUTs. A d-AIC is a cone tree-
like structure of depth d consisting of And gates, whose outputs
can be optionally inverted using the programmable SRAM
cells. Another very similar implementation are the Nand-Nor-
Cones (NNCs) [2], where each gate acts either as NAND or
as NOR. NNCs can be a suitable implementation paradigm for
emerging technologies such as spin-based [3] or reconfigurable
nanotechnology devices [4, 5].

Their structure is motivated by the use of And-Inverter-
Graphs (AIGs) in current logic synthesis algorithms. The node
functionality inside an AIG is directly mapped to single AIC-
gates to omit the area-heavy LUT structures. AICs are superior
to LUTs in the following properties: (i) First, an AIC has an
exponentially increasing number of inputs in terms of its depth,
while LUTs have only a limited number of inputs, i.e. less than
10; (ii) Second, with AICs, multiple side outputs can be tapped
which can be utilized to reduce logic duplication; (iii) Third,
the physical AICs can be split logically into multiple smaller
AICs i.e. they are fracturable. Even if, there exist fracturable
LUT implementations [6], they require additional hardware
effort. LUTs provide no possibility of splitting the fractured
LUTs again, too. The last two properties lead to reduce logic
duplication for AICs-based FPGAs.

Current AIC technology mapping algorithms have two major
shortcommings, because their main ideas are transfered from
LUT mapping, hence they do not account for the special

OL»

/\
/i<>l\ N /]\

ANAY A AN AN ANYA

io i1 i5 6 7 is 19 i0 i i1z i1y i1a 15

Fig. 1: And- Inverter-Cone of depth 4. The black, gray, and light
gray colored gates indicate one possible use as two 2-AICs and
one 3-AIC. The light gray cone has one main output (O5) and
two side outputs (O2 and O3). [1]

properties of AICs: (i) First, the required times by choices
method [7] does not assign each AIG node a useful required
time, which deteriorates the flexibility of the mapper during the
area recovery as argued in section III; (ii) Second, priority cuts
methods with reasonable cut sizes (runtime) are infeasible to
consider a significant quota of all the possible cuts. Hence the
cut pruning is at choice. Therefore they lead not to an improved
mapping quality compared to a fast direct cut selection method
which the experiments in section V proofs.

We propose two algorithmic improvements to exploit the AIC
properties fully, namely

o Optimal calculation of the latest possible required
times: The required time of each node is directly inferred
by its graph height, as well as the circuit depth for
unconstrained timing. Additionally it is shown, that the
so calculated required times are optimal, i.e. any violation
leads directly to an increased circuit delay.

« Direct cut selection: Instead of using priority cuts for the
mapping, a new direct cut selection method based on a
subgraph local view is proposed. The cut selection method
performs its calculation in-memory and is faster than the
priority cuts method.

These two improvements leads together with a second area
recovery round to an average area reduction of 16.4% (3%) for
the MCNC (VTR) benchmark, while leaving the average delay
practically unchanged. Additionally, the implemented algorithms
are provided open-source as an extension of the open-source
system Abc [8].

II. BACKGROUND

The cone-like structure of an AIC is depicted in figure 1.
It can be logically split as indicated into smaller sub-AICs.
Each logical AIC has exactly one main output (at highest level),
the remaining outputs are called side outputs. Note, that a
similar-sized AICs and LUTs implement different functions. For
instance, a 3-AIC can implement the conjunction of 8 inputs
signals, which is impossible for a 3-LUT. On the opposite side,
an exclusive Or of three input signals can be implemented by
a 3-LUT, but not by a 3-AIC. To map a subgraph to an AIC

P
S

(b)
Fig. 2: Mapping of a 2-depth-feasible subgraph (shown in (a))
to to an 2-AIC with an addtional constant driver (see (b)).

of depth — also called level — d it has to be d-feasible, i.e. has
a depth of at most d. An example is shown in figure 2. The
mapping of the depth-feasible And-Inverter-subgraphs to AICs
and NNCs requires only the correct configuration of the gates
and the insertion of constant drivers for some inputs.

