
TCAD-2020-0369 1

ReLAccS: A Multi-level Approach to Accelerator
Design for Reinforcement Learning on FPGA-based

Systems
Akhil Raj Baranwal, Salim Ullah, Siva Satyendra Sahoo, and Akash Kumar, Senior Member, IEEE

Abstract—Reinforcement learning, specifically Q-Learning,
with human-like learning abilities to learn from experience
without any a priori data, is being increasingly used in embedded
systems in the field of control and navigation. However, finding
the optimal policy in this approach can be highly compute-
intensive, and a software-only implementation may not satisfy
the application’s timing constraints. To this end, we propose
optimization methods at multiple levels of accelerator design
for reinforcement learning. Specifically, at the architecture-
level, we exploit the instruction-level parallelism and the spatial
parallelism in FPGAs to improve the throughput over state-
of-the-art designs by up to 34%. Further, we propose LUT-
level optimizations to reduce the resource utilization and power
dissipation of the accelerator. Finally, we propose algorithm-level
approximation that can be used for acceleration of Q-Learning
problems with more states and for reducing the peak power
dissipation. We report up to 10x reduction in power dissipation
with marginal degradation in quality of results.

Index Terms—Reinforcement Learning, Embedded Systems,
Cross-layer System Design, FPGA, High-level Synthesis

I. INTRODUCTION

W ITH the advent of deep learning techniques, there has
been a steep rise in the variety of applications that

can benefit from the rapid advances in machine learning.
Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) have gained popularity among applications
that implement some form of computer vision and temporal
dynamic behavior (e.g. Natural Language Processing) respec-
tively. Similarly, there is an increase in the need for applying
machine learning methods in applications that require expert
human operators. Applications that implement one or more
among – optimization, control, monitoring, and maintenance
– and involve some form of decision-making can benefit from
tools that exhibit human-like learning. Typical examples of
such application areas include process planning, smart build-
ings, robotics, autonomous vehicles, inventory monitoring, etc.

Reinforcement Learning (RL)-based approaches provide the
closest resemblance to how humans learn [1]. RL involves
allowing an agent to learn from its interactions with the en-
vironment. RL methods combined with deep neural networks,
called Deep RL, have been able to surpass human expertise
in the field of video games and multiplayer contests [2], [3].
However, the high power dissipation and the latency of the
associated neural network might be infeasible for resource and

A. R. Baranwal, S. Ullah, S. S. Sahoo and A.Kumar are with
The Chair for Processor Design, TU Dresden, Germany (emails:
akhil.baranwal@mailbox.tu-dresden.de; salim.ullah@tu-dresden.de;
siva_satyendra.sahoo@tu-dresden.de; akash.kumar@tu-dresden.de)

START
1

21 22 23

11 12 13 14

6 7 8 10

2 54

25

16 17 18

24

19 20

15

9

3

𝑄7,𝐿 𝑄7,𝑅

𝑄7,𝑈

𝑄7,𝐷

Fig. 1: Sample grid-world

performance constrained embedded systems. In this article, we
limit our focus to traditional RL techniques. In such methods,
the agent is allowed to take certain actions and the long-
term effectiveness of each action is estimated from the returns
obtained by the agent subsequent to that action till it reaches
the goal. This way the agent can perform model-free learning,
by allowing the machine to learn dynamically from experience
rather than statically from a priori data. For instance, in the
grid-world problem shown in Fig. 1, the autonomous agent,
shown in the figure at the 7th position on grid1, is expected
to be able to find the optimal path from the starting state to
the goal state. In this problem, the position of the obstacles,
shown in red in the figure, is not known a priori and the
agent must be able to find the optimal path by continuously
trying out different actions at each state. However, the agent
must perform a large member of iterations/simulations to learn
the optimal policy for the problem. The optimal policy search
can be highly computation-intensive and a delayed search can
lead to violation of timing constraints in reactive embedded
systems.

The optimal policy search in the grid world problem would
be to find the best action that should be taken at each state.
For instance, as shown in Fig. 1, the agent, located at position
7 can decide to take one of four actions which are shown
as arrows. So, each state in the grid is associated with four
state-action pairs. One way of representing this policy is to
assign a Q-value to each state-action pair. For instance, in
the grid-world problem, the values Q7,U , Q7,D, Q7,L, Q7,R

represent the Q-value for taking the actions Up, Down, Left
and Right respectively, from state 7. In the grid-world example,
the Q-value qs,a of each state-action pair (s, a) indicates the
average long-term benefit of taking action a from state s while
aiming for the goal state. During the learning stage, the matrix

1In this sample problem, the agent’s position on the grid at any specific
instant is sufficient to define its current state

1.E+00

2.E+04

4.E+04

6.E+04

8.E+04

1.E+05

1.E+05

1.E+05

2.E+05

2.E+05

0 1000 2000 3000

MEM (4,32)
MEM(6,32)
MEM (8,32)
MEM (4,16)
MEM(6,16)
MEM (8,16)
MEM (Platform)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠

𝑀
𝑒𝑚

𝑜
𝑟𝑦

𝑟𝑒
𝑞
𝑢
𝑖𝑟
𝑒
𝑚
𝑒𝑛
𝑡
(𝑖
𝑛
𝑏
𝑦
𝑡𝑒
𝑠)

(a) Scaling of memory requirements

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

4
, 3

2

4
, 1

6

6
, 3

2

6
, 1

6

8
, 3

2

8
, 1

6

4, 32 4, 16

6, 32 6, 16

8, 32 8, 16

𝐶
𝑟𝑖
𝑡𝑖
𝑐𝑎
𝑙
𝑝
𝑎
𝑡ℎ

𝑑
𝑒𝑙
𝑎
𝑦
𝑜
𝑓
𝑐𝑜
𝑚
𝑝
𝑎
𝑟𝑎
𝑡𝑜
𝑟
(𝑖
𝑛
𝑛
𝑠) 𝐶𝑃𝐷 𝑜𝑓 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟

𝑤𝑖𝑡ℎ (#𝐴𝑐𝑡𝑖𝑜𝑛𝑠, #𝐵𝑖𝑡𝑠)

(b) Scaling of delay

Fig. 2: Impact of problem complexity and design decisions on
memory requirements and delay

Q, representing the Q-value of all state-action pairs in the
problem, needs to be updated. This updating is based on the
reward— a more short-term benefit—received by the agent
from the environment for each of the pairs. Similar to Q, the
rewards are represented by a matrix R. So, any computation
of the learning process must have fast access to the Q and
R matrices. This determines the memory requirements of the
accelerator for RL. For instance, in the grid-world shown in
Fig. 1, the two matrices, Q and R, contain 100 elements
each—the product of the number of states (25) and the number
of actions from each state (4). So the local memory would need
to accommodate at least 2× s× a matrix entries.

The plots shown in Fig. 2(a) show the rise in the estimated
memory requirements for storing Q and R in local memory of
an accelerator with increasing number of states. The trends are
shown for 4, 6 and 8 possible actions and with two types of
precision—32-bits and 16-bits—used to represent the values
in the matrix. The notation MEM(a,b) represents the memory
requirements where there are a actions and the matrix entries
are each expressed in ‘b’ bits. As expected, the memory
requirement increases linearly with rising number of states.
An essential computation step in the RL method is finding
the maximum of Q-value for all possible actions from any
arbitrary state. The hardware realization of the search for
maxima involves using comparators, whose bit-widths are
determined by the precision used for the Q-matrix values. The
bar-charts, shown in Fig. 2(b), depict the critical path delay of
such comparators. As seen in the figure, the reduction in the
critical path delay with precision scaling is more prominent in
the case of a lower number of actions.

The patterns shown in Fig. 2 provide an insight into some of
the scopes and constraints in the design of an accelerator for
RL. As shown in the plot, the maximum available memory can
limit the problem size (in terms of state-action pairs) that can
be solved by the accelerator. For instance, if the maximum
memory in the hardware is limited to MEM(Platform) as
shown by the horizontal line in Fig. 2(a), then, with a given
number of actions, only problems with states fewer than the
intersection points with the corresponding solid line can be

computed. However, as shown by the dotted lines, representing
the matrices’ memory requirements, reduced precision can
increase this threshold number of states. Further, as shown
in the bar-chart in Fig. 2(a), precision scaling can reduce the
propagation delay of operations in the critical path and result in
improved clock frequency of operation. In addition, processing
at lower precision ideally reduces the power dissipation of the
accelerator. However, it must be noted that the quantization
error introduced by such precision scaling can reduce the
quality of result—in terms of the convergence of Q matrix
values of the state-action pairs. In some cases of precision
scaling, a larger number of trials can be performed to recover
such degradation in results. In such cases, the throughput of the
accelerator for RL should be improved to enable the system’s
response within a fixed time interval.

