
Received 10 August 2020; revised 13 November 2020; accepted 30 November 2020. Date of current version 26 January 2021.

Digital Object Identifier 10.1109/OJCAS.2020.3042743

RECON: Resource-Efficient CORDIC-Based
Neuron Architecture

GOPAL RAUT 1 (Graduate Student Member, IEEE), SHUBHAM RAI 2 (Graduate Student Member, IEEE),
SANTOSH KUMAR VISHVAKARMA 1 (Member, IEEE), AND AKASH KUMAR 2 (Senior Member, IEEE)

1Department of Electrical Engneering, Indian Institute of Technology Indore, Indore 453 552, India

2Chair for Processor Design, Center for Advancing Electronics Dresden, Technische Universität Dresden, 01169 Dresden, Germany

This article was recommended by Associate Editor Y. Li.

CORRESPONDING AUTHOR: S. K. VISHVAKARMA (e-mail: skvishvakarma@iiti.ac.in)

This work was supported by the University Grant Commission (UGC), Government of India and the HiPEAC
Collaboration Grant, European FP7 ICT Cooperation Program.

ABSTRACT Contemporary hardware implementations of artificial neural networks face the burden of
excess area requirement due to resource-intensive elements such as multiplier and non-linear activation
functions. The present work addresses this challenge by proposing a resource-efficient Co-ordinate Rotation
Digital Computer (CORDIC)-based neuron architecture (RECON) which can be configured to compute
both multiply-accumulate (MAC) and non-linear activation function (AF) operations. The CORDIC-based
architecture uses linear and trigonometric relationships to realize MAC and AF operations respectively.
The proposed design is synthesized and verified at 45nm technology using Cadence Virtuoso for all
physical parameters. Implementation of the signed fixed-point 8-bit MAC using our design, shows 60%
less area, latency, and power product (ALP) and shows improvement by 38% in area, 27% in power
dissipation, and 15% in latency with respect to the state-of-the-art MAC design. Further, Monte-Carlo
simulations for process-variations and device-mismatch are performed for both the proposed model and
the state-of-the-art to evaluate expectations of functions of randomness in dynamic power variation. The
dynamic power variation for our design shows that worst-case mean is 189.73μW which is 63% of the
state-of-the-art.

INDEX TERMS AF, CORDIC, configurable architecture, MAC, neural network.

I. INTRODUCTION

AN ARTIFICIAL neural network (ANN) has been a
game-changer in computing paradigms within the last

decade. The main advantage of an ANN over other prediction
techniques is in its capability to learn hidden relationships
in data with unequal variability [1]. Efficient VLSI archi-
tectures based on a fully connected neural network (FCNN)
have been proposed in the literature, targeting diverse appli-
cations [2]–[4]. However, FCNNs are compute-intensive and
often require high computational power [5], [6].
A typical neural network (NN) is a graph network con-

sisting of several layers, with each layer having multiple
nodes called neurons. In an NN, each neuron performs two
basic mathematical operations: sum-weighted input feature
usingMultiply-Accumulate (MAC), and non-linear Activation

Function (AF) over calculated sum as shown in Fig. 1.
The performance and accuracy of a neural network pri-
marily depend upon the bit precision of computation [3].
Specifically, in the case of the hardware implementation of
neural networks, higher precision gives higher accuracy but
often comes with high area and power overheads.
ANNs can be designed and implemented on different

platforms like CPU, GPU, FPGA, or ASIC. The drawback
of a general-purpose platform such as a CPU is the low
utilization of their resources that reflects in high power
consumption and low performance. Moreover, it fails to
exploit the underlying parallelism of a neural network. GPUs
exploit the underlying parallelism but often leads to high
power consumption. On the other end of the spectrum,
ASICs have specialized hardware structures for MAC and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

170 VOLUME 2, 2021

HTTPS://ORCID.ORG/0000-0002-1046-9457
HTTPS://ORCID.ORG/0000-0002-6522-5628
HTTPS://ORCID.ORG/0000-0003-4223-0077
HTTPS://ORCID.ORG/0000-0001-7125-1737

FIGURE 1. Fully connected artificial neural network architecture with neuron
showing MAC and activation function computation.