A. Definitions

Throughout the manuscript, various terminologies have been
used. These are listed as follows. A cut rooted at a node n is a
set of nodes, through which every path from any primary input
to n traverses at least once. A cut A is dominated by a cut B,
if B C A. The set of input nodes (leaves) of a subgraph G
of a full AIG will be denoted as Lg. A mapping of an AIG
for LUTs (AICs) is an equivalent representation of that graph,
where each node functionality can be calculated by the given
logic cells. The area and delay of a logic cell C' are denoted as
Ac and D¢ , respectively. The area of the logic cell required

to implement the functionality of a cut C is denoted as A(C).

The arrival time of a node n in a mapping M will be denoted
as ap(n). In other words aps(n) is the minimal time, after
which the value of the node n is calculated in the mapping
M. For sake of simplicity, the subscript M will be left out,
whenever possible. The earliest possible arrival time of a node
n is defined as aop(n), i.e. the minimum arrival time over
all possible mappings containing n as primary input or logic
cell output. The required time r(n) for a node n is the lowest
upper boundary of the arrival time a(n), for which it can be
guaranteed, that a mapping exists, which serves for all primary
outputs the required times. A node is visible in a mapping if it
is an input or an output of an AIC or the graph. The remaining
nodes are invisible. The height (depth) of a node n, i.e. the
length of the maximal path from any primary input (output) to
the node n, is denoted as h,, (d,).

B. Related Work

The publication [1] from 2012, which introduced AICs,
proposed a technology mapper (TM) to map to LUTs or AICs
simultaneously. First, all (depth) feasible cuts for each node are
calculated, by varying its cone depth. They claimed, that the
computational effort is proportional to the maximum allowed
cone depth. In the absence of an open-source implementation,
according to our understanding, we expect that they generated
only a single cut per cone depth. Then, a topological graph
traversal is performed to calculate the initial arrival time for
each node. For each node n, their consideration included not
only the cuts rooted at n, but also all cuts, where n can be
used as side output. If two cuts for the same node n lead to
the same arrival time for n, then the area flow heuristic [9] is

used as a tie-breaker. The side outputs are used regardless of
the required time.

The next — and to our best knowledge — the last algorithmic im-
provement was done by the introduction of a depth-constrained
FPGA logic cell mapper [10] in 2015. The authors highlighted,
that during side output selection the required time has to be
taken into account, to avoid an increase of the critical path.
Additionally, they adapted the priority cuts method for LUTs
to depth constrained logic cells to reduce the circuit area by
performing a single area recovery round. The authors recognized,
that a single priority cut list [11] for each node like for LUT
mapping is not sufficient. So they proposed to maintain for each
cone-depth at each node an extra cut list. Note that for this
algorithm it is not explicitly reported, how the required times
are calculated. So, we assume that they used the required time
by choices method, as they referenced to [11].

ITI. LIMITATIONS OF PREVIOUS TMS
A. Nodes with unset required times

All of the previous known technology mappers for depth
constrained logic cells do not account for the huge cut sizes
(in terms of nodes) and enormous number of non-dominated
cuts for nearly all nodes. The huge cut sizes, i.e. for an 6-AIC
up to 64 inputs and 62 invisible nodes, lead to a significant
quota of invisible nodes for each mapping. Therefore, in the
current implementation [11], the required time calculation based
on the required time by choices (in the current implementation
within ABC) ignores the invisible nodes. The required times
are set to infinity (the maximum allowed circuit delay) for
each node (primary output). Then in a reverse topological order
traversal for each node n the required times of the input nodes
of the previously calculated representative cut rooted at n are
updated to ensure that they obey the global timing constraint.
This implies, that only the required times of the visible nodes
are updated. Hence, the required times of the remaining nodes
will remain unset, i.e. set to infinity. This impairs the flexibility
of the cut selection in the following area recovery rounds as
shown in the example in figure 3. The reason is, that the nodes
with unset required times may get assigned cuts leading to
arrival times, which are quite large to be used as a part of a
cut rooted at any visible node without violating its required
time. Therefore the use of nodes with unset required time in the
resulting mapping can be prohibited by choice. To overcome
this issue the section IV shows how a useful required time can
be set for all nodes.