Most state-of-the-art works do not consider these as-
pects together—available resources on the hardware plat-
form, hardware-level optimizations like precision scaling,
microarchitecture-level optimizations for throughput etc. This
can lead to bottlenecks in the use of RL in embedded systems
that are resource-constrained and/or demand stricter timing
requirements. To this end, we propose a multi-level opti-
mization approach to the design of Field Programmable Gate
Array (FPGA)-based accelerators for RL. While the proposed
methods at each level are orthogonal to each other, they
result in improving the overall performance in the design of
accelerators for Q-Learning. The proposed techniques identify
and exploit multiple opportunities for optimization in this
specific problem – something that has been missing in existing
approaches. The related contributions are listed below.
Contributions:

1) We propose novel architecture-level improvements in the
design of the accelerator for RL. Specifically, we explore op-
portunities of Instruction Level Parallelism (ILP) and generate
a pipelined micro-architecture by exploiting the spatial paral-
lelism offered by FPGAs. Using these proposed improvements,
we report up to 34% improvement in throughput compared to
state-of-the-art designs.

2) At the hardware-level, we propose novel optimizations
customized for the state-update process of the RL algorithm.
Specifically, we implement constant arithmetic operations us-
ing lookup table (LUT)-level optimizations to provide hard-
ware designs with varying performance metrics that can be
used by the accelerator. For example, compared to Vivado con-
stant multiplier IP-based implementation of the state-update
equation, our LUTs-based low-level optimization can achieve
up to 27% and 48% reductions in resource utilization and
energy consumption, respectively. Our proposed designs can
be implemented on any state-of-the-art FPGA having at least
6-input LUTs.

3) We propose a novel algorithm-level approximation
method for overcoming the hardware limitations and memory
bottlenecks to implement RL in resource-constrained embed-
ded systems, which is extensively scalable, offering good
trade-offs in speed-up, power, and resource utilization. The
algorithm along with the proposed architecture can offer a
speed-up of about 1192× when using 275 mW and 153×

when using 29 mW.
The rest of the paper is organized as follows. In Section II,

we provide the relevant background and a brief overview of
related works. The system model used for the evaluation of the
proposed methods is presented in Section III. In Section IV,
the proposed optimization methods at different levels are
explained in detail. In Section V, we discuss the results from
the experimental evaluation of the proposed methods and
conclude the article in Section VI with a discussion on the
scope for related future research.

II. BACKGROUND AND RELATED WORKS

A. Reinforcement Learning

Recent advancements in machine learning have tried to
integrate deep learning into the more traditional RL-based
techniques. However, traditional RL algorithms are a low-
cost alternative to more advanced DeepRL methods. In ad-
dition to having a lower resource requirement overhead, RL
implementations usually result in lower power dissipation.
Further, unlike the decision-making with DeepRL techniques,
that requires an inference across some neural network, the
decision-making with RL usually involves looking-up in a
table of values to determine the best action. This makes
RL an attractive option for applications where the decision-
making process should not be costlier than the application
itself. For example, Sahoo, et al. [4] report using RL for
dynamic adaptation to varying operating environments of an
embedded System-on-Chip. Similarly, Chatterjee, et al. [5]
have shown the usability of RL in light-weight algorithms on
small IoT nodes. In this context, we have limited the scope of
this article to applications that find RL as a suitable algorithm
for decision-making. A comparison of the implementation of
DeepRL and RL for any specific application is beyond the
scope of this paper.

Q-Learning is one of the more widely used RL algorithms
for handling dynamic unknown environments in a model-
free, stochastic way without requiring adaptations within the
agent. It aims at finding an optimal policy for a finite Markov
Decision Process (MDP), which implies that the states and
possible actions for each state are known and has several use-
cases in literature. In [6], the authors use RL to distribute
computation load onto edge devices. Similarly, in [7], the
authors proposed non-linear control strategies in a continuous
action domain to optimise adaptability and response time
of the system. In [8], the authors proposed RL techniques
to manage thermal optimisation for increasing the lifetime
of multicore systems. In healthcare, the demands for quick
and reliable medical diagnosis and the necessity to assisting
medical personnel for better decision-making signal the ex-
pected use of advanced big data analysis and machine learning
techniques [9].

In several decision making scenarios the agent has to
work with limited visibility. For instance, in the scenario
presented in [10] with the RoboCup context, or the navigation
required by space-exploration rover [11], it can be noted
that the position of the robot heavily influences the actions
it can take and therefore, it is not necessary for the robot
to process all decisions at once. With the flexibility of a

Algorithm 1 Q-Learning: S ×A → R
Require: S, A, R, T, α, γ, π

States S = {1, . . . , N};
Actions A = {1, . . . , Z};
Reward function R : S ×A → R;
Transition mapping function T : S ×A → T;
Learning rate α ∈ [0, 1];
Discounting factor γ ∈ [0, 1];
Action choosing strategy π : S ×A → T

1: Initialize Q : S ×A → R arbitrarily
2: Start with arbitrary state s← s0 ∈ S
3: loop
4: while k < maxIterations do
5: Select action a from state s
6: a← π(s)
7: s′ ← T (s, a) {Receive the new state}
8: r ← R(s, a) {Receive the reward}
9:

Q(s,a) = (1−α)×Q(s,a) +α× (R(s,a) +γ×Q(s+1,a)max)
(1)

{Update the Q-value}
10: s← s′ {Update state for next iteration}
11: end while
12: end loop

policy-approximating algorithm like Q-Learning, an agent can
virtually reprogram itself as it sequentially progresses through
an environment with or without a known trend. This opens
up opportunities for automation, control, and decision making
to complex environments that can be learned by an agent
gradually, much like the characteristics of a human, but with
the precision and memory of electronics.

Approximate implementations of the Q-Learning algo-
rithm [12] have been reported to converge, as the focus is
not the exact values, but sufficient distinction to guarantee
convergence. Generic applications of Q-Learning implement a
exploration-exploitation dilemma because of the huge num-
ber of states required to process a complex environment.
For example, the implementation of Q-Learning in Atari by
learning from pixel data uses a total of 1067970 states [11],
[13]. Since available hardware resources are limited when
dealing with such a large number of states, it is imperative
that a co-design approach between software and hardware is
established to efficiently accelerate the RL task. To this end,
we propose Reinforcement Learning Accelerator on FPGA
based Systems (ReLAccS), a multi-level optimization platform
for RL applications that aims to be a configurable hardware
implementation that is driven dynamically with high-level
languages to bridge the gap between the slow, yet flexible
software side and the fast, yet deterministic hardware side.

B. Related Works

Applications that implement RL have to suffice with a finite,
discrete state-action space, and potentially face issues with the
scaling of state-action pairs. The primary cause of this inability
to scale can be attributed to the excessive time of convergence
with larger state-action pairs. For instance, in using RL for

O
n

-ch
ip

 In
terco

n
n

ect Reconfigurable Logic
(Accelerator)

Embedded
Processor

(Algorithm 4)ICAP

DDR

(a) Platform Model

Action generator

PRNG

𝜋(𝑠)

maxQ-Action
Block

Update
Equation

(Algorithm 3)

𝑠𝑘

𝑎𝑘
𝑚𝑎𝑥𝑄

Next
State

maxQ
Block

𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒

𝑄𝑖𝑛𝑖𝑡, 𝑅, 𝛼, 𝛾, ϵ

𝑄𝑓𝑖𝑛𝑎𝑙

Accelerator: Algorithm 1

(b) Implementation of Algorithm 1

Action generator

PRNG

𝜋(𝑠)

maxQ-Action
Block

Global
buffer

Look Ahead Block (LAB)

Next State maxQ Block

Next State maxQ Block

Next State maxQ Block

𝑠𝑘

𝑎𝑘

𝑚𝑎𝑥𝑄,
𝑛𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒

𝑄𝑖𝑛𝑖𝑡, 𝑅, 𝛼, 𝛾, ϵ

𝑄𝑓𝑖𝑛𝑎𝑙

Update
Equation

(Algorithm 3)

Accelerator: Algorithm 2

(c) Implementation of Algorithm 2

Fig. 3: Hardware platform and accelerator model

navigation in robots, Wicaksono [14] indicates the limitation
caused by the substantial training time when using a large
Q-table. Such high convergence times may create real-time
constraint violations in some applications. This provides the
primary motivation for the acceleration of the Q-Learning
algorithm. The low-cost RL accelerators provide an alternative
to more resource-hungry DeepRL techniques and provide the
scope for faster convergence for an increasing number of
state-action pairs. The need for acceleration of RL is also
emphasized by more recent works such as [15], where Camelo,
et al. show considerable speed-ups compared to traditional RL
implementations for both single- and multi-agent systems.

Most software-based accelerations of Q-Learning exploit
the parallelism generated with having independent runs on
the same data to achieve optimality quicker. For instance, the
Gorila architecture proposed in [16] creates parallel actors and
learners on a distributed neural network to reduce the total
wall time required to process a given Q-Learning scenario.
Similarly, in [17], the authors propose an algorithm-agnostic
framework for achieving a speed-up of 8× using their PAAC
architecture. However, accelerating a specific application on a
GPU simply exploits the amount of sparsity associated with
the particular application, as shown by [18]. Moreover, it
is possible for the global rewards to change based on the
actions that an agent takes in an environment, which is a major
roadblock to the parallelization.

A limited number of hardware-based accelerators for Q-
Learning have been proposed which focus on generating a
parallel architecture specifically designed for RL. Da Silva et
al. [19] propose a novel FPGA-based architecture to accel-
erate the Q-Learning task through massive parallelisation of
resources. S. Spanò, et al [12] propose modifications on this
architecture to focus on targets with low-power and limited
resource applications while maintaining high throughput. They
implement approximated multipliers and a tree of binary
comparators as a trade-off in area and speed. It must be noted
that the methods presented in this article are orthogonal to
those proposed in [12] and can be integrated into our proposed
design flow. To the best of our knowledge, the designs in [12],
[19] report the highest throughput metrics for Q-Learning
accelerations implemented in FPGAs.

