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ABSTRACT
Routing of nets is one of the most time-consuming steps in the

FPGA design flow. Existing works have described ways of accel-

erating the process through parallelization. However, only some

of them are deterministic, and determinism is often achieved at

the cost of speedup. In this paper, we propose ParaDRo, a parallel

FPGA router based on spatial partitioning that achieves determin-

istic results while maintaining reasonable speedup. Existing spatial

partitioning based routers do not scale well because the number of

nets that can fully utilize all processors reduces as the number of

processors increases. In addition, they route nets that are within a

spatial partition sequentially. ParaDRo mitigates this problem by

scheduling nets within a spatial partition to be routed in parallel if

they do not have overlapping bounding boxes. Further parallelism

is extracted by decomposing multi-sink nets into single-sink nets

to minimize the amount of bounding box overlaps and increase

the number of nets that can be routed in parallel. These improve-

ments enable ParaDRo to achieve an average speedup of 5.4X with

8 threads with minimal impact on the quality of results.
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1 INTRODUCTION
Moore’s law has enabled the fabrication of FPGAs of increasing

capacity, and modern FPGAs can accommodate state-of-the-art de-

signs that are larger and more complex. To fully utilize the capacity

of modern FPGAs, high-quality EDA tools are required. However,

the long execution time of the tools causes a productivity gap where

the capacity of FPGAs is growing faster than the ability of engineers

to effectively utilize it. It is also one of the major factors that are

preventing the wide adoption of FPGAs as a general computing

platform.
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Among the tools for packing, placement and routing for FPGAs,

routing contributes almost 45% to the total execution time for Titan

[7] benchmarks. One possible way of reducing the FPGA route

time is by using a faster processor. Unfortunately, the failure of

Dennard’s scaling limits the maximum speed of a single processor.

Therefore, recent works focus on the development of parallel FPGA

routers to reduce the time spent in routing. Existing parallel routers

are based on Pathfinder [6], which is one of the most widely used

algorithms for sequential FPGA routing. The Pathfinder algorithm

works by iteratively increasing the costs of using overused routing

resources (RRs) until congestion is eliminated.

The sequential nature of Pathfinder poses a huge challenge to

the design of a scalable and deterministic parallel FPGA router. In

fact, existing works generally sacrifice scalability for determin-

ism and vice versa. To guarantee determinism, the congestion

costs seen by a net must be the same across different runs of the

Pathfinder algorithm. In other words, race conditions on the con-

gestion costs must be prevented by ensuring that nets routed by

different threads/processes do not modify the congestion cost asso-

ciated with the same RRs. Some existing works [3, 10] achieve this

by spatially partitioning the FPGA and routing nets that are located

within different partitions in parallel. Since nets in different parti-

tions access disjoint subgraphs of the RR, there is no possibility of

race conditions. However, the maximum speedup is limited by the

fact that nets within the same partition must be routed sequentially.

In this paper, we improve upon the idea of spatial partitioning and

attempt to extract further parallelism by scheduling nets within a

partition to be routed in parallel while guaranteeing determinism.

In summary, our contributions are as follows:
• A parallel FPGA router based on spatial partitioning with

enhancements to improve speedup.

• Multi-sink net decomposition and bounding box minimiza-

tion heuristic to increase the number of nets within a parti-

tion that can be routed in parallel.

• Mapping of the net scheduling problem to a graph coloring

problem and a fast heuristic to solve it.

The rest of this paper is organized as follows. Section 2 describes

background of the FPGA routing problem. Section 3 surveys the

existing works on parallel FPGA routing. Section 4 explains the

design of ParaDRo and its various enhancements. Section 5 presents

the experimental setup while Section 6 discusses the performance

of ParaDRo in terms of speedup and quality of results. The paper is

concluded in Section 7.

2 BACKGROUND
Given a set of nets to be routed, routing connects the source to the

sinks of each net using the RRs in the FPGA such that each RR is

utilized by at most one net. The RRs are modeled as a graph where

the nodes represent the wires in the FPGA and input/output pins of
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the computation elements while the edges of the graph represent

the programmable switches between the wires and input/output

pins.

One of the most effective algorithms for solving the FPGA rout-

ing problem is Pathfinder [6]. In Pathfinder, Dijkstra’s shortest path

algorithm is used to find a path from the RR node of the source to

the RR nodes of the sinks of a net. The cost of a RR node during

the neighbor expansion of Dijkstra’s algorithm is a weighted sum

of the delay of the node and two additional cost components, the

present and history congestion costs. The present congestion costs

are updated after routing every net while the history congestion

costs are updated after routing all the nets. The rationale behind

the congestion costs is to penalize the overuse of RRs so that the

overuse is eliminated eventually.