B. Computational overhead of priority cuts

The runtime for priority cuts approaches scales quadratically
in the maximum allowed cut list length per node due the
number of required cut merges. For multiple cut list, like for
one per depth [10], the runtime scales quadratically in the
maximum cone depth, too. However, the proposed direct cut
selection method, see section IV, has a runtime proportional
to the maximum depth-feasible subgraphs. Note, that this is
asymtotically optimal as it is expected, that for any (reasonable
good) mapping, the average size of the cuts is proportional to
the maximum subgraph size.

Now, we argue that the additional computational effort of
priority cuts will not lead to a significant gain of knowledge to
select the cuts more consciously. For that purpose consider the
maximum number of possible (non-dominated) cuts of depth d,
called Cy. It increases rapidly with the maximum allowed cone

ap =3
ap =2
ag=1
aq =0
(a) (b) ©

Fig. 3: Negative effect of nodes with unset required time, which
are marked in red. Assuming a unit delay model, for a maximum
cone depth of 3, a required time for node h is 3, and arrival
time of a has to be zero. The required times (r) and arrival
times (a) are depicted left of the nodes. The representative cuts
are marked by the blue rectangles. Their dashed lines indicate,
that more nodes will be inside the cuts. (a) Possible set of
representative cuts after initial graph traversal for circuit arrival
time calculation. Let the resulting required time for the node h
be r, = 3. (b) Example how the graph might be covered in a
following traversal. Now the cut rooted at node & must contain
the node e as the nodes f and g have large arrival times. (c)
Example of a valid covering using the node f in a cut rooted
at h.

TABLE I: Maximum possible number of non-dominated cuts
Cyq as a function of the subgraph depth d.
Ca |O| 1]2]3 |4 |5 | 6
d T[T [327651 | 457,653 | 210,065,930,571

depth as shown in table I, and can be calculated by Cyy1 =
C%+2C, Zi;é C, with Cy = 1. Note that this formula counts
the number of possible subgraphs with depth d recursively based
on the assumption, that all possible input nodes are different.
Even if the real number of cuts might be smaller as nodes may
occur multiple times in the depth-feasible fanin cone, for most
nodes number of non-dominated cuts will be much larger than
10%. Hence, any priority cut list [11, 10] based algorithm (with
reasonable runtime) considers only a very small quota of all
the possible cuts and performs its cut list pruning practically
by choice. Note that this is contrary to LUT-mapping, where
the number of possible cuts is on average in the order of 10%.

IV. THE NEW TM

The new technology mapper is based on a constant delay
model, i.e. a cone of depth d has — regardless of its configuration
— a delay of D,. Note that D, increases with d. Let d,.x be
the maximum cone depth. For the sake of simplicity, we restrict
ourselves in the following section to timing unconstrained
mapping as handling various constraints on the mapping is
just a mere extension of this problem as it is a more runtime-
intensive computation. In the present work, our algorithm
handles a constant required time for each node in the logic
graph. This is also consistent with the current implementation
within ABC [8]. An overview of our technology mapper is
presented in algorithm 1. First, (see section IV-A), we verify
the validity of the required time calculation. Afterwards, we
discuss the implementation details.

During the algorithm, first the required times are calculated.
Afterwards, area recovery rounds are performed, i.e. for each
node in topological order traversal, the best cuts based on the

Algorithm 1 AIC-Technology mapper

procedure MAP(AIG G, dmax, {Da})
assign depth and height for each node(G)
arrival = optimalArrivalTimes(depth, dmax, Da)
for each node v in G do
Urequired = arri"-}al[dmax} — Udepth
for each node n in topological order of G do
Naf = 00, Ncut = {}
for each d in {dmax,-..,2,1} do
G's = copySubgraphRootedAt(n, d)
for each node n in Gs do
| Nate = nar/numberOfOccurences(n, Gs)
cuty = greedyMinimize(Gs) // see figure 4
afy = calculateReal AreaFlow(cuty)
if afy <af,. then
\ Nag, Newt = afy, cuty
performAreaRecoveryRounds(G) // see [9]
assignSideOutputs(G) // see section IV-C
end procedure
procedure OPTIMALARRIVALTIMES(graphDepth, dmax, {Da})
arrival[0] = 0
for d € {1, 2, ..., graphDepth} do
| arrivalld] = ming<a,,.. k<graphDepth (arrivalld — k] + Dy)
return arrival
end procedure

(estimated) area flow heuristic are calculated. Lastly, the side
outputs are assigned.