The hardware architecture proposed in [19] divides the Q-
matrix in multiple lanes. Although this can achieve a very high
throughput, as reported, it must be noted that only one lane

is active during one iteration. Therefore, although their design
has some design attributes of a Single Instruction Multiple
Data (SIMD) architecture, it is limited in capacity by the RL
algorithm itself, which is a rather sequential algorithm. We
consider this observation a huge inspiration for our proposed
design, wherein we focus our efforts on implementing In-
struction Level Parallelism (ILP) and pipelining the design.
Further, [19] implements its rewards as registers, and not as
elements in Block RAMs (BRAMs), which makes the design
rather static in terms of re-programmability, especially in
scenarios where environmental parameters demand dynamic
volatile rewards [20] or the rewards are being constantly
learned [21]. To the best of our knowledge, no architecture
presently claims to be extensively scalable to an abnormally
high number of states, like a typical scenario of playing
Atari [13], primarily due to resource constrains and a lack
of efficient data management directives.

To summarize the related works, all software-based accel-
eration techniques focus on improving the performance by
using generic methods such as improving the caching etc.
Similarly, all the state-of-the-art works that use hardware
optimization, use generic methods such as having parallel
datapaths, reducing the critical path delay by using hardware
approximation etc. However, the inherently sequential nature
of the Q-Learning algorithm poses limitations to the level
of improvements that can be achieved with such generic
methods. To address these limitations, we identify and exploit
the optimization opportunities specific to Q-Learning. The
proposed methods result in improvements that span across
multiple levels and we report considerable performance gains
over the state-of-the-art designs.

III. SYSTEM MODEL

A. Algorithm for basic Q-Learning

The different steps of Q-Learning are listed in Algorithm 1
along with the notation used in the rest of the article. As
mentioned in Section I, the matrix Q stores the value function
of each state-action pair and the matrix R stores the rewards
associated with each state-action pair. A randomly initialized
Q and an arbitrarily chosen state is used to start the learning
process. At each iteration an action is chosen based on the
policy π. Based on the chosen action, the next state is selected
and the corresponding reward is used to update the Q matrix
as shown in Eq. (1). We assume a deterministic environment

Algorithm 2 Q-Learning with Look-Ahead: S ×A → R
Require: S, A, R, T, α, γ, π

1: Initialize Q : S ×A → R arbitrarily
2: Start with arbitrary state s← s0 ∈ S
3: LAB global buffer ← Q(s+1,a)max∀ a for state s
4: loop
5: while k < maxIterations do
6: Select action a from state s
7: a← π(s)
8: s′ ← T (s, a) {Receive the new state}
9: Q(s’,a)max ← LAB global buffer

10: LAB global buffer ← Q(s+1,a)max∀ a for state s′

11: r ← R(s, a) {Receive the reward}
12: Q(s,a) = (1−α)×Q(s,a) +α× (R(s,a) +γ×Q(s+1,a)max)

{Update the Q-value}
13: s← s′ {Update state for next iteration}
14: end while
15: end loop

for our current work. Hence, the next state is a function of the
current state and the chosen action only. The process of action
selection and update of Q is repeated for maxIterations
times.

B. Accelerator

Fig. 3 shows the accelerator model used in this article.
As shown in Fig. 3(a), we assume an FPGA-based System-
on-Chip (SoC) as the hardware platform. It contains an em-
bedded processor along with reconfigurable logic similar to
the Zynq EPP [22]. The proposed accelerator architecture is
implemented on the reconfigurable logic. Fig. 3 also shows
the block diagram of two different accelerator designs that are
implemented on the programmable logic. Fig. 3(b) shows the
block diagram of the basic implementation of Algorithm 1.
Similarly, Fig. 3(c) shows the block diagram of the proposed
architecture (Algorithm 2), and is explained in detail in the
next section. In both cases, the data structures for Q, R,
α, γ and ε (used in the epsilon-greedy policy) are fetched
from the main memory through streaming interfaces with
the on-chip AXI interconnect [23]. Fig. 3 also shows how
the hardware optimization (Algorithm 3) and the algorithm-
level approximation (Algorithm 4) map into the overall system
design.

IV. MULTI-LEVEL ACCELERATOR DESIGN APPROACH FOR
REINFORCEMENT LEARNING

A. Accelerator Architecture

Hardware design demands rationalising trade-offs. In case
of sufficient availability of resources, it is desirable to imple-
ment the maximum possible parallelism. As noted in [19],
the most critical data path for Eq. (1) is finding the max-
imum Q-value. Hence, we implement the Q-Learning with
Epsilon Greedy (QLEG) algorithm [1] and try to maximize
the throughput with special focus on optimising the maxQ
calculation. A pipelined version of the QLEG algorithm is
made by seeking instruction-level parallelism. The function
graph for a single iteration (henceforth called episode) through

Sectioned into Z-1 partitions

xxxxxxx xxx

 Exploit Explore →

(1 − 𝜖) xxx

0 1 2 𝑍 − 3 𝑍 − 2Index:

Fig. 4: Evaluating the ε-greedy algorithm with one Pseudo Random
Number Generator (PRNG) (the range of which is depicted by the
top horizontal bar). ε is assumed to be 0.8 as an example. A total of
Z unique comparators are used.

this pipelined implementation is shown in Fig. 5. Thereby, one
iteration through the loop mentioned in Algorithm 1 takes 10
clock cycles to complete. We divide the functionality of the
accelerator in discrete modules as shown in the block diagram
in Fig. 3(c). The modules are further encapsulated by a control
module that is responsible for handling the number of times
the Q-values should be updated. The control module is also
responsible for streaming the Q and reward matrices between
the system’s main memory and the accelerator’s local memory.
The proposed architecture is described in terms of the design
blocks listed next.
1. Episode Iterator controls the number of iterations
(maxIterations) made by the accelerator core and defines
the data flow between two successive iterations.
2. maxQ-Action Block buffers the current Q-values for the
present state and calculates the action corresponding to the
maximum Q-value. The output is solely used by the action-
generator module to implement the action choosing policy
described by Eq. (2).
3. Action Generator is responsible for generating an action

(ak) according to the action choosing strategy π : S×A → T.
Our proposed design uses just one random number to calcu-
late both choices. A Linear Feedback Shift Register (LFSR)
implemented as a PRNG is used along with comparators to
determine this, as illustrated in Fig. 4. The LFSR is of 63
bits, as it is a small footprint design (2-degree polynomial
tap) and at 200 MHz produces a sequence with a period of
1462+ years [24]. One comparator is used for the choice
between exploitation/exploration, and Z − 1 comparators are
used for extracting the randomly chosen action. Here, Z = |A|
represents the maximum number of possible actions from any
arbitrary state. Thus, the sectioning of the entire range of
the PRNG is done using a total of Z unique comparators.
This means that the range of PRNG is divided first into two
partitions, out of which the second is then divided into Z − 1
partitions addressed using a partition index (ip). Although ip
is obtained readily, it still has to be modified slightly before
being mapped to a legitimate action-index (ia). This can be
best described by an intuitive example.

Suppose that Z = 5, amax = 2, and that the PRNG
generates ip = 2. For a given state s, amax is the action
corresponding to the highest Q-value. This results in a total
of (Z − 1 = 4) partitions. For this scenario, the partitions
should map to actions as shown below:

1 2 93 4 65 87

read

generateAction

mathOp1

mathOp2

maxQ

mathOp3

write

getNextState

10

Fig. 5: Function graph for one episode, where maxQ-block proves
to be the most critical datapath. Arrows represent data dependencies.

{ip} 0 1 2 3
{ia} 0 1 3 4

The skip in the value of ia is because amax should not be
included from this random pick, and hence the mapping for
ip → ia is simply as shown in Eq. (2).

ia =

{
ip if ip < amax

ip + 1 otherwise
(2)

4. Look-Ahead Blocks After choosing the (s, a) pair, the
algorithm needs to generate the nextState, which serves as
a precursor to the maxQ calculation. The calculation of the
nextState can be either from a heuristic or from a lookup
based approach. Following the pipelined model described in
Fig. 5, the lookup approach doesn’t create any changes in the
number of clock cycles required for an episode because of the
following reasons:
1) the maxQ block is a sequential design and waits for a clock
edge to begin the calculation
2) the mathOp1 block is a combinational design and has
enough available latency to be scheduled in the third clock
cycle

Following the same pipeline mentioned in Fig. 5, the maxQ
operation uses the nextState value to calculate the maximum
Q-value based on Eq. (1). This operation also accounts for
the most time consuming section, and as such has been given
some privileges. The execution schedule in Fig. 5 is based on
an implementation where we relax the maxQ-block’s latency
from the limitation of a single clock cycle. In other words,
we force the maxQ-block to not be a purely combinational
structure. Furthermore, we explicitly assume that all steps
except the maxQ (in red) get completed within one clock cycle,
and therefore, determine the clock frequency to satisfy these
constraints. The algorithm makes many references to the Q-
matrix during one iteration, most of which are requested by
the maxQ block, hence the Q-matrix is implemented using a
two-port memory to reduce the latency further.