Since the present congestion costs are updated after routing each

net, the costs seen by a net depends on the routes taken by previous

nets. As a result, the present congestion costs introduce dependen-

cies among nets and pose challenges to effective parallelization of

the Pathfinder algorithm.

3 RELATEDWORKS
In this section, we review existing works on parallel deterministic

FPGA routers.

TDR [1] is a parallel router where each processor is allocated a

disjoint subgraph of the RR graph and a subset of nets to be routed.

To generate the disjoint subgraphs, TDR requires the FPGA to have

the disjoint switch box topology. Since processors do not share

RR, there is no need to synchronize congestion costs among them

during routing. As a result, TDR achieved close to linear speedup.

Gort and Anderson [3] proposed a parallel router where conges-

tion costs are synchronized among processors using the message

passing interface (MPI). The costs are sent in a non-blocking man-

ner to other processors once a processor finishes routing a net.

Determinism is guaranteed by receiving the congestion costs in

a blocking manner. Unfortunately, the blocking receive reduces

the speedup because of increased stall time when there is load im-

balance among the processors. Gort and Anderson tried to solve

the problem by spatially partitioning the FPGA. A processor can

route nets whose bounding boxes are within a partition without

communicating with other processors that are routing nets in other

partitions.

Another parallel router based on spatial partitioning is by Shen

and Luo [10]. While [3] routes nets within a partition with multiple

processors, Shen and Luo route nets within a partition sequentially.

Therefore, the communication overhead of Shen and Luo is lower

because there is no need to synchronize congestion costs among

processors.

Gort and Anderson [2] found that 68% of the total route time

is spent on the maze expansion step of Pathfinder and attempted

to parallelize the step. In sequential maze expansion, a minimum

cost node is popped from the priority queue, and neighbors of

the node are sequentially pushed into the queue after the cost of

using them are calculated by a single thread. On the other hand,

Gort exploited fine-grained parallelism by calculating the costs

of a node’s neighbors in parallel with multiple worker threads

and pushing the neighbors into the priority queue of the thread

that calculated their costs. The worker threads wait at a barrier to

ensure that all neighbors are expanded before moving on to the

next minimum cost node.

Another fine-grained parallel router is Corolla [11], a GPU-

accelerated router based on Bellman Ford’s algorithm. Since run-

ning Bellman Ford’s algorithm on the entire RR graph increases the

problem size unnecessarily, Corolla executes the algorithm only on

the subgraph within the bounding box of the net being routed. The

subgraph is dynamically expanded until a legal routing solution is

found. To extract sufficient parallelism, Corolla applies the operator

formulation [9] where each RR node is mapped to a GPU thread to

be processed in parallel. In addition to the fine-grained parallelism,

Corolla also exploits coarse-grained parallelism where multiple

nets are routed in parallel as long as they do not have overlapping

bounding boxes.

4 PARADRO
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Figure 1: Percentage of nets that fully utilize all processors
versus number of processors

Designing a scalable and deterministic parallel FPGA router is

a non-trivial task. The deterministic parallel routers presented in

Section 3 are based on either partitioning or fine-grained paral-

lelism. Partitioning based routers [1, 3, 10] route multiple nets in

parallel only if the nets access disjoint subgraphs of the RR graph to

prevent race conditions. Instead of routing multiple nets in parallel,

fine-grained routers parallelize either the classic maze expansion

algorithm [2] or the Bellman Ford algorithm [11] to route a single

net.

Unfortunately, routers based on partitioning [3, 10] do not scale

well. As shown in Figure 1, the percentage of nets that can fully uti-

lize all the processors reduces as the number of processors increases,

resulting in diminishing speedup. While the figure assumes that the

FPGA is partitioned into equally sized segments, the trend shown

in the figures applies to the partitioning described in [3, 10]. There-

fore, we propose ParaDRo, a Parallel Deterministic Router, based

on spatial partitioning and scheduling to address the limitations of

existing partitioning-based routers.

ParaDRo is based on recursive spatial bi-partitioning of the FPGA.

The bi-partitioning forms a perfect binary tree where each node

represents a region on the FPGA and contains nets whose bounding

boxes fit entirely within the region. An example of a bi-partitioning

tree is shown in Figure 2. Since the regions represented the nodes

at each level of the tree are spatially independent, nets in one node

can be routed in parallel with nets in other nodes while still guar-

anteeing determinism. For example, in Figure 2, nets A and B can

be routed in parallel with nets D and E. Unfortunately, this simple

bi-partitioning approach does not produce a good speedup because

the number of interior (non-leaf) nodes at any level of the tree is less

than the number of threads, which results in underutilization of the

threads. In Figure 2, the number of nodes at level zero is one, which
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Figure 2: An example of a 2-level bi-partitioning tree. Parti-
tion P0 contains nets that cross the partition cutlinewhereas
partitions P1 and P2 contain nets whose bounding boxes en-
tirely fit into the left and right partition respectively.

is less than two, the number of threads that the tree is generated

for. ParaDRo addresses this problem with three enhancements.