A. Direct required time calculation

First we show the following statement about the minimal
achievable arrival time. Second, we use that statement to define
a maximal and useful required time for each node.

In the given model, the least possible arrival
time depends only on the node height, i.e.
Gopt(N) = aopt(hy,). Additionally, aopt(h) is
an increasing function in h.

Proof by induction over node height. For circuit inputs
n, we have by definition aopt(n) = aopt(hn) = aopt(0) = 0.
Now assume, that aop, (1) = aopt(hy) for every node n with
hyn < hinq holds, where hy,q is a positive integer. Then for
every node r of height h, = hi,q + 1 the equation

Aopt (1) =

i A Pe i masteno |
holds, where S;(r) is defined as the super set of inputs (leaves)
of all subgraphs rooted at r with a depth not exceeding d.
The equation (1) expresses, that the minimal arrival time is
computed over all possible cell depths and all possible feasible
subgraphs based on the latest arrival time of the subgraph leaves.
This equation can be transformed using aqpt, (1) = @ops (hy,) for
all subgraph leaves as they have a height less or equal hjyg.
Therefore

(@)

min max{a(hy)}

min max{a(n)} = Jin max

CESd(T) nece
holds, using the monotonic property of the arrival time, the
equation reduces to

3

min max{a(n)} = a(min max{h,}).

(Qin max{a(n)} = a(min max{hn})

Now the minimum function can be evaluated by considering the
possible subgraphs. The maximal subgraph (in terms of size)
with a depth of at most d will always lead to the minimum
value. As all other subgraphs contain at least one leaf [, whose

fanins can be included in the subgraph without exceeding the
maximum depth d. As the fanins of [have a smaller height
than [, they will therefore never lead to an increased maximum
height over all leaf heights of the subgraph.

The maximum height of all the leaves of the maximal d-depth-
feasible subgraph rooted at is given by max{0, h,.—d}, which
follows directly from the definition of the height of a node and
induction over the maximum depth d. Therefore equation (1)
reduces to

topt(r) = _min {Dg + aopt (max{0, hy —d})}
B 1@32:13 dghT{Dd + opi (hr — d)}- 4)

Note that this equation has two properties: First, aopy(r) is
determined only by its node height and the arrival time of smaller
node heights. Second, aopt(hr) > aopt(hyr — 1) as can be seen
directly from equation (4) and aop(hr —d —1) < agpe(hr — d)
for all possible values of d. B

By using equation (4) the optimal circuit arrival time
ag of an AIG can be calculated directly as a function of
the logic cell delays and the circuit depth. Let us define the
required time r(n) for each node n as

®)

where d,, is the depth of the node n. The so calculated required
times are valid, i.e it suffices (and is possible) to respect the
required time for each (visible) node in a topological order
traversal of the graph to ensure that circuit delay is not increased.
This can be seen, when considering only the subgraph G, (of
the full AIG G), which contains each node with a depth up to
d. Let Ly be the input nodes (leaves) of (G;. Note that all the
nodes in Ly have by definition a height of at most d. It directly
follows, that for each circuit output ¢, the minimal achievable
arrival time aopt(c) is bounded by

aopi(€) < max{a(l) + a(d:)}
< a(d) + gré%{a(l)},

r(n) = ag — a(d,),

(6)

after applying equation 4 to the subgraph G,. Now, if equation
(5) is served, then r}laLx{a(l)} < ag — a(d) is guaranteed. This
€

means, that under this condition there exists always a mapping,
for which each circuit output arrival time is limited by

amin(¢) < a(d) + [ag — a(d)] = ag. (7

As the depth d can be chosen arbitrarily, the required times
are valid for every node in the AIG. Note that the required
times can not be increased further as for every depth d at least
one node n € Ly on the critical path exists. For this node
hy,, = Da1c — d holds, therefore all inequalities in the equations
(6) and (7) become equal.