Since a typical scenario involves multiple episodes, often of
the order of 105 or more, reducing the latency of one episode is
a crucial key to achieving a significant drop in overall latency.
One way of shortening this latency of the entire episode is
to simply schedule the maxQ operation as early as possible.

1 2 93 4 65 87

read

generateAction

mathOp1

mathOp2

LA1

mathOp3

write

getNextState

10

LA2

LA3

maxQSelect

Fig. 6: Function graph for one episode with three Look-Ahead blocks
assuming Z = 3. Solid arrows represent intra-loop data dependen-
cies. Dashed arrows represent inter-loop dependencies. Dependencies
for only one iteration are shown.

To do this, the architecture needs to look ahead and perform
some calculations one iteration in advance, only one of which
will be finally used. A look-ahead architecture is a massive
block of Z parallel Look Ahead Block (LAB)s, with each
LAB being an exact copy of a maxQ operation. As described
in Algorithm 2, the LABs buffer the maxQ operation for all
the next available states, only one of which is finally used.
This leads to a function graph as shown in Fig. 6 and shows
that the pipeline doesn’t need to wait for the getNextState
operation to schedule the calculation of maxQ since all
possible maxQ values are being calculated irrespective of
the action. Algorithm 2 differs from Algorithm 1 only in
the sense of forwarding these maxQ values, creating the
extra steps of receiving maxQ from the LABs and updating
them with corresponding nextState values to schedule further
calculations. This approach increases the initiation interval for
the first episode, but reduces the iteration interval to 5 cycles
for subsequent episodes, generating a speed-up of two times
when compared to the basic architecture shown in Fig. 5. The
overheads of this design include:

1) A completely partitioned global buffer with a size of Z ×
(bi + bf) to solve the inter-loop dependency.
2) A local buffer for Z elements of the Q-matrix to remove
multiple reads in the 6th clock cycle.

Henceforth, we refer to this micro-architecture as Epsilon
Greedy with Look-Ahead (EGLA), which we employ as the
core of ReLAccS.

B. Hardware Optimization

The lookup tables (LUTs) and the associated carry chains
are the main computational units of any FPGA; therefore,
an FPGA-based hardware accelerator should efficiently utilize
these resources. The synthesis tools for FPGAs also primarily
rely on these resources for the realization of different types of
combinational and sequential circuits. In our proposed method-
ology, we have used the 6-input LUTs and the associated carry
chains for a resource-efficient and energy-optimized imple-
mentation of the state-update equation described in Eq. (1).

As described in Section IV-A, we have used the paral-
lelism offered by FPGAs to compute ‘Q(s+1,a)max ’ for the state-
update equation efficiently. The state-update equation uses
the ‘Q(s+1,a)max ’ value to compute the next state using three
instances of the resource-intensive multiplication operation.
The FPGA synthesis tools opt to use either DSP-blocks or
the logic-based soft multipliers IPs for implementing these
multipliers. However, the number of DSP-blocks is limited,
and they have fixed locations on an FPGA. The limited stack
of DSP-blocks may result in complete exhaustion of the DSP-
blocks, and the fixed location of the DSP-blocks can result in
degrading the overall performance of an accelerator [25], [26].
For example, the Q-Learning accelerator proposed in [19] con-
sumes ∼ 94% of the available LUTs on FPGA. Consequently,
it is beneficial to have resource-efficient implementations of
the state-update equation. As shown in Fig. 3, our proposed
implementation of the state-update equation is equally utilized
in both architectures of the hardware accelerator for reinforce-
ment learning.

The total number of multiply operations in a single instance
of the state-update equation can be reduced by analyzing the
design time parameter ‘α’ in Eq. (1). Eq. (4) and Eq. (5)
present two simplified variants of the state-update equation
with only two multiplication operations in each. Depending
upon the value of ‘α’, either of the equations can be used
for computing the next state. Further, as the design-time
parameters ‘α’ and ‘γ’ remain constant for a design, they
can be used to implement Eq. (4) and Eq. (5) using constant
multipliers. One of the inputs to a constant multiplier is a fixed
constant number, and the other input is a variable. Compared
to the generic multipliers, constant multipliers offer significant
reductions in the overall resource utilization, critical path
delay, and energy consumption.

For Q(s,a) = a and R(s,a) + γ ×Q(s+1,a)max = b (3)

Q(s,a) = α(b− a) + a (4)

Q(s,a) = (1− α)(a− b) + b (5)

FPGA synthesis tools, such as Xilinx Vivado, provide
both DSP-based and LUT-based constant multiplier imple-
mentations. However, in this work, we have utilized the 6-
input LUTs and the associated carry chains to implement
constant multipliers with better resources optimization than
the multiplier IP provided by Vivado. Algorithm 3 presents our
proposed technique for efficiently implementing constant mul-
tipliers. Our proposed method efficiently utilizes binary and
ternary adders for computing the product. We configure the 6-
input LUTs to implement these adders using the available fast
carry chains in FPGAs. A ternary adder can add three operands
simultaneously using the resources of a binary adder. Fig. 7
presents a Xilinx FPGA-based ternary adder implementation.
The inputs to the LUTs are the bits of the shifted multiplicand.
As described in Algorithm 3, to multiply an M -bit variable V
with an N -bit constant C, we first identify the total number
of 1′s, referred to as C_1, in the binary representation of C
(line 1). To reduce the total number of shift and add operations

Algorithm 3 Constant Multiplier using Shift Operation
Require: An N-bit positive constant ‘C’ and an M-bit variable ‘V’

1: Identify the total number of 1’s (C_1) and 0’s (C_0) in the binary
representation of C

2: if C_0 < C_1 then
3: Compute X: X = 2N − C
4: Identify the total number of 1’s (X_1) in the binary represen-

tation of X
5: if X_1 <

⌈
C_1
3

⌉
then

6: Compute C× V = 2N × V− X× V
7: else
8: Compute C × V using C_1 times shift left and utilizing

binary and ternary adders
9: end if

10: else
11: Compute C×V using C_1 times shift left and utilizing binary

and ternary adders
12: end if

0

1

0

1

0

1

0

1

AX=0

O5 O6

0
Cout To Next Carry Chain

P1P2P3P4

LUT6

01

LUT6

0

LUT6LUT6

O6O5O6O5O6O5

11111 111

To Next Slice

V j V iV kV lV mV nV oV pV qV s

Fig. 7: Xilinx FPGA-based ternary adder

in the multiplication, we compare C_1 with N − C_1 (line
2). For cases where N − C_1 is smaller than C_1, we try
to find the product C × V by shifting V left N times and
then subtracting X-times shifted version of V from it (lines
3 – 6). For example, the 8-bit representation of constant 254
is ‘0b11111110′. The C_1 and C_0 are 7 and 1, respectively.
In this case, we compute the parameter X = 28 − 254 = 2.
Our proposed implementation initially computes 28×V (shift
variable ‘V’ left by 8) and then subtracts 2×V (shift variable
‘V’ left by 1) from it. However, for all cases where C_1 is
smaller than N −C_1, we compute the product using the left
shift and add operations (line 11). Similarly, for cases where
the number of levels to compute product using ternary adders
is smaller than the number of levels using subtraction (line
5), we compute product using left shift and add operations
(line 8). For example, for constant C = 249 (‘0b11111001′),
parameter ‘X’ is 7(‘0b00000111′) and the number of 1’s
in the binary representation of ‘X’ (X_1 = 3) is not less
than the

⌈
C_1
3

⌉
; therefore, the constant multiplier is instead

implemented using binary shift and add operations. Moreover,
the constant multipliers-based implementation of the state-
update equation can considerably reduce the overall resource
utilization when the constant parameters γ and α (or 1 − α)
have values that are a direct power of 2. For such values of
the constant parameters, the multiplication operations can be
performed by a single shift operation.

C. Algorithm-level Approximation

A major limitation to implementing high-performance ac-

Algorithm 4 ReLAccS: Algorithm pseudo-code
Require: Q and R matrices

1: Generate sets L1, L2, and M {Refer IV-C1}
2: Calculate set V ′ =M − (L1 ∩M)
3: Calculate set V {Refer Eqn 6 in IV-C2}
4: while H 6= N do
5: Prepare kernel data for iteration
6: Run Accelerator according to Algorithm 1
7: Fetch data from accelerator and update global Q-matrix
8: end while

celerators is the limited availability of resources. Different
FPGA devices have varying amounts of LUTs, BRAMs,
embedded DSPs, etc. This makes a design slightly specific to
the device it was initially built upon. As explained in Section I,
in an accelerator for RL, the resource utilization is a strong
function of the product N × Z, which is the number of total
elements in the Q-matrix.

In [19], the authors show that only 132 states and 4 actions
take up about 95% of the embedded multipliers and 94% of
the LUTs when implemented on a Virtex-6 device. Typical
use-cases often have demands for handling much larger Q-
matrices. Complex autonomous robots, for example, need to
make several decisions at once, out of which path planning
is only a small subset. These decision scenarios are often
modelled as MDPs, where each node represents a unique
state and has as many child nodes as the actions available
in that state. Given its inner representation of the world state,
decision-making can simply translate to applying an existing
policy, i.e., a function that maps every possible state to an
action, but it can also involve simulations in order to predict
the results of possible actions in the current situation [10].