Firstly, interior nodes are further bi-partitioned to extract ad-

ditional parallelism. The direction of this extra bi-partitioning is

orthogonal to the direction that created the initial children of each

interior node.

Secondly, ParaDRo schedules nets in interior nodes to be routed

in parallel as long as they have non-overlapping bounding boxes.

In order to minimize the overlap between nets, ParaDRo reduces

the bounding box size of nets by decomposing multi-sink nets

into single-sink nets called virtual nets. The bounding box size of

virtual nets is further reduced by restricting the routes of a virtual

net to be along the perimeter of its bounding box. Since there

are two ways of routing virtual nets along the perimeter (bottom

half or top half), a heuristic is introduced to choose the optimal

bounding box shape for virtual nets. This heuristic is similar to

global routing where coarse-grained routing channels are assigned

to nets to minimize the overall congestion. After determining the

bounding box shapes of the virtual nets, a schedule is generated for

each node in the bi-partitioning tree to route the nets in the node

in parallel whenever possible. The scheduling problem is reduced

to a graph coloring problem where the graph models the nets to

be routed and the overlap among them. The overlap graph is built

such that virtual nets of the same net are scheduled to be routed

sequentially. Therefore, subsequent sinks can reuse the existing

route tree in a similar manner as VTR.

Thirdly, due to the smaller bounding boxes of the virtual nets, it

was observed that ParaDRo fails to converge to a congestion-free

state for some benchmarks circuits. Therefore, ParaDRo reroutes

only congested nets when the number of congested nets is less

than a predefined threshold. In this stage, ParaDRo expands the

bounding box of the virtual nets to an axis-aligned bounding box

covering the source and sink of the net to increase the routing

flexibilty when eliminating congestion.

4.1 Recursive Bi-partitioning
ParaDRo starts by recursively splitting the FPGA into two disjoint

regions while minimizing the difference in the workload of rout-

ing the nets in the two regions as shown in Algorithm 1. When

determining where to cut the FPGA into two regions, ParaDRo

leverages on the discrete nature of the FPGA architecture so that

only a finite number of cutlines needs to be considered. For exam-

ple, if the number of rows and columns in an FPGA are nrows and
ncolumns , there are only nrows + 1 horizontal and ncolumns + 1

Algorithm 1 The recursive bi-partitioning algorithm

1: procedure recursive_bipart(bb , nets , n_levels , cur_level ,
node )

2: if cur_level < n_levels − 1 then
3: nets_bef ore, nets_af ter, opt_cut ← get_opt_cut(bb ,

nets ) ▷ Algorithm 2

4: nets_crossinд ← nets − nets_bef ore − nets_af ter
5: node .nets ← nets_crossinд
6: bb_bef ore, bb_r iдht ← split_bounding_box(bb , opt_cut )
7: recursive_bipart(bb_bef ore , nets_bef ore , n_levels ,

cur_level + 1, node .r iдht )
8: recursive_bipart(bb_af ter , nets_af ter , n_levels ,

cur_level + 1, node .lef t )
9: else
10: node .nets ← nets
11: end if
12: end procedure
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4-th vertical cutline
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Figure 3: nets_start and nets_end generated based on the nets
in Figure 2

vertical cutlines respectively. While the discrete nature of FPGAs

significantly reduces the search space for an optimal cut, a naive

way of performing bi-partitioning might lead to an inefficient al-

gorithm. For example, finding the most load balanced cutline by

calculating the total workload of nets that are located before and

after every possible cutline leads to an inefficient O(kN ) algorithm
where k is the number of cutlines and N is the number of nets. The

bottleneck in this example lies in repeatedly determining the side

of every net relative to every possible cutline, which requires the

list of nets to be iterated k times.

In ParaDRo, the list of nets is only iterated once as shown in Algo-

rithm 2. During the iteration, the contents of four arrays nets_start ,
nets_end , total_workload_be f ore and total_workload_af ter are

computed. These arrays allow the optimal cutline to be determined

in O(N + k) instead of O(kN ).
nets_start and nets_end are 2D arrays with the i-th element

being an array of nets whose bounding boxes start and end at the

i-th FPGA row/column respectively. The bounding box of a net

can be represented as a 4-tuple ⟨xmin,xmax ,ymin,ymax⟩, and the

meaning of the start and end of a net bounding box depend on the

orientation of the cutline. For a vertical cutline, the start and end

of a bounding box are xmin and xmax . Similarly, for a horizontal

cutline, the start and end of a bounding box are ymin and ymax . As
shown in Algorithm 2, the start and end of a net are used to index

into nets_start and nets_end respectively when adding the net to

the arrays. Figure 3 shows an example of nets_start and nets_end
that are generated based on the five nets shown in Figure 2. It also

shows how a cutline is positioned relative to the CLBs and routing

channels.
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Algorithm 2 Fast heuristic to determine the optimal cutline