B. Direct cut selection

The proposed algorithm for the direct cut selection is applied
during the area recovery phase. Its goal is to calculate for
each node a cut with minimal area flow [9, 1], that serves
the required times. The direct cut selection is applied for the
subgraph depths from 1 to d,.x separately to account for all
possible logic cells. Then, the cut with the best area flow serving
the required time is chosen. The core algorithm starts with the
maximum possible depth-feasible subgraph G rooted at node 7.

®

afe =13 afe =15

A N

af =8 afe=1 afe=6 afe=3 afe=2 afe=2 afe=4 af=38
afe =4 afe =4

(a) Initial estimated area flow (afe), it is identical to the previously
calculated area flow, except for the node a, which occurs twice.

afe G:)M ©
féy afe—7 fQ;% \(9: 8
& o ¢ o & o

(b) Estimated area flow after processing the bottom layer.

afe =12 © afe =12
@/ \@
& o & o & o
(c) Finally selected subgraph.

Fig. 4: Subgraph selection based on the estimated area flow
heuristic. Note, the resulting cut minimzes the area flow for the
node v, which would not be the case if the pure area flow was
greedily minimized instead.

afe =15

During a topological order traversal the subgraph is pruned at
a node n if afe(n) < afe(ny) + afe(nz), where ny and no the
two fanins of n and afe stands for estimated area flow. If the
subgraph is not pruned, the node esimated area flow is updated
as the sum of the estimated area flows of its fanins. The afe is
defined as

afeq(v) = af(n)/numberOfOccurences(G, v),

®)

where af is the area flow [9] and numberOfOccurences(G, v)
is the number of occurrences of the node v inside the graph G.
This renormalization of the area flow is introduced to make the
greedy approach aware that some nodes can be used multiple
times but contribute only once to the area flow. An explanatory
example is given in figure 4. Afterwards, the pruned subgraph is
determined, the corresponding non-dominated cut is calculated.
Lastly, the area flow for the considered node r is calculated
based on the selected cut.

C. Additional algorithmic details

Contrary to the previous known technology mappers an
arbitrary number of area recovery rounds may be performed. The
weighting average to estimate the expected fanout is done only
for the main outputs of the AICs. The side output assignment is
done similarly to [10] as last step of the mapping algorithm: In
a first graph traversal all possible side outputs are detected
and marked if they satisfy the required time. In a second
topological order graph traversal the side outputs are assigned in
the mapping. As this may make some previous assigned AICs
obsolete, a third graph traversal is conducted to tidy up the
netlist.

For reference purposes the priority cut algorithm from [10]
was reimplemented except the only difference, that the cut lists
are not globally stored, but locally recalculated for each node
and cone level combination.

\‘ a8
input

T3] crossbar (153

Output
crossbar [~ 30

> >
64 64 16

> B!
64 16

Fig. 5: Used AIC block design from [13] with 50% populated
input-crossbar and a minimal full-capacity middle crossbar.

V. EXPERIMENTS AND DISCUSSION
A. Experimental setup

The performance of the TM is evaluated based on emulated
FPGA designs. We use VTRS8 [12] with our extended Abc
version and one architecture file from [13], which customizable
logic block design is depicted in figure 5. Before calling
the TM, the circuit is optimized by Abc with the commands
strash, balance, ifraig, scorr, dc2, dch for
both pure AIC and pure LUT mapping. The AIC-TM is
invoked with the delay values from the architecture file for
the cones and an additional wire delay of 1ns to account for
the experimental found average routing delay between two
AICs. The correctness of the netlist is verified with Abc. For
reference LUT mapping the default VTRS tool flow is used with
a comparable architecture file (Stratix Lab line IV emulation).
The following results are the averaged over 10 runs of VPR each
with an 30% increased routing channel width. This averaging is
required as the quality of the placement and routing is highly
sensitive to the initial seed of VPR [10].