Hence, we look at Q-Learning as a graph-problem, with
each node and its child nodes representing a state (sk) and the
next possible (sk+1) states respectively, with k being the kth

iteration in Algorithm 1. If we focus on the Bellman equation
(Eq. (1)), we note that the updated value of Q(sk, ak) is de-
pendent only on values determined by the present (sk, ak) pair
and the next possible (sk+1, ak+1max

) pairs. This means that
for a given iteration, if the values Q(sk, ak), R(sk, ak), and
Q(sk+1, ak+1max

) are available, the current value Q(sk, ak)
can be updated without any data hazards.

ReLAccS achieves the ability to scale itself using the
inductive nature of the decision-making process. According
to the Markov property, future states in a stochastic process
do not depend on the previous states. This indirectly means
that the present state is a sufficient statistic that gives us
the same information for the future states as if we have the
entire sequence of previously traversed states [27]. ReLAccS
partitions the entire graph into smaller graphs with limited
nodes (subQ), prepares relevant data for solving it as an
independent MDP, and combines all partitions globally to
achieve an analogous rendition of the Q-matrix that would
have been achieved by solving the entire graph at once.

Hence, if the configurations of the sub-graph (subQ), the
mapping of the all state-action pairs to their next states
Next(sk, ak) → (sk+1), and a list of invalid states in the
mapping are generated correctly, the application can update the
entire graph in chunks. Henceforth, we abstract the accelerator,

(a) Diversity in next-state mappings (b) Sectioning an arbitrary MDP

Fig. 8: For an MDP with all states having a fixed number of actions:
(a) mappings can be ordered, sparse, or self-referenced. (b) The blue
circles represent states loaded in a kernel. The corresponding blue
dots represent valid actions and red dots indicate invalid actions.

the configurations, the reward-functions, and any other related
data required for one independent run of a sectioned MDP as
a single entity, the kernel.

The fact that the MDP is sectioned is abstracted from the un-
derlying hardware. The sectioning of the MDP can be achieved
within the hardware, but the clock-path-delay increases by a
significant margin every time a new rule or a new mapping is
implemented in hardware. This is where we leverage the multi-
level coordination between the flexible processor subsystem
and the deterministic programmable logic. We describe an
arbitrary MDP in Fig. 8(a). Each larger circle represents a
state s in the Q-matrix (a node in the MDP graph), and the
smaller circles next to each state represent the possible actions
available for the state (s). We can immediately note that the
mappings for (sk, ak) → (sk+1, ak+1) can either be ordered,
sparse, or self-referenced. Examples for these three situations
are listed below:

• Ordered: Sequentially deterministic systems. e.g.: A robot
moving on the perimeter of a circle sectioned in N distinct
positions.
• Sparse: Systems with variable parameters in the environ-
ment. e.g.: Typical navigation, control and automation prob-
lems, etc.
• Self-referencing: Any system with forbidden, or illegal
states. e.g.: A robot trying to move into a boundary wall.

The (sk, ak) → (sk+1) mapping can be obtained through
a lookup table. This lookup table is part of the data that
is explicitly passed onto the kernel along with the custom
subQ and reward matrices. Since each Next(sn, az) element
represents the next state it points to, the total utilization of
this extra data is limited to N × Z × bs, where bs represents
the number of bits allotted to represent a state. For an optimal
implementation, bs = log2N . Following the sectioning of the
MDP, it is possible to have many data hazards. We describe a
simple data hazard in Fig. 9 and discuss the handling of such
data hazards next.

1) Recognising Data Hazards

Let us assume that, at once, only H out of N states are
loaded into the kernel. There can be multiple cases wherein

(s0,a0) (s1,a0) (sN-1,a0)

(s0,a1) (s1,a1)

...

...

...

...

... (sN-2,aZ-2) ...

(s0,aZ-1) (sN-1,aZ-1)

States (N
) →

Actions (Z) → HW Quota Limit

Fig. 9: Fault scenario for an arbitrary MDP. A (sk, ak) pair can be
mapped to a state (sk+1) that has not yet been loaded in the kernel.
A kernel is defined by the hardware quota limit.

a (sk, ak) pair loaded in the kernel maps to a state (sk+1)
which is not yet loaded, as shown by the red arrow in Fig. 9.
To find all such data hazards, three sets are populated:

1) L1 → states to be loaded in kernel
2) L2 → (s, a) pairs to be loaded in kernel
3) M → Next(p) ∀ p ∈ L2

Next, we find the set V ′ of all invalid states, where V ′ =
M − (L1 ∩ M). The set V ′ describes all states that might
experience a data hazard. Fig. 10 shows an example scenario,
where the kernel can be loaded with the data for 5 states. In
this scenario, any state-action pair mapping to the states 5 and
6 will result in data hazards. The figure shows the resulting
values of L1, L2, M and V ′.

2) Removing Data Hazards

After the matrices Q,R,Next are ready, a new matrix V
is formed, which has the dimensions H × Z. Then, for every
state in L1, a valid action av is found. Intuitively, there must
be at least one av for every state in L1, because the selection
of a state is justified only if a corresponding action is chosen.
Then, sequentially, every element v(sn, az) ∈ V is chosen
such that

v(sn, az) =

az if Next(sn, az) ∈ L1

av if Next(sn, az) 6∈ L1 and z = 0

v(sn, az−1) otherwise
(6)

The matrix V generated is passed to the kernel, and the
EGLA micro-architecture employs it within the actionGenera-
tor module. Here, the index z is used to show an arbitrary ac-
tion. However, index v refers to its corresponding valid action.
Eq. (6) thereby describes that if the next-state Next(sn, az)
for a given (s, a) pair is contained in L1, that specific action
(z) will be stored in v(sn, az). If, however, the action az
maps to an action which produces a next-state which is not
contained in L1, the last-known valid action av is substituted
in its place. In the scenario shown in Fig. 10, the state-action
pairs (1, 0) and (1, 1) are mapped to state 3 as that is the first
valid mapping for state 1. Similarly, the state-action pair (4, 2)
is mapped to state 0 as it corresponds to the previous valid
action for that state. These valid action assignments are made
based on Eq. (6).

0 4 3 2

6 5 3 4

0 3 1 3

1 4 3 2

2 0 6 1

0 1 4 6

2 3 4 0

State →

Action →

0

1

2

3

4

5

6

0 1 2 3
L1 = {0,1,2,3,4}

L2 =

{ 0,0 , 0,1 , 0,2 , 0,3 ,

1,0 , 1,1 , 1,2 , 1,3 ,

2,0 , 2,1 , 2,2 , 2,3 ,

3,0 , 3,1 , 3,2 , 3,3 ,
4,0 , 4,1 , 4,2 , 4,3 }

M = {0,1,2,3,4,5,6}

V′ = {5,6}

1,0 → 3
1,1 → 3
4,2 → 0

Approximate mapping of invalid
state-action pairs:

Fig. 10: Sample example for recognizing and removing data hazards
in the kernel.

3) Extracting a Sub-Graph

Generating a configured kernel has to be done by the
embedded processor of the system, and we assume that the
time for this configuration is masked by the time it takes
for the previous kernel to be solved through the accelerator.
At the outset, it looks like one process is scheduled on the
software side, and one on the hardware side, as mentioned
in the pseudo-code for ReLAccS in Algorithm 4. Since the
ReLAccS algorithm is based on iterations of solving sections
of the entire graph, it is imperative to choose the minimal
number of unique kernels (U) that should be loaded. Without
a fixed model of the system, it is difficult, and possibly
computationally intensive to estimate U . Assuming that for
a total of N states, only H of which can fit inside the kernel,
there are NCH possible combinations for selecting states.
Since the mappings are heavily dependent on the application,
it is onerous to generalise concrete heuristics for sectioning
the graph in the most optimal way so as to achieve U kernels.
Instead, we choose K kernels randomly, and make sure that
the kernel loads every state available in the graph at least once
in K kernel iterations. Many scenarios for RL applications
like AI in robotics, navigation, and automation involve highly
sparse MDPs [18], and we leverage this sparsity to justify the
decision of random selection.

For an arbitrary MDP, it is not necessary for all parent nodes
to have the same number of child nodes. Easily, there can be
two states in which there are different number of possible
actions available. However, solving a MDP this way creates
a loss of symmetry and therefore a stress on the hardware to
implement specific heuristics for specific states. To avert this
problem, we consider a trade-off in resources by forcing all
states to have an equal number of actions (Z), resulting in all
parent nodes having an equal number of child nodes. We mark
these extra mappings as illegal states, which translate to few
extra self-referencing mappings that have rewards similar to
that of an illegal state, thereby training the agent to not choose
the corresponding action.