1: procedure get_opt_cut(bb , nets )
2: nets_star t ← {{}}
3: nets_end ← {{}}
4: total_workload_bef ore ← {0}
5: total_workload_af ter ← {0}
6:

7: for net ∈ nets do
8: nets_star t [net .star t ] ← nets_star t [net .star t ] ∪ net
9: nets_end [net .end ] ← nets_end [net .end ] ∪ net
10: total_workload_bef ore[net .end ] ←

total_workload_bef ore[net .end ] + net .workload
11: total_workload_af ter [net .star t ] ←

total_workload_af ter [net .star t ] + net .workload
12: end for
13: total_workload_bef ore ← prefix sum of

total_workload_bef ore starting from first element

14: total_workload_af ter ← prefix sum of

total_workload_af ter starting from last element

15:

16: opt_cut ← −1
17: min_dif f ←∞
18: for cut ∈ cut indices do
19: dif f ← |total_workload_bef ore[cut ] −

total_workload_af ter [cut + 1] |
20: if dif f < min_dif f then
21: min_dif f ← dif f
22: opt_cut ← cut
23: end if
24: end for
25: return

⋃opt_cut
i=0 nets_end [i],⋃last

i=opt_cut+1 nets_star t [i], opt_cut
26: end procedure

nets_start and nets_end allow the nets that are located after and

before a specific cutline respectively to be determined easily. The list

of nets located after the n-th cutline is simply

⋃last
i=n nets_start[i].

Similarly, the list of nets located before then-th cutline is
⋃n−1
i=0 nets_

end[i]. For example, from Figure 3, the list of nets located after the

2-nd cutline is {C,D,E} while the list of nets located before the

4-th cutline is {A,B}.
total_workload_be f ore and total_workload_af ter are 1D ar-

rays whose i-th element represents the total workload of all nets

before the (i + 1)-th cutline and after the i-th cutline respectively.

They are generated in 2 steps. The first step is done while iterat-

ing through the list of nets. For each net, its workload, which is

approximated by the number of sinks, is added to the element

of total_workload_af ter and total_workload_be f ore at indices

equal to the start and end of the net’s bounding box respectively.

The second step performs in-place prefix sums on both the ar-

rays to generate the final values. The prefix sums are calculated

starting from the first and last element for total_workload_be f ore
and total_workload_af ter respectively. The steps are illustrated
in Figure 4 and 5.

After generating the arrays, the optimal cutline can be deter-

mined by finding an index opt_cut such that the absolute difference

between total_workload_be f ore[opt_cut] and total_workload_
af ter [opt_cut + 1] is minimum. Based on opt_cut , the nets that are
before and after the cutline can be obtained directly asnets_be f ore =⋃opt_cut
i=0 nets_end[i] andnets_af ter =

⋃last
i=opt_cut+1 nets_start[i]
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Figure 4: The process of generating total_workload_be f ore
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start=5, end = 8

start=2, end=7

start=0, end=3

start=0, end=2

Source
Sink

FPGA columns

Figure 5: The process of generating total_workload_af ter

respectively. Nets that are not innets_be f ore andnets_af ter ,nets_
crossinд, are contained in the parent node of the two child nodes

that contain nets in nets_be f ore and nets_af ter . The biparition-
ing process is repeated for nodes that contain nets_be f ore and

nets_af ter . ParaDRo also repeats the bi-partitioning process for

the nets in nets_crossinд to extract further parallelism. For sim-

plicity purposes, the bi-partitioning process of nets_crossinд is not

shown in Algorithm 1.

Figure 2 shows the optimal cut and the associated bi-partitioning

treewhen ParaDRo is runwith two threads. The FPGA is bi-partitioned

once for two threads, and |total_workload_be f ore[opt_cut]−total_
workload_af ter [opt_cut + 1]| = 0.
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4.2 Scheduling
After building the bi-partitioning tree, a directed task graph is

generated for each node of the tree to identify nets that can be

routed in parallel. The motivation behind this is the decreasing

potential parallelism as the depth of a node, which is the number

of edges between the node and the root of the tree, decreases.

The worst case happens at a depth of zero where the potential

parallelism is one because there is only one node, which is the root

of the tree.

However, maximizing the number of nets that can be routed

in parallel within a node is nontrivial due to a large number of

overlapping nets. In order to guarantee determinism, these over-

lapping nets cannot be routed in parallel. By modeling the overlap

between nets as a graph where the nodes represent the nets while

the edges represent the bounding box overlap between the nets,

it is easy to see that maximizing the number of nets that can be

routed in parallel is equivalent to finding the chromatic number in

graph coloring. The chromatic number is the minimum number of

distinct colors that is required to color every node of a graph such

that no adjacent nodes have the same color. A smaller chromatic

number results in a higher number of nets that can be routed in

parallel.