AF operation, and thus they achieve high resource utilization
and lower power consumption [7]. However, ASIC-based
hardware accelerators are constrained by their inability to
support different types of neural networks due to their fixed
design architecture [8]. This trade-off gets even more com-
plicated when configurable architectures are required. The
FPGAs offer configurable hardware designs but need more
chip areas with higher power consumption as compared to
ASICs [5], [9], [10].
A flexible design architecture that scales well with the size

of the neural network without compromising on accuracy,
provides a nice balance between area and functionality. An
area and power-efficient configurable architecture are desir-
able at all technology nodes [11]. Keeping this in mind,
we propose a Resource Efficient Coordinate Rotation Digital
Computer (CORDIC)-based neuron architecture (RECON)
that provides compelling application opportunities and
enables efficient yet configurable computations required in
a neural networks.
The CORDIC algorithm used in RECON employs

an iterative convergence approach and uses minimal
resources [12]. It is a desirable choice where the cost-to-
performance ratio is critical [13]. The CORDIC architecture
uses only shift-and-add operations [14] and can perform
several computing tasks such as linear, trigonometric, hyper-
bolic, and exponential functions. Hence, CORDIC-based
architecture can be tuned to calculate many transcenden-
tal algebraic functions such as multiplication, division,
hyperbolic tangent, and sigmoid functions [14].

A. MOTIVATION
In the case of hardware implementation of an ANN, increas-
ing computational complexity has an unfavorable impact on
area and performance. Moreover, an ASIC design is not
adaptable, and any configurability such as flexibility in bit
precision, or configurability in the type of activation function

FIGURE 2. The neuron architecture having multiply-accumulate unit with parallel
multiplier for jth input and n neurons in the layer followed by multiple activation
functions (path-A and path-B).

such as sigmoid, hyperbolic tangent (tanh), comes with
additional overhead. Computation with higher bit precision
(32-bit or 64 bit) is also expensive in terms of an area
and power [15]. Thus, a reduction in hardware complexity
(i.e., bit precision) and faster response without compromising
accuracy is highly desirable [16].
The conventional ASIC-based configurable architecture of

neurons with multiply-accumulate unit and multiple activa-
tion functions proposed in [17]–[19] is shown in Fig. 2.
Each MAC unit consists of several multipliers followed by
an adder tree. The output of the MAC unit is then fed to the
multiplexer which selectively feeds to a particular activation
function depending upon an application. The architecture
shown in Fig. 2 has some major drawbacks like area over-
head due to array of multipliers and use of separate hardware
path (path-A and path-B) for individual activation function.
It also leads to increased data propagation delay (due to the
MUX) and power dissipation (static power dissipation) due
to the unused hardware because only one activation function
is activated at a particular time.
To overcome the above limitations, we propose RECON

which uses CORDIC algorithm. It uses a fixed-point
signed arithmetic computation. The proposed logic has two
benefits– Firstly, it is scalable in terms of area and power
as a single block can compute both MAC and activation
function. Secondly, it allows configurable activation func-
tion (sigmoid/tanh) and hence has reduced critical path delay
and lesser power dissipation. The proposed design also max-
imizes hardware reuse as unlike conventional ASIC-based
designs which uses MUX which leaves out hardware blocks
unused.

B. CONTRIBUTIONS
In this work, we investigate design strategies and opti-
mizations for RECON which can realize both MAC and
activation function computation. The major contributions are
summarized in the following points:

• We propose a CORDIC-based design of an
unsigned/signed computational unit which can
compute both MAC and non-linear activation function.

VOLUME 2, 2021 171

RAUT et al.: RECON

• We demonstrate how CORDIC is configured within
RECON to operate in linear or hyperbolic rotation
mode to solve arithmetic (for MAC) and trigonometric
operations (for AF) respectively.

• Optimization of the proposed CORDIC-based architec-
ture in terms of area, power, and delay. We further
employ power-gating approach and evaluate it with
45nm technology node to demonstrate power-savings.
We analyze and discuss the impact of technology scal-
ing on circuit’s physical parameters like area, power
and delay.

Experimental evaluations show that RECON as a MAC
unit, has a lower area and power footprint as compared to the
contemporary state-of-the-art designs proposed in [20]–[23].
Moreover, our proposed design architecture can support
both signed and unsigned number representations. Similarly,
in an activation function configuration, RECON returns
the best area and power numbers as compared to other
designs [24], [25].

C. ORGANIZATION
The rest of this article is organized as follows. Section II
details about the related work and introduces preliminaries
required for this work. Section III introduces the CORDIC
architecture and various rotational modes required for math-
ematical operations. The proposed design and functioning of
the configurable CORDIC architecture for MAC and activa-
tion function are given in detail in Section IV. Section V
gives the experimental setup followed by simulation results
and discussion in Section VI. The concluding remarks are
given in Section VII.