4) Handling Data Hazards (with respect to the kernel)

As compared to EGLA, the hardware architecture is slightly
modified for ReLAccS. All actions are double-checked using
matrix V , mentioned in Section IV-C2. Thus, the actionGener-
ator module creates an output that gets passed through matrix

V , where each generated action is validated for sanity. V is
prepared in such a way that it re-maps illegal actions to legal
ones, always assigning a suitable action for the algorithm to
take (refer Eq. (6)). This means that updates aren’t simply
skipped if illegal actions are encountered and some value is
actually updated in every iteration. Empirical results suggests
that an extra lookup does not create a huge difference in the
latency of the entire iteration and that even though the values
of the final optimised Q-matrix are different, it does not impact
the convergence.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We have used C++ for the high-level implementation of all
designs. For the FPGA-based implementation of the designs,
we have utilized Verilog HDL, VHDL, and Xilinx Vivado
Design Suite 18.3. For the calculation of the dynamic power
of all implementations, Vivado Simulator and Power Analyzer
tools have been utilized. All designs have been implemented
on Xilinx Zynq UltraScale+ MPSoC (xczu3eg-sbva484-1-e
device). We have compared our architectural implementations
with the design of Da Silva et al. [19] and algorithmic
implementations with a parallel implementation based on
communication with cache as described in [28]. Further, the
results of the proposed LUT-level hardware optimizations
have been compared with various Vivado multiplier IP-based
implementations. Each implementation of EGLA or ReLAccS
is highly parameterised in terms of precision, number of
states, actions, kernel-size, etc. The algorithm is converted to
hardware-compatible data types and bit-widths depending on
the configuration. For the testbench, the same algorithm is
performed with double precision for all values and simulated
for 108 iterations. The output from both the fixed-point hard-
ware and the double precision software runs are compared
for element-wise differences, which are stored as a heatmap.
Henceforth, we refer to the output of the double precision
implementation as the golden output. The notation < bi.bf >
is used all throughout to represent the number of bits for
integers (bi) and fractions (bf) in the fixed point format. For
most experiments, we model a robot moving in a 2D grid
similar to that shown in Fig. 1. For the 2D grid problem, we
vary N , the number of states, as a method of varying the
problem complexity. This translates to varying the number of
possible locations that the agent can reach in Fig. 1. For more
generic problems, we change the N×Z value, where Z is the
maximum number of possible actions from any arbitrary state,
to change the complexity of the actual application. Since for
the 2D grid model of a robot, the obstacles and goal states are
clearly defined, we can dynamically generate a reward matrix
and verify whether the Q-matrix is converging correctly or not.
However, since the reward matrix is a heuristic function that
can be implemented in the processor subsystem, the EGLA
architecture can be synthesised for any Q-Learning application
such as that in [4] involving arbitrary number of states and
actions.

(a) bi = 10 and bf = 24 (b) bi = 10 and bf = 18

(c) bi = 10 and bf = 12 (d) bi = 10 and bf = 6

Fig. 11: Difference heatmaps for different fixed-point precision run
for only 1000 iterations. Mean-Squared-Errors – (a) 7.25 (b) 6.84 (c)
9.21 (d) 26.15

B. Results and Discussion

1) Architecture Design

1) Effect of precision scaling: To demonstrate the degradation
of the Q-matrix with decreasing precision, the difference
between the golden output and the hardware output are plotted
as heatmaps in Fig. 11. All of these runs were done with only
103 episodes to highlight the degradation. As the available
float-precision (bf) decreases, the error increases. Still, the
sparsity profile for these matrices are almost similar, showing
the tolerance of the convergence given in-spite of the reducing
precision. Even with the different error metrics, the final Q-
matrix achieves similar distinctions between different actions
for the same state, highlighting tolerance to approximations. If
the iterations are increased, the error reduces and the average
difference between the Q-matrix from hardware and golden
outputs becomes a direct function of the precision of the
fixed-point representation. Hence, for the same precision and
number of iterations, an application with lower number of
states is more probable to reach optimality. Alternatively, for
the same precision and states, an application with higher
number of iterations is more probable to reach optimality.
2) Effect of increasing iterations: For fixed values of states
and precision, increasing the iterations increase the confidence
for convergence of the Q-matrix. The mean-squared error is
plotted against number of iterations in Fig. 12(a), which shows
the error approaching zero for 30, 42, and 56 states, each
implemented with 12 bits of precision. It can be seen that the
average error between the Q-matrix for hardware and golden
outputs gradually decreases and finally becomes a direct
function of the precision of the fixed-point representation.
3) Comparison with existing state of the art: Fig. 12(b) depicts
the throughputs for EGLA and [19] for different number of

0

20

40

0 5,000 10,000 15,000 20,000

0

50

0

20

40
𝑀
𝑒
𝑎
𝑛
𝑆
𝑞
𝑢
𝑎
𝑟𝑒
𝑑
𝑒𝑟
𝑟𝑜
𝑟
(𝑀

𝑆
𝐸
)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

#𝑆𝑡𝑎𝑡𝑒𝑠 = 30

#𝑆𝑡𝑎𝑡𝑒𝑠 = 42

#𝑆𝑡𝑎𝑡𝑒𝑠 = 56

(a) Variation of MSE with increasing number of iterations (along
with trendlines)

2
1

.0
7

2
3

.8
2

2
1

.4
6

1
3

.3
5

2
0

.1
9

1
5

.9

12.378

2.047

0.322 0.041 0.034
0

2

4

6

8

10

12

14

0

5

10

15

20

25

30

2 6 10 14 18

EGLA Da Silva et al. MSE

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑏𝑖𝑡𝑠

𝑇
ℎ
𝑟𝑜
𝑢
𝑔
ℎ
𝑝
𝑢
𝑡
(𝑖
𝑛
𝑀
𝑆
𝑝
𝑠)

𝑀
𝑒𝑎
𝑛
𝑆
𝑞
𝑢
𝑎
𝑟𝑒
𝑑
𝐸
𝑟𝑟
𝑜
𝑟
(𝑀

𝑆
𝐸
)

(b) Variation of MSE with fractional bits (bf)

Fig. 12: (a) Effect of increasing iterations on the Mean Squared Error
(MSE). MSE decreases with increasing iterations. (b) Comparison of
EGLA’s throughput with Da Silva et al [19].

TABLE I
COMPARISON SCENARIOS FOR EGLA VS. DA SILVA ET AL’S DE-
SIGN WITH DIFFERENT FRACTIONAL BITS OF PRECISION (bf) AND

THE NUMBER OF STATES (N)

States (N) (bi.bf) Throughput (MSps)
132 10.6 13.35
30 10.10 20.19
56 10.14 15.9

fractional bits. We challenged EGLA with three of [19]’s fixed-
point implementations for three different values of N as shown
in TABLE I.

Marked in a dashed black line is the plot of mean-squared-
error averaged for all elements against the number of fractional
bits, each implemented for 56 states for 3× 105 iterations. It
can be seen that the error approaches zero as the precision is
increased, and it can be inferred that there are strong relations
between the number of states, the available precision, and
the number of iterations. Using results from Fig. 12(a) and
Fig. 12(b), we conclude that given the same wall-time, the
pipelined EGLA micro-architecture consistently outperforms
[19] as it is able to process much more iterations within the
same time period, and is therefore more likely to converge.

We consider the implementation proposed by Da Silva et al.

[19] to be the state-of-the-art in terms of optimised parallel ar-
chitectures for Q-Learning and compare our architecture with
the same parameters. Our accelerator achieves consistently
better results in terms of maximum throughput measured in
Mega Samples per second (MSps). It is important for us to
highlight that this comparison is unfair in terms of resource
utilization parameters because we implement our design on a
xczu3eg-sbva484-1-e, while Da Silva et al. implement it on
a Virtex-6 xc6vcx240t-1ff1156. Even though EGLA includes
the ε-greedy action choosing strategy as an overhead, empirical
results establish that for the same parameters, EGLA consis-
tently performs better in terms of throughput even with this
overhead while using much less resources.

For comparison, we choose bi = 10 and bf = 14 primarily
because this is the highest precision [19] reports metrics
for. We extend our comparisons for higher precision and
show that EGLA achieves more throughput for bi = 10 and
bf = 18 as compared to [19]’s bi = 10 and bf = 14. This
directly means that EGLA guarantees higher probability of
convergence and smaller error given the same wall time. A
detailed analysis is shown in Table II, where the utilization
of LUTs, registers, DSPs or Embedded Multipliers (EMs) and
throughput are compared. Da Silva et al. (10.14) reaches 94%
of LUT utilization with 142778 LUTs at N ×Z = 528, while
EGLA (10.12) reaches just over 100% LUT utilization2 with
70960 LUTs at N × Z = 2112. At this point, 31.4% of
these LUTs are being implemented as memory because no
more BRAM slices are available. However, we implement a
design successfully for (10.6) with a utilization of 67% LUTs
and a 22.7% increase in throughput. An estimate of the clock
frequency for the throughput values mentioned in TABLE II
can be obtained by Eq. (7). This estimate is based on the
extrapolated data obtained with a simulation for 108 iterations.

fclk(MHz) = 11× Throughput (7)

In another related work, Spanò et al. [12] report maxi-
mum clock frequencies for different implementations of their
proposed methodology. However, they do not report the ap-
plication’s latency and initiation interval (both in terms of
the number of clock cycles) for any number of iterations,
which do not allow sufficient information for comparing the
throughput of the application. Further, as demonstrated by our
current work and that proposed by Da Silva et al. [19], the
resource utilization and the throughput depend on the number
and pattern of bits used to represent the data (Q-Matrix).
However, Spanò et al. have not discussed their representation
of fixed-point numbers while reporting their performance
results. Nevertheless, for completeness of the results, we report
the comparison in TABLE III with the top results quoted
in [12]. For the simplest configuration (N ×Z = 8×4 and 8-
bit precision), we report a maximum clock frequency of 1020
MHz compared to 222 MHz reported in [12]. Similarly, for
the most complex configuration (N × Z = 256 × 16 and
32-bit precision), we achieve a maximum clock frequency

2Since this design marks the upper limit of configurations that can be
implemented, in this case the throughput is estimated based on the critical
path delay reported by Vivado for the hardware synthesis.