Second bounding 
box shape

First bounding 
box shape

Virtual net bounding box

Net bounding box

Virtual net bounding box

Net bounding box

Figure 6: Two possible bounding box shapes for virtual nets

In order to maximize the number of nets that can be routed in

parallel, it is important to reduce the bounding box overlap between

the nets before performing graph coloring. Therefore, ParaDRo

decomposes multi-sink nets into single-sink nets called virtual nets,

which have smaller bounding boxes. Since a virtual net has only one

sink, its bounding box size can be further reduced by restricting its

route to be on the perimeter of its bounding box. Figure 6 shows the

two possible routes that are on the perimeter and their associated

bounding boxes. Figure 7 shows the process of decomposing two

nets, A and B, into virtual nets A1, A2 and B1. It can be seen that

virtual net B1 is no longer overlapping with virtual net A1 and

A2 after the decomposition and a proper choice of bounding box

shapes. The algorithm to make such a choice is described in Section

4.3.

After generating the virtual nets, an overlap graph is built based

on their bounding boxes. The vertices of the graph represent the

virtual nets while the edges represent a bounding box overlap

between two virtual nets. An example of the overlap graph is shown

in Figure 8. Since virtual nets of the same net always overlap at the

source, the subgraph induced by their corresponding nodes forms

a complete graph in the overlap graph. In Figure 8, the complete

graph is between nodes A1 and A2. The complete graph ensures

that sinks of the same net are routed sequentially so that each sink

can reuse the route tree of sinks routed before it. While this is

similar to the route tree reuse in VTR, the caveat is that the amount

Net A

Net B

Decompose multi-sink nets

Reduce virtual net bounding box size

VNet A2VNet A1

VNet B1

VNet A1

VNet B1

VNet A2

Figure 7: The process of decomposing multi-sink nets and
reducing their bounding box sizes

(a) (b)

A1

B1A2

VNet A1

VNet B1

VNet A2

Figure 8: (a) Virtual nets (b) Their corresponding overlap
graph

of reuse is lower because the bounding box of each sink is smaller

than that of VTR’s.

Although graph coloring is an NP-complete problem, there is a

greedy algorithm to solve it. The greedy algorithm works by iterat-

ing through the nodes of the overlap graph in a certain order and

greedily assigns each node a color that is not used by its neighbor.

The quality of the coloring depends heavily on the order in which

the nodes are colored. In ParaDRo, the nodes are visited in a small-

est last ordering. The ordering is generated by repeatedly finding

a node with the smallest degree and removing it from the graph

until the graph is empty. Then, the nodes are returned in an order

reverse to that in which they were found.

A simple way of routing the colored virtual nets would be in a

bulk synchronous manner where nets of the same color have to

finish routing in parallel before nets of the next color can be routed.

However, this could lead to unnecessary waiting as shown in Figure

9(a). The bottleneck can be solved by converting the undirected

overlap graph into a directed acyclic task graph shown in Figure
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Figure 9: (a) An example of routing the overlap graph in Fig-
ure 8(b) where a net (B1) has to wait for another net (A1) to
complete routing even when there is no direct dependency
between them (b) Solving thewaiting problemby converting
the undirected overlap graph to a directed task graph

9(b). The task graph is similar to the overlap graph in that the nodes

represent the nets but the edges impose an order in which the nodes

are routed. Based on the task graph, a net can be routed as soon as

all its parents have been routed.

The conversion works by assigning a priority to every color and

setting the direction of overlap edges based on the color priority

of the nodes that are connected by the edge. The color priority

is determined by summing the number of sinks of all nets of the

color. Then, edges are set to point from the node with a higher

sum to the node with a lower sum. The rationale is that higher

fanout nets should be routed first to ensure better convergence.

The conversion imposes a partial order on the overlap graph nodes

to ensure determinism.

4.3 Global Routing of Virtual Nets
As described in the previous section, there are two possible bound-

ing box shapes of virtual nets. In this section, a heuristic is proposed

to determine the shapes that minimize the total overlap between

virtual nets. The heuristic is motivated by the following observa-

tions. Firstly, reducing the amount of overlap increases the number

of nets that can be routed in parallel, which is the main goal of

ParaDRo. Secondly, the amount of overlap has a direct impact on

the congestion during routing.

Determining the bounding box shapes is similar to assigning

routing channels to nets in global routing, and this similarity forms

the basic idea of the proposed heuristic. One of the most impor-

tant factors in the heuristic is the order in which nets are routed.