B. Discussion

Before presenting the experiments, let us define the different
mapping options:

1) Alp: One area recovery round, priority cuts, required time
by choices,

2) AlpS: One area recovery round, priority cuts, direct
required time

3) A1dS: One area recovery round, direct cut selection and
direct required time

4) A2dS: Same as A1dS except two area recovery rounds

The priority cut lists have a maximum size of 3 per cone depth.

Note, that Alp is used as reference implementation of the
previous technology mapper [10]. Figure 6 depicts the area
and delay of the emulated MCNC and VTR circuits. For the
MCNC (VTR) benchmarks shown in figure 6a (6b) we see
that the area is reduced by 10.9% (2.5%) on average, when
applying the direct cut selection method (A1pS) compared to our
reference (Alp). For the option A1dS we get an area reduction
of 11.5% (area increase of 1.4%). The A2dS leads to an area
reduction of 16.4% (3.0%). This shows that the direct required
time calculation method is superior to the previous ones. The
direct cut selection method leads for most of the circuits to
an area change of less than +5% compared to the priority cut
list method. The on average slightly worse results for the VTR
circuits are outperformed by the additional area recovery round,
which gets feasible as the runtime is reduced. Note that, the
effect of the TM is for the VIR circuits smaller than for the
MCNC ones, as their implementation relies on memory and
multiplication cells.

The critical path of the MCNC (VTR) circuits changes on
average by +3.1%, 2.5% and ~ 0% (+0.2%, -1.1%, ~ 0%)
for the AlpS. A1ldS, A2dS mapping compared to Alp. The
delay changes for the different mapping options is for most of
the circuit implementations less than 5 %. However, for some
circuits, like pdc, see figure 6a, it changes over 10 %. We
ensured, that the timing levels of the mapped netlists are equal
for the different mapping options. Therefore these delay changes
must be rooted in the place and route phase. We propose, that
these delay differences are mainly caused by different packings
of the AICs: (i) The packing highly depends on the distribution
of the netlist wires, which are not explicitly controlled by the
TM; (ii) the local routing delay is much smaller than the global
routing delay; which is not considered in the proposed model;
(iii) this is coherent with the high sensitivity of the delay to the
inital VPR (placement) seed. Similarly, for LUT-based FPGAs
have in comparison to the A2pS mapping an average area of
+35.2% (-0.5%) and delay of 56.7 % (29.2%) for the MCNC
(VTR) benchmark circuits.

VI. SUMMARY AND CONCLUSION

We demonstrated and proofed how to set an sensible re-
quired time for each node for an AIC technology mapper.
Additionally, we showed that for AICs a priority cut list
approach can be replaced by a much faster direct cut selection
method, which made a second area recovery round feasible.
On average we improved the area by 16.2% (23 %) and
with a delay change of 12% (12 %) for the MCNC (VTR)
benchmark. The next step is to adapt the nearly 10 year old
architecture files to a more reliable comparison between LUTSs
and AICs. A future work is to investigate the effect of the
architecture and placement on the delay further, to develop a
enhanced placement aware TM to reduce the delay variation.
The source code of the proposed TM can be downloaded at:
https://github.com/chacheline/abc_aic_mapper/tree/aic

ACKNOWLEDGMENTS

This research was supported in part by the German Re-
search Foundation (DFG), project SecuReFET (Project Number:
439891087).

REFERENCES

[1] Hadi Parandeh-Afshar et al. “Rethinking FPGAs: Elude the Flexibility
Excess of LUTs with and-Inverter Cones”. In: ISFPGA. 2012.

[2] Zhihong Huang et al. “NAND-NOR: A Compact, Fast, and Delay
Balanced FPGA Logic Element”. In: ISFPGA. FPGA ’17. 2017.

[3] Stephen M. Williams and Mingjie Lin. “Architecture and Circuit Design
of an All-Spintronic FPGA”. In: ISFPGA. 2018.

[4] S. Rai et al. “Designing Efficient Circuits Based on Runtime-
Reconfigurable Field-Effect Transistors”. In: TVLSI (2019).