TABLE II
COMPARISON OF THE PROPOSED ILP-BASED EGLA ARCHITEC-

TURE WITH THE DESIGN PROPOSED BY DA SILVA, ET AL. [19].

N × Z Design LUTs Registers DSP/EM
Throughput

(in MSps)

48
[19] (10.6) 3387 1029 58 22.27

EGLA (10.6) 1358 1330 2 23.61

120

[19] (10.14) 12379 3670 250 16.57

EGLA (10.14) 3809 2067 3 21.55
EGLA (10.18) 4681 2364 3 17.65

224

[19] (10.14) 23117 6792 490 15.90

EGLA (10.14) 6216 3344 3 21.46
EGLA (10.18) 7814 3872 3 17.64

528

[19] (10.14) 142778 16395 730 12.23

EGLA (10.14) 14324 7117 3 16.77
EGLA (10.18) 16395 8226 3 15.79

960

[19] - - - -

EGLA (10.6) 17529 9168 3 17.02

EGLA (10.12) 27451 17779 3 13.70

2112

[19] - - - -

EGLA (10.6) 47805 29687 3 16.19

EGLA (10.12) 70960 49763 3 13.19

TABLE III
COMPARISON OF EGLA WITH THE DESIGN PROPOSED BY SPANÒ,

ET AL. [12]

N × Z,

Precision
Design LUTs LUTRAM FF

CLK

(MHz)

POWER

(mW)

8× 4,

8−bits

[12] 193 32 154 222 37

EGLA 80 0 195 1020 13

256× 16,

32−bits

[12] 4017 2560 1210 93 611

EGLA 10790 2624 3412 238 477

of 238 MHz compared to 93 MHz reported in [12]. Further,
as shown in the table, our implementations are more power-
efficient than those presented in [12]. The power dissipation
metrics have been obtained with the corresponding maximum
clock frequencies shown in TABLE III. The higher resource
utilization of EGLA is due to the additional resources required
to implement the look-ahead logic.

2) Hardware Design

We have implemented our proposed technique of constant
multipliers-based state-update equation for different values of
α and γ. To show the efficacy of our implementation, we
have compared our technique with the state-update equations
using a generic variable multiplier, Vivado constant multiplier
(Const. Mult), Vivado constant multiplier IP, and a state-
of-the-art constant multiplier referred to as FloPoCo [29].
For the Vivado constant multiplier, the constant values of
the parameters have been fixed in the HDL code of the
multiplier. This design allows the synthesis tool to optimize
the multiplier implementation with respect to the rest of the
hardware. The FloPoCo design is also based on the utilization
of bit shifts and addition/subtraction operation to implement
a constant multiplier. However, as described previously in
subsection IV-B, we use 6-input LUT-level optimizations to

0

0.3

0.6

0.9

N
o

rm
a

li
ze

d
 R

es
u

lt
s

Ours LUTs Const. LUTs Vivado LUTs

Ours PDP Const. PDP Vivado PDP

FloPoCo LUTs

FloPoCo PDP

∝= 𝜸 = 𝟖𝟗𝟔 ∝= 𝜸 = 𝟕𝟎𝟒 ∝= 𝜸 = 𝟓𝟏𝟐

Fig. 13: Implementation results of constant multipliers-based state-
update equation. Values are normalized to the corresponding re-
sults of state-update equation using variable multiplier (LUTs=729,
PDP=0.256 nJ).

TABLE IV
SPEED-UPS OBTAINED USING DIFFERENT KERNEL SIZES WITH THE
RELACCS ARCHITECTURE (NOTATION: RLX(N×Z)) WHEN COM-
PARED TO AN EXTRAPOLATED CACHE-LEVEL IMPLEMENTATION

OF Q-LEARNING.

N × Z EGLA RLX(64) RLX(144) RLX(256) RLX(576)
528 1192 153 319.1 343.3 1192
840 977 32.9 141.7 228.8 241.46

2112 842 12.6 51.3 85.83 241.46
7200 – 8.97 36.22 65.2 160.97

implement our proposed multiplier. Fig. 13 presents the total
number of utilized LUT and power-delay product (PDP) of
different implementations for three different random values
of α and γ. These results have been normalized to the
results obtained by implementing the state-update equation
using a variable multiplier. The precisions of Q(s,a), R(s,a), and
Q(s+1,a)max are kept at 16-bit (10.6 Fixed-point format) for these
experiments. Further, to represent the fractional values of α
and γ in the range of [0, 1], we have used a 1.10 fixed-point
format (1 bit reserved for integer and 10 bits for denoting the
precision). For example, α = γ = 0.875 will be represented
by constant 0.875 × 210 = 896. All four designs (‘Ours’,
‘Const. Mult’, ‘Vivado IP’, and ‘FloPoCo’) offer reductions
in the total utilized LUTs and energy consumption. Further,
for all values of α and γ, our proposed constant multiplier
implementation-based designs provide significant reductions
in the utilized LUTs and PDP for the state-update equation.
For example, compared to the Vivado IP-based implementation
for α = γ = 704, our proposed technique offers ∼ 27%
and ∼ 48% reductions in the total utilized LUTs and PDP,
respectively. Though the results are shown for 16-bit preci-
sion of variables and three different values of α and γ, we
have observed similar reductions in the resources and energy
consumption of the state-update equation for other values of α,
γ, and precision of variables. The results also show a notable
decrease in the LUTs utilization and energy consumption of
the state-update equation for design parameters α and γ having
values that are a direct power of 2.

3) Algorithm Design

To evaluate ReLAccS, we choose different values of N×Z
and try to implement them with EGLA architecture and four
different kernel-size configurations of ReLAccS, namely 64,
144, 256, and 576, each with a precision of (10.12). This
provides us a measure of the resource overheads for supporting
the ReLAccS platform, and also gives an estimate of the
maximum speed-up that can be achieved along with trends of
power and resource usage. We estimate the speed-up compared
with the cache-level implementation of Q-Learning in [28].
There is sufficient reason to believe that it is difficult to
store more than a limited amount of Q-values in the cache.
But, even though [28] reports data only for a maximum of
N ×Z = 528, we extrapolate this behaviour for higher values
of N × Z, assuming that there will be enough resources in
a hypothetical system to store all the Q-values at once. We
challenge ReLAccS against the fastest reported scenario of 4-
processors with an estimated throughput of 17,229 samples per
second, and report various implementations of the ReLAccS
architecture in TABLE IV. The smallest implemented kernel
ReLAccS(64) design shows a 153× speedup while consuming
only 19.24 mW. The speed-up decreases as the kernel size is
made smaller. This is obvious as decreasing the kernel size
increases U , which consequently means more kernels need to
be prepared to process the entire Q-table. The throughput for
one kernel remains similar to the corresponding EGLA design.
To understand the trade-off in resources and power utilization,
ReLAccS architectures and EGLA(840) were compared mu-
tually for N × Z = 840 with a precision of (10.6). Fig. 14
shows the power, LUTs, registers, and BRAMs used in each
design relative to a ReLAccS(64) design. The power metrics
for all designs are reported at 100 MHz. It must be noted that
most software-only implementations do not provide sufficient
information for concrete comparisons. For example, the only
metrics we can compare with are the number of iterations
and the achieved throughput. Most software works do not
mention that. However, for completeness, we compared the
performance of ReLAccS with that presented in [15] by using
the performance reported in [28] as the baseline. Camelo,
et al. [15] report an average speed-up of 8.09× over [28].
Further, they achieve around 8.014× speed-up for a single-
agent system. These speed-up values are much lower than
almost all the values shown in TABLE IV.

For all the listed ReLAccS implementations, errors were
calculated to get an estimate of the convergence. The relative
averaged RMS error was considered to be a good metric here,
as our focus is on achievement of optimality, and not the
exact values themselves. We find this error by calculating
the RMS error per element between the hardware output
(simulated for 104 iterations) and the golden output (simulated
for 108 iterations with double precision), averaged with the
total number of elements present, relative to the mean of the
golden output. For all implementations, this error was found to
be about 5∼6%, which is a very satisfactory result considering
only 6 fractional bits of precision.

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Power LUTs Registers BRAM(18)

RLX(64) RLX(144) RLX(256)
RLX(576) EGLA(840)

𝑅
𝑒𝑙
𝑎
𝑡𝑖
𝑣
𝑒
𝑝
𝑒𝑟
𝑓
𝑜
𝑟𝑚

𝑎
𝑛
𝑐𝑒

1
9
.2
4
𝑚
𝑊

1
6
5
8

9
4
3

3
6

Fig. 14: Resource and Power comparisons for 6-bit implementations
of ReLAccS architectures with different kernel sizes and the EGLA
architecture relative for N × Z = 840 and clock frequency of 100
MHz. All metrics are relative to that of RLX(64). Absolute metrics
for RLX(64) are also shown.