Unfortunately, the actual order can only be determined after the

scheduling described in Section 4.2, which requires the bounding

box shapes in the first place to generate the overlap graph. In order

to break the dependency loop, the net order is approximated by

traversing the bi-partitioning tree in a breadth-first manner and

adding the virtual nets in the node, after sorting them in decreasing

number of sinks of their original net, to the list of virtual nets to be

routed, дlobal_netlist . The original net of a virtual net refers to the

multi-sink net before decomposition. This approximation makes

sense because, during scheduling, virtual nets whose original nets

have higher number of sinks are scheduled to be routed earlier.
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Figure 10: Different virtual net bounding boxes and their cor-
responding overlap maps

For each virtual net, vnet , in дlobal_netlist , the optimal bound-

ing box is determined by finding the box with the least overlap with

virtual nets ordered before vnet in дlobal_netlist . The decision to

find the locally optimum bounding box is intentional to reduce the

algorithmic complexity of the global routing so that its execution

time does not outweigh the increased parallelism generated by it.

The amount of overlap can be determined quickly by maintaining

an overlap map, which is a 2D array of the same size as the FPGA

grid. Each element of the array represents a discrete point in the

FPGA grid and stores the number of globally routed virtual nets

with bounding boxes that contain the point. With the overlap map,

the total overlap of the two possible bounding boxes, Box1 and

Box2, of vnet can be calculated by summing the elements of the

map that corresponds to the points contained in Box1 and Box2.
The box with the least total overlap is set as the bounding box for

vnet . Figure 10 shows two different bounding box shapes for vir-

tual net B1 and their corresponding overlap maps. It also illustrates

how choosing the shape in Figure 10(b) for virtual net B1 leads to a

lower total overlap of 6, assuming virtual net A1 and A2 are globally

routed before B1. The choice of bounding boxes in Figure 10(b) not

only enables virtual nets A2 and B1 to be routed in parallel, but

also completely eliminates congestion between the them.

4.4 Actual Routing
After building the bi-partitioning tree and directed task graphs, the

actual routing process starts from the root of the bi-partitioning tree.

All nets with no parents in the directed task graph associated with

the root of the bi-partitioning tree are routed in parallel. During

routing, ParaDRo keeps track of the indegree of the nodes in the

task graph. After routing a task graph node, the indegree of the

children of the node is decremented by one. As soon as the indegree

of a task graph node reaches zero, it can be scheduled to be routed
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Table 1: Summary of benchmarks used in the experiments

Benchmark Total nets Total blocks Minimum

channel width

stereovision1 10,797 1,217 104

LU8PEEng 15,990 2,373 114

stereovision2 34,501 2,926 154

LU32PEEng 53,199 7,536 174

neuron 54,056 3,512 206

stereo_vision 61,883 3,434 228

segmentation 125,592 9,047 292

denoise 257,425 18,600 310

in parallel. After routing all the nets in the task graph associated

with the root of the bi-partitioning tree, the process is repeated

recursively for the two children of the root.

Except for the root of the bi-partitioning tree, multiple task

graphs are processed in parallel. In addition, the number of task

graphs doubles each time the level of the tree increases by one.

Coupled with routing nets in the task graphs in parallel whenever

possible, ParaDRo can keep all the threads busy during routing.

Another property that minimizes idling time during routing is that

a node in the bi-partitioning tree can be routed as soon as its parent

is done routing without waiting for other nodes in the same level

to complete. This is because the FPGA region associated with a

node only overlaps with the region associated with its parent, and

nodes at the same level of the bi-partitioning tree are spatially

independent.

4.5 Serial Equivalence
The number of levels of the bi-partitioning tree affects the route

order of virtual nets and in turn the route solution. ParaDRo is

implemented in such a way that the number of levels can be set

independently of the number of threads because nets from the bi-

partitioning tree are simply dispatched to a pool of worker threads

to be routed. By keeping the number of levels constant, ParaDRo

produces the same result even when the size of worker thread

pool is changed. Therefore, ParaDRo is serially equivalent [4]. The

number of levels in the bi-partitioning tree can be chosen carefully

to strike a good balance between the amount of exposed parallelism

and the overhead of task switching.

5 EXPERIMENTAL SETUP
ParaDRo was evaluated on a server equipped with two Intel Xeon

E5-2680 V3 without hyper-threading and 128 GB of RAM. The op-

erating system is Red Hat Enterprise 6.8 with Linux kernel version

2.6.32. gcc 7 with optimization flag -O3 was used to compile both

ParaDRo and VTR [5].