II. BACKGROUND AND RELATED WORKS
In this section, we discuss related works which targeted
ASIC implementation for ANNs.

A. RELATED WORK FOR MAC UNIT
The basic multiply-accumulate (MAC) unit consists of
multiplier, adder, and accumulator blocks. The multiply-
accumulate computational unit is shown in Fig. 2. The input
and output arithmetic relation in the preceding layer of a
neural network is shown below:

alj = f
(∑

ωl
jNa

l−1
N + blj

)
(1)

where f is the activation function (sigmoid/tanh) of compu-
tational unit k, corresponding to overall neurons in (l− 1)th

layer. To formulate this equation in matrix form, we assume
a weight matrix ωl corresponding to layer l. Elements of
weight matrix ωl are weights to the inputs of neurons from
lth layer with jth row and Nth column. The term, blj is the
bias here.
Most of the earlier work proposed a dedicated ASIC

design for the MAC unit. In [20], [26] authors designed
a MAC unit using a Vedic-multiplier and register-based
accumulator. Such kind of architecture is effective for low

precision. However, it is not scalable as increasing bit-
precision for higher accuracy, leads to a substantial increase
in the critical path and the propagation delay. In order to
carry out inference for a deep neural network, the authors
in [22], [27], [28] resort to a shift-and-add-based multipli-
cation instead of bulky multipliers for MAC computation.
Though the architecture was area and power-efficient, it suf-
fered due to low throughput. In [22], the authors proposed
calculating one multiplication using shift and addition oper-
ation. The proposed approach requires n-shift left and n− 1
addition for n-bit precision calculation. However, the design
is limited for unsigned number calculation as it uses left
shift operation.
Configurable n-bit (where n can be any value between 1

and 16) precision MAC unit was proposed using a digital
in-memory computing concept [29]. The architecture used
an XNOR-based bit-wise multiplier, a full-adder, and an
SRAM cell for computation. The circuit design was efficient
in terms of area and power but throughput was very low as it
needs n-clocks for n-bit precision. Hence, it was not efficient
for high-precision architecture. The Wallace Tree multiplier
based MAC design was analyzed in terms of area, delay,
and power in [21]. The proposed architecture was designed
using only AND and OR basic gates. However, it leads to
an increase in the critical path and high area utilization. The
double MAC design proposed in [17], [30], implements two
multiplication in a single clock cycle but suffers due to high
resource utilization.

B. RELATED WORK FOR ACTIVATION FUNCTION
The hyperbolic tangent (tanh) and sigmoid are generally the
most used non-linear activation functions in hardware imple-
mentations. Activation functions like sigmoid or tanh provide
a smooth transition between excitation and inhibition, which
improves the neural response [31], [32].
Various ASIC implementations of non-linear activation

functions proposed in [18], [33]–[35], employ a combina-
tional logic-based design approach consisting of memory
elements, MUX/DeMUX-trees and logic gates. All these
combinational logic-based design uses quantization states
to realize activation functions. The quantization states for a
particular bit precision are stored in memory elements and
then selected using MUX tree. For example, in case of 8-
bit precision, the number of quantization states is 28 = 256
which are stored in memory elements. These designs ben-
efit with high throughput but are not very practical for
higher bit precisions as the area increases exponentially. The
authors in [33] extended the combinational logic design-
based approach to realize configurable AF. The configurable
AF is implemented using additional hardware resources such
as multiplier and sign converters to realize both sigmoid and
tanh activation functions.

Instead of using memory elements, authors in [36] used
power series to compute non-linear activation functions.
While the design was able to cope up with area over-
heads with bit precisions, it suffered due to large delay

172 VOLUME 2, 2021

that led to low performance. One of the first works to
investigate CORDIC architecture for activation function
implementation was [14]. The CORDIC-based implementa-
tion provides resources-efficient and configurable activation
function computation. Hence, configurable activation func-
tions are realized using CORDIC design in [15], [24], [37].
The various activation function area realized using CORDIC
are given by the following equations:

f1(z) = sigmoid(z) = 1

1 + e−z
= 1 + tanh(z/2)

2
(2a)

f2(z) = tanh(z) = ez − e−z

ez + e−z
(2b)

= 1 − 2 sigmoid(−2z) = 2 sigmoid(2z) − 1 (2c)

The authors in [25] proposed direct computation of a sin-
gle sigmoid activation function with CORDIC architecture.
For negative values, they used 2′s complement arithmetic
computation which requires an extra computation step that
leads to area and performance overhead. Similarly, the
authors used an additional multiplication step to the under-
lying architecture for calculating tanh function [24]. The
scaling of inputs by two implies a double rotation technique
in polar coordinates. However, it requires an extra multiplier
and a subtractor for tanh calculations. It scales the sigmoid
input by two for tanh activation function realization using
equations (2a) and (2b). These extra steps increase the delay
and area of the overall design.
Another approach using a near-threshold CORDIC design

technique for low-power applications was proposed in [38].
The authors designed an internal sub-block logarithmic
shifter and adder of the CORDIC core using dynamic logic.
However, this work was not targeted towards a semi-custom
ASICs in general.
To address these limitations for both MAC and activa-

tion function, the proposed design, RECON uses a single
CORDIC architecture with a power gating technique for the
realization of an individual neuron.