VI. CONCLUSION

The accelerator designs for machine learning applications,
with high computation and memory requirements, cannot be
limited to one level of the computation stack. In this article, we
propose a multi-level approach to designing accelerators for
RL. The approach presented in this article results in consider-
able performance improvements and multiple implementation
choices compared to state-of-the-art design approaches. The
multi-level aspect stems from the proposed contributions at
multiple abstraction levels—algorithm, micro-architecture and
FPGA-hardware.

At the architecture level, the proposed look-ahead operation
results in achieving up to 34% increase in the throughput over
that reported in [19]. Similarly, the LUT-level optimizations
and the resulting custom operations provide up to 27% and
48% reductions in resource utilization and energy consumption
respectively, compared to Vivado’s optimized designs. Finally,
we presented algorithm-level approximation technique to re-
duce the resource utilization by up to 12× and the power
dissipation by up to 10× compared to the high-throughput
design, albeit with marginal degradation in the quality of
results. Such approximations can enable the usage of RL in
resource constrained embedded system.

The methods presented in this article are orthogonal to some
related techniques and can be used to complement them. In
such a scenario, given the constraints of an application, finding
the optimal set of configuration for the application presents an
interesting problem for related future research.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[4] S. S. Sahoo, B. Veeravalli, and A. Kumar, “A hybrid agent-based
design methodology for dynamic cross-layer reliability in heterogeneous
embedded systems,” in 2019 56th ACM/IEEE Design Automation Con-
ference (DAC), pp. 1–6, 2019.

[5] B. Chatterjee, N. Cao, A. Raychowdhury, and S. Sen, “Context-aware
intelligence in resource-constrained iot nodes: Opportunities and chal-
lenges,” IEEE Design Test, vol. 36, no. 2, pp. 7–40, 2019.

[6] J. J. Q. Yu, W. Yu, and J. Gu, “Online Vehicle Rou.ting With Neural
Combinatorial Optimization and Deep Reinforcement Learning,” IEEE
Transactions on Intelligent Transportation Systems, vol. 20, no. 10,
pp. 3806–3817, 2019.

[7] Z. Yan and Y. Xu, “Data-Driven Load Frequency Control for Stochastic
Power Systems: A Deep Reinforcement Learning Method With Con-
tinuous Action Search,” IEEE Transactions on Power Systems, vol. 34,
no. 2, pp. 1653–1656, 2018.

[8] A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar, and
B. Veeravalli, “Reinforcement learning-based inter- and intra-application
thermal optimization for lifetime improvement of multicore systems,”
2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC),
pp. 1–6, 2014.

[9] K. Chui, W. Alhalabi, S. Pang, P. Pablos, R. Liu, and M. Zhao,
“Disease diagnosis in smart healthcare: Innovation, technologies and
applications,” Sustainability, vol. 9, p. 2309, Dec 2017.

[10] L. Hofer, Decision-making algorithms for autonomous robots. Theses,
Université de Bordeaux, Nov. 2017.

[11] P. R. Gankidi, “FPGA Accelerator Architecture for Q-learning and its
Applications in Space Exploration Rovers,” Master’s thesis, 2016.

[12] S. Spanò, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino,
M. Matta, A. Nannarelli, and M. Re, “An efficient hardware imple-
mentation of reinforcement learning: The q-learning algorithm,” IEEE
Access, vol. 7, pp. 186340–186351, 2019.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller, “Playing atari with deep reinforcement
learning,” CoRR, vol. abs/1312.5602, 2013.

[14] H. Wicaksono, “Q learning behavior on autonomous navigation of
physical robot,” in 2011 8th International Conference on Ubiquitous
Robots and Ambient Intelligence (URAI), pp. 50–54, 2011.

[15] M. Camelo, J. Famaey, and S. Latré, “A scalable parallel q-learning algo-
rithm for resource constrained decentralized computing environments,”
in 2016 2nd Workshop on Machine Learning in HPC Environments
(MLHPC), pp. 27–35, 2016.

[16] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. D. Maria,
V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, S. Legg,
V. Mnih, K. Kavukcuoglu, and D. Silver, “Massively parallel methods
for deep reinforcement learning,” CoRR, vol. abs/1507.04296, 2015.

[17] A. Clemente, H. Castejón, and A. Chandra, “Efficient parallel methods
for deep reinforcement learning,” 05 2017.

[18] A. Sapio, S. S. Bhattacharyya, and M. Wolf, “Efficient Solving of
Markov Decision Processes on GPUs Using Parallelized Sparse Ma-
trices,” 2018 Conference on Design and Architectures for Signal and
Image Processing (DASIP), vol. 00, pp. 13–18, 2018.

[19] L. M. D. D. Silva, M. F. Torquato, and M. A. C. Fernandes, “Parallel
Implementation of Reinforcement Learning Q-Learning Technique for
FPGA,” IEEE Access, vol. 7, pp. 2782–2798, 2019.

[20] R. N. Anderson, A. Boulanger, W. B. Powell, and W. Scott, “Adaptive
stochastic control for the smart grid,” Proceedings of the IEEE, vol. 99,
no. 6, pp. 1098–1115, 2011.

[21] C. Daniel, O. Kroemer, M. Viering, J. Metz, and J. Peters, “Active reward
learning with a novel acquisition function,” Autonomous Robots (AuRo),
January 2015.

[22] V. Rajagopalan, V. Boppana, S. Dutta, B. Taylor, and R. Wittig, “Xilinx
Zynq-7000 EPP: An extensible processing platform family,” in 2011
IEEE Hot Chips 23 Symposium (HCS), pp. 1–24, IEEE, 2011.

[23] LogiCORE, IP, “AXI Interconnect (v2.1),” 2017.
[24] Xilinx, “Efficient Shift Registers, LFSR Counters, and Long Pseudo-

Random Sequence Generators,” 1996.
[25] S. Ullah, S. S. Murthy, and A. Kumar, “SMApproxlib: Library of FPGA-

based approximate multipliers,” in Proceedings of the 55th Annual
Design Automation Conference, DAC ’18, (New York, NY, USA),
Association for Computing Machinery, 2018.

[26] S. Ullah, S. Rehman, B. S. Prabakaran, F. Kriebel, M. A. Hanif,
M. Shafique, and A. Kumar, “Area-optimized low-latency approximate
multipliers for FPGA-based hardware accelerators,” in Proceedings of
the 55th Annual Design Automation Conference, DAC ’18, (New York,
NY, USA), Association for Computing Machinery, 2018.

[27] A. A. Mark1ov, Theory of algorithms. Moscow: Academy of Sciences
of the USSR, 1954.

[28] A. M. Printista, M. L. Errecalde, and C. I. Montoya, “A parallel
implementation of q-learning based on communication with cache,” J.
Comput. Sci. Technol., vol. 1, no. 6, p. 11, 2002.

[29] M. Kumm, O. Gustafsson, M. Garrido, and P. Zipf, “Optimal single
constant multiplication using ternary adders,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 65, no. 7, pp. 928–932,
2018.

Akhil Raj Baranwal received the bachelor’s (B.E.)
degree from the Birla Institute of Technology and
Science Pilani, Hyderabad, India, in 2020.

He joined the Chair for Processor Design at TU
Dresden, Dresden, Germany as a Guest Researcher
in January 2020, wherein he worked on exploit-
ing FPGAs for deep reinforcement-learning based
systems. His interests include Systems for ML and
Accelerated Intelligence & Security.

Salim Ullah is a Ph.D. student at the Chair for
Processor Design, Technische Universität Dresden.
He has completed his BSc and MSc in Computer
Systems Engineering from the University of Engi-
neering and Technology Peshawar, Pakistan. His cur-
rent research interests include the Design of Approx-
imate Arithmetic Units, Approximate Caches, and
Hardware Accelerators for Deep Neural Networks.

Siva Satyendra Sahoo is currently working as a
Postdoctoral Researcher with the Chair for Processor
Design at TU Dresden. He received his doctoral de-
gree (Ph.D., 2015-2019) in the field of reliability in
heterogeneous embedded systems from the National
University of Singapore, Singapore. He completed
his masters (M.Tech, 2010-2012) from the Indian
Institute of Science, Bangalore in the specialization
Electronics Design Technology. He has also worked
with Intel India, Bangalore in the domain of Physical
Design. His research interests include Embedded

Systems, Machine Learning, Approximate Computing, Reconfigurable Com-
puting, Reliability-aware Computing Systems, and System-level Design.

Akash Kumar (SM’13) received the joint Ph.D.
degree in electrical engineering and embedded sys-
tems from the Eindhoven University of Technology,
Eindhoven, The Netherlands, and the National Uni-
versity of Singapore (NUS), Singapore, in 2009.
From 2009 to 2015, he was with NUS. He is
currently a Professor with Technische Universität
Dresden, Dresden, Germany, where he is directing
the Chair for Processor Design. His current research
interests include the Design, Analysis, and Resource
Management of Low-Power and Fault-Tolerant Em-

bedded Multiprocessor Systems.