The benchmarks used for evaluationwere obtained from the VTR

[5] and Titan [8] packages, and they are summarized in Table 1. The

Titan benchmarks were chosen to cover a wide range of circuit sizes

with neuron being the smallest and denoise being the largest out of
the 23 Titan benchmarks. The benchmarks were packed and placed

with default parameters using VTR of the same version as the Titan

paper [8] (7.0 r4292) because the release version of VTR (7.0) crashes

when loading Titan benchmarks due to a netlist loading bug. The

architecture files used are k6_frac_N10_mem32K_40nm.xml and

Table 2: Notations

Notation Meaning

seq Nets in nodes of the bi-partitioning tree are

routed sequentially
par Nets in nodes of the bi-partitioning tree are

routed in parallel
normal The bi-partitioning tree of nets_crossinд is

routed sequentially
extra The bi-partitioning tree of nets_crossinд is

routed in parallel

stratixiv_arch.timing.xml for VTR and Titan benchmarks respec-

tively. The minimum channel widths in Table 1 are obtained by

running VTR’s routing in binary search mode.

The notations used to refer to different variants of ParaDRo are

shown in Table 2.

6 EXPERIMENTAL RESULTS
In this section, two important performance metrics of ParaDRo,

speedup and critical path delay, are presented.

6.1 Speedup Across Different Benchmarks
Figure 11 shows the speedups of different ParaDRo variants relative

to their single-threaded variant. The time required to build the

bi-partitioning tree is not included in the speedup calculation. Bi-

partitioning tree generation for 2, 4, and 8 partitions currently

requires on average 67.7%, 27.2%, and 15.6% of the routing time of

single-threaded ParaDRo respectively. The tree generation takes

longer for a smaller number of partitions because of the larger

number of nets within a partition. Fortunately, generation of the

bounding box overlap graph, which is the most time-consuming

part of the tree building, is embarrassingly parallel because the

bounding box overlaps of each net can be determined independently

of other nets. The parallelization of the overlap graph generation is

left as a future work.

It can be seen that LU32PEEng has significantly higher speedup

than other benchmarks. On the other hand, stereovision1, neuron

and stereo_vision are among the worst performing benchmarks

in terms of speedup. The reason for this observation can be found

in Figure 13, which shows the total time spent routing nets in all

threads normalized to single-threaded ParaDRo. Only the par extra
variant of ParaDRo is shown in Figure 13 because the total time

measures only the raw time spent routing nets, which is the same for

all variants of ParaDRo. The total time gives an approximation of the

amount of work that is done by the router. In order to achieve good

speedup, the amount of work must remain relatively constant as the

number of threads increases. Unfortunately, this is not the case for

most benchmarks as shown in Figure 13. The workload of ParaDRo

depends on the order in which the virtual nets are routed. Therefore,

the workload changes depending on the number of threads because

a different number of threads generates a different bi-partitioning

tree, which results in a different order in which the nets are routed.

For LU32PEEng, the workload reduces significantly as the number

of threads increases, which explains the super-linear speedup in

Figure 11. On the other hand, the workload of stereovision1, neuron,

and stereo_vision for more than one thread is actually more than
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Figure 11: Speedups of different ParaDRo variants and VTR with 140% channel width normalized to single-threaded ParaDRo
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Figure 12: Speedups of different ParaDRo variants and VTR with 120% channel width normalized to single-threaded ParaDRo
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Figure 13: Total net route time of par extra ParaDRo with
140% channel width normalized to single-threaded par extra
ParaDRo

that of single thread ParaDRo. Therefore, their speedups are among

the worst in Figure 13.

Unfortunately, due to the difference in the route order, the work-

load when routing LU32PEEng with one thread is higher than that

of VTR, causing ParaDRo to be slower than VTR for LU32PEEng. On

the other hand, ParaDRo is significantly faster than VTR when rout-

ing Titan benchmarks. This is because an enhancement proposed by

Gort [3] is added to ParaDRo. The enhancement is motivated by the

fact that the Logic Array Block (LAB) in stratixiv_arch.timing.xml

has equivalent output pins. The equivalence causes convergence

issues because the packer assumes that each net will use only one

LAB output pin but nets with multiple sinks tend to use more than

one of those pins during routing. In order to solve the problem, the

enhancement forces the router to use the same output pin to route

the rest of the sinks once the first sink of the net has been routed.

Another observation that can be made from Figure 11 is that

enabling the enhancements proposed in Section 4.1 and 4.2 improve

speedup by different amounts for different benchmarks. This is

because different benchmarks have different amounts of overlap

between nets. Benchmarks with less number of overlaps allow

more parallelism to be exploited when nets in nodes of the bi-

partitioning tree are scheduled to be routed in parallel. For example,

routing LU32PEEng with the par variant of ParaDRo improves

speedup significantly as compared to routing with the seq variant

of ParaDRo. stereovision1, on the other hand, does not exhibit such

a huge improvement.