III. CORDIC ALGORITHM
The COordinate Rotation DIgital Computer (CORDIC) algo-
rithm realizes various mathematical functions by rotating a
vector coodinates. The underlying principle allows solving
the trigonometric relationships involved in plane coordinate
rotation and conversion from rectangular to polar coordi-
nates [39]. The CORDIC architecture is configured to operate
in three rotation modes – circular, linear, or hyperbolic
rotation. In this connection, a unified algorithm for lin-
ear and hyperbolic CORDIC is an extension of the basic
CORDIC algorithm for a circular trajectory as explained
in [40], [41]. It is a convergence method for evaluating
linear, hyperbolic, (and other) functions using simple logic
blocks—Multiplexer, shifters, adders, memory-based (ROM)
pre-calculated constants. The propagation delay of a con-
ventional CORDIC is the sum of the delay of a multiplexer,
adder/subtractor, barrel-shifter, and feedback resistor which
involves one CORDIC unit for each micro-rotation. The

TABLE 1. Used adder and subtractor functional similarity in CORDIC design
architecture.

CORDIC uses a pseudo rotation calculation which is a scaled
version of real rotation. The real circular rotation co-ordinate
calculation equations are

X(i+1) = Xi· cos αi − Yi· sinαi
Y(i+1) = Yi· cos αi + Xi· sinαi
Z(i+1) = Zi − αi (3)

Here, (Xi, Yi) is a set of coordinate components representing
an ith state. In terms of polar coordinates, an angle α is used
where the new coordinates (Xi+1, Yi+1) can be easily reached.
The above equations describe a real rotation of the plane
vector vi to vi+1 at each iteration. In these equations, sin αi
and cos αi are replaced with sinhαi and coshαi respectively
for hyperbolic circular rotation. The CORDIC algorithm uses
pseudo rotation for function calculation. Taking cos αi (or
coshαi in case of hyperbolic rotation mode) (i.e., the Ki)
term as common in Eq. (3) and scaling the equations in
Eq. (3) by Ki (scaling factor = 1/Ki), CORDIC equations
for all mode of trajectories are then formulated as:

X(i+1) = Xi − Yi· tanαi
Y(i+1) = Yi + Xi· tanαi
Z(i+1) = Zi − αi (4)

where αi = 2−i or tan−1(2−i) or tanh−1(2−i) depending
whether CORDIC operates in linear, circular or hyperbolic
mode respectively. αi is the rotation angle in radians for
the each iteration. The scaling factor 1/Ki is unique for an
individual mode of operation.
In this connection, adder/subtractor block is designed for

output calculation using the equations shown in Table 1.
The Eq. (4) then converges to the following equations:

Xi+1 = Xi − m· di·Yi· 2−i (5a)

Yi+1 = Yi + di·Xi· 2−i (5b)

Zi+1 = Zi − di·Ei (5c)

Here mode m ∈ {1, 0,−1} indicates a circular, linear, and
hyperbolic coordinate system, respectively. Ei is the memory
constant at each ith iteration which is equal to 2−i, tan−1(2−i)
and tanh−1(2−i) for linear, circular and hyperbolic rotation
mode respectively.
In general, the CORDIC algorithm needs n iterations for n

significant digits of the fractional part. For higher precision,
higher rate of shifting is required which demands more clock
cycles for maintaining the computation accuracy. The opti-
mized CORDIC architecture for all modes of operation is
shown in Fig. 3. Fig. 3 shows three separate flows for calcu-
lation of Xn, Yn and Zn. Shift registers are used to right-shift

VOLUME 2, 2021 173

RAUT et al.: RECON

FIGURE 3. Signed 8-bit precision architecture for the basic CORDIC-based design.

Xn and Yn. The sign bit of Zi determines the direction signal
di. The functionality of the add/sub-block used in CORDIC
architecture depends on the di direction. The direction signal
is important as it helps to converge the computation itera-
tively. The di represents the rotation direction for ith iteration
such that the output at Z converges to 0.