[5] S. Rai et al. “A Survey of FPGA Logic Cell Designs in the Light of
Emerging Technologies”. In: IEEE Access (2021).

[6] Wenyi Feng, Jonathan Greene, and Alan Mishchenko. “Improving FPGA
performance with a S44 LUT structure”. In: ISFPGA. 2018.

[7] Satrajit Chatterjee et al. “Reducing structural bias in technology
mapping”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 25.12 (2006).

[8] Robert Brayton and Alan Mishchenko. “ABC: An Academic Industrial-
Strength Verification Tool.” In: vol. 6174. 2010.

[91 V. Manohararajah, S.D. Brown, and Z.G. Vranesic. “Heuristics for Area

Minimization in LUT-Based FPGA Technology Mapping”. In: IEEE

TCAD 25.11 (2006).

Zhenghong Jiang et al. “A technology mapper for depth-constrained

FPGA logic cells”. In: FPL. 2015.

Alan Mishchenko et al. “Combinational and sequential mapping with

priority cuts”. In: /CCAD. 2007.

Kevin E. Murray et al. “VTR 8: High-Performance CAD and Cus-

tomizable FPGA Architecture Modelling”. In: ACM TRETS 13.2 (May

2020).

Grace Zgheib et al. “Revisiting And-Inverter Cones”. In: ISFPGA. 2014.

[10]
[11]
[12]

[13]

le7?

. Alp 125 9 4 . AlpS
351 mm a1ps -10.9% . ALdS
mm AldS -11.5% 100 % . AZdS
309 mmm A2dS -16.4% . LUT
25| . LT +12.9% o 75 %
~ g
E
Z20 g 50%-
@ =]
2.5 3 25%1
i i |
1.0 0%] | 11 '
05 -25 %
) —50 %
O o @O DR N s A e O O P @ SR D R e A A A D
207 & 4@ RSN S g P P A N 207 &P @™ 4 g G @Y Y AT & ' S Py
& (@‘o‘z’ TS s ‘\‘@%Q’é;b“ Cl QZ@P &P é-\es"’ TS ® ‘\:‘bﬁ"’@%“ « d é}.—\?
o &
20.0
. Alp 100 % N AlpS
1754 mm alps +3.1% - ALdS
mm AldS +2.5% 80 % - . A2dS
15.0 = A2dS 0 % = . LUT
§125— . LUT 4+56.7% g 60 %4
£ g
2 10,0 2 a0 %
g g
£ 754 B .
5] 5 20 % |-I
5.0 =
. 0% - ki
2.5
—20 % A
S R VNP e TP TG P S PR N s W L N R S) NI R~ B BT T N W . I RN R SR R W A IR
ALl L S N S L gl S g Y S P A oA R CN A S S F e
S TEE T T ISP o TIE F e L EFEN
(a) MCNC
60 % o
. AlpS
20% . AldS
mm A2dS
- g - T
£ T 20 %
<, 1}
= >
g & -
< g TN Y "1 1' 1'I '1
—20 %
] g D 2 R P Qb 2 Q "g & s
.;,9"‘ ({@9 & T & S ef‘cb.;,\"o .;,\°° Y .;,\°°
K & Q\- 0,?' & N & ¥ K RS
o & 3 & P L L &
C v ¢ P & 5
& & B N & &
& @‘92’
175 { HER Alp 60 % - EEN AlpS BN AldS mEm A2dS @ WT
. ALPS +0.2% 50 % 4
150 1 mmm AldS -1.1% 5
2 1y | WM A2dS 0% 3 40%
= mm wWT +29.2% S 30%
T 100 =
S
T 20 % q
g 75 | g
5 0 4 § 10 % 4 l
0% A
N
10 % 4
%] " Q)) 4" o]
B AN A A L @é‘_,@o '\."9 {{@u é}‘
I R A I S)
P P F N & & ®
ClC - I S &
5 & & S $ &
3’6%9“'
(b) VIR

Fig. 6: Absolute and relative change of area and delay of different circuits. The numbers indicate the average (geomean) relative
area and delay changes.