The speedup of ParaDRo when routing resources are more scarce

is shown in Figure 12. It can be seen that the speedup of ParaDRo

with only 20% higher than the minimum channel width is worse

than that of ParaDRo with 40% higher than the minimum channel

width. This is due to the restrictive virtual net bounding boxes

when ParaDRo is run with more than one thread. Since virtual

nets can only use RR on the perimeter of their bounding box, the

flexibility of avoiding congestion is lower than when all the RRs in
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Figure 14: Total net route time of par extra ParaDRo with
120% channel width normalized to single-threaded par extra
ParaDRo

the bounding box are available. The reduction in flexibility causes

ParaDRo to work harder to resolve congestion as shown in Figure

14.

6.2 Effects of Proposed Enhancements
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Figure 15: Average self-relative speedups of different
ParaDRo variants

In this section, the effects of the enhancements discussed in

Section 4.1 and 4.2 on ParaDRo’s speedup are shown in Figure 15.

The speedups in the figures are averaged across the benchmarks in

Table 1.

Figure 15 shows that routing nets in nodes of the bi-partitioning

tree in parallel results in higher speedup than routing them se-

quentially. In addition, the increase in speedup is more significant

for 4 and 8 threads where the increase is almost two-fold. This

improvement validates the hypothesis in Section 4.2 that spatial

partitioning alone does not expose sufficient parallelism to keep the

threads busy especially for higher number of threads. On the other

hand, the improvement in speedup by routing the bi-partitioning

tree of nets_crossinд in parallel is not as significant as routing the

main bi-partitioning tree in parallel.

6.3 Critical Path Delay
Figure 16 and 17 show the critical path delay of ParaDRo normalized

to that of VTR with 40% and 20% higher than minimum channel

width respectively. It is important to note that the different variants

of ParaDRo shown in Section 6.2 are equivalent to one another in

terms of the route solution produced. Therefore, their critical path

delays are the same and not shown separately in the figures.

As shown in Figure 16 and 17, the worst degradation in critical

path delay is only 5%. In addition, single thread ParaDRo is able
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Figure 16: Critical path delay of ParaDRowith 140% channel
width normalized to that of VTR
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Figure 17: Critical path delay of ParaDRowith 120% channel
width normallized to that of VTR

to produce critical path delay that is very close to VTR’s for most

benchmarks.

6.4 Total wirelength
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Figure 18: VTR normalized total wirelength of ParaDRo
with 140% channel width

Due to the more restrictive bounding boxes of the virtual nets,

nets might take longer routes to avoid congestion. In addition, the

restriction also reduces the opportunity for route tree reuse in
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Figure 19: VTR normalized total wirelength of ParaDRo
with 120% channel width

ParaDRo as compared to VTR. The effect of these factors on the

total wirelength is shown in Figure 18 and 19.

Virtual nets are not generated for single-threaded ParaDRo be-

cause nets cannot be routed in parallel. However, the total wire-

length of single-threaded ParaDRo is still higher than that of VTR

for most benchmarks because the bounding box expansion factor

(bb_f actor ) is lower than that of VTR. This is to be consistent with

multi-threaded ParaDRo where the lower bb_f actor increases the
amount of parallelism by reducing the overlap between nets.

The absence of virtual nets in single-threaded ParaDRo is also

the reason why single-threaded ParaDRo has significantly lower

total wirelength than multi-threaded ParaDRo in Figure 18 and 19.

6.5 Impact of Serial Equivalence on Speedup
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Figure 20: Speedup of serially equivalent versus non serially
equivalent ParaDRo relative to single-threaded non serially
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Figure 20 shows the effect of enforcing serial equivalence [4] on

the speedup of ParaDRo. The channel width is set to 40% higher

than the minimum, and the number of levels in the bi-partitioning

tree is fixed to 4. As can be seen in the figure, the performance of

serially equivalent ParaDRo is comparable to that of non serially

equivalent ParaDRo.

6.6 Comparison with Existing Works
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Figure 21 compares the speedup of par extra ParaDRo to exist-

ing works. ParaDRo is faster than Shen’s [10] and Gort’s [3] router

because ParaDRo routes nets within a partition in parallel while

Shen and Gort do not.

On the other hand, Gort’s enhanced router [3] is faster than

ParaDRo because even though both routers are capable of rerouting

only congested nets, the former does so for every routing iteration

while the latter only does it when the number of congested nets

drops below a threshold. Corolla [11] is also significantly faster

than ParaDRo but its scalability is unclear because the authors did

not evaluate Corolla with varying number of CUDA cores.

7 CONCLUSIONS
In this paper, we propose ParaDRo, a parallel deterministic router

based on spatial partitioning. To improve speedup, nets within a

partition are scheduled to be routed in parallel. Multi-sink nets are

decomposed into single-sink nets, and their bounding boxes are

shrunk to increase the number of nets that can be routed in parallel.

With these enhancements, ParaDRo achieves a maximum speedup

of 5.4X with 8 threads.
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