IV. RECON ARCHITECTURE
Design of neural network accelerators requires calculations
that involve multiplication, accumulation and trigonomet-
ric function such as tanh, sigmoid etc. The proposed
CORDIC-based design enables such computation by using
pre-computed constants with shift-and-add operation for fast
computation and minimum resources utilization. As com-
pared to a conventional architecture which has dedicated
blocks for MAC and activation function calculation, RECON
focuses on re-utilization of logic architecture (via iteration)
for both MAC as well as activation function calculation.
The architecture uses linear and hyperbolic rotation mode
for multiply-accumulation and non-linear activation function
calculation respectively. RECON can further support both
signed and unsigned computations. The optimized CORDIC
architecture with power gating technique is shown in Fig. 4.
The proposed architecture and its operation are described in
the following subsections.

A. MULTIPLY-ACCUMULATE COMPUTATION USING
RECON
The multiply-accumulation computation technique used in
this work depends on the shift-and-add multiplication
approach. It has two principal features. Firstly, arithmetic
right-shift is used instead of the left shift operation. This
technique allows RECON to support both signed and
unsigned numbers. Secondly, for mathematical computations
(such as addition and multiplication) for an n-bit precision,
the iterative convergence using the CORDIC algorithm
returns the same accuracy as one gets using conventional
combinational logic.

FIGURE 4. The efficient recursive sign 8-bit precision RECON architecture
configured by select and ctr line for MAC and AF computation.

In the present work, we focus on fixed-point number
representation for multiply-accumulate computation, as the
floating-point representation (IEEE-754 notation) in MAC
has a higher complexity and power consumption [16].
Moreover, the choice of bit-precision in case of weight/bias
constants is one of the important considerations as it directly
impacts the area and power of the hardware implementa-
tion. In order to reach an acceptable precision that gives a
good trade-off between area and accuracy, we have trained
the neural network (as shown in Appendix A) for different
precision. We got the best accuracy-area trade-off for 8-bit
precision among the possible combinations.
We have used a 9-bit format that reserve 1 bit for the sign,

3 bits for the integer part, and 5 bits for the fractional part.
Fixed 〈8, 5〉 represents an 8-bit fixed-point number of which
five rightmost bits are fractional. The 8-bit signed fixed-point
representation with binary point is shown in Fig. 5 (a). The
most significant bits (MSB) [7:5] are assigned for the integer
part and hence the maximum multiplication output range of
−7.968 to +7.968 is achieved using this representation.
The MAC operation is realized using RECON as shown in

Fig. 4. In linear mode, the mode variable, m is considered
as 0 and Ei is considered as 2−i. The equation (5) then
translates the general output as shown below

Xi+1 = Xi (6a)

Yi+1 = Yi + di·Xi· 2−i (6b)

Zi+1 = Zi − di· 2−i (6c)

Here, Yi+1 computes the multiply-accumulate operation
when Z0 → 0. The computation is valid as long as the binary
point is allowed to float. We have considered fixed 〈8, 5〉
representation hence binary point is floated for 5 iterations.
This calculation assumes that both Xi (input) and Zi (weight)
are fractions within the range of {−1,+1}. After 5 iterations,
Eq. (6) translates as follows:

xn = x0 & zn ∼= 0 whereas,

yn = y0 + x0 ∗ z0 (7)

174 VOLUME 2, 2021

FIGURE 5. Data representation with binary point and arithmetic calculation.

where x0, y0 z0 represent the input, bias value and corre-
sponding weight respectively. This is also shown in Fig. 4.
This implementation is similar to the standard shift and add
multiplication.
From Eq. (7), the CORDIC algorithm for multiplication

x0 × z0 is derived using a series representation for weights
shown below:

xj = xjN ∗ ωN = xjN ∗
j∑

i=1

ai ∗ 2−i

=
j∑

i=1

xjN ∗ ai ∗ 2−i =
j∑

i=1

ai ∗ xjN ∗ 2−i (8)

The equation states that xj is composed of a shifted version
of input x0 with respect to weight z0. This implementation
is based on the standard shift and add multiplication. The
unknown coefficient ai may be found by driving ω to zero
one bit at a time. If the ith bit of input ωN is non-zero, xi
is first right-shifted by i bits and added to the current value
of yj. When ω has been driven to zero all bits have been
examined and xj contains the signed product of input vector
and weight.
The calculation as shown in Eq. (8) is carried out using

RECON in linear mode. The sign bit of Z is used to calculate
the value of di. The computation has to perform till Z0 → 0
for exact calculation that demands high bit precision com-
putation for approaching zero [42]. The inputs and output
of each iteration of a MAC operation is shown in Table 2.
Calculation for one of the iteration is shown in Fig. 5 (b). A
single MAC operation, thus takes 5 iterations to compute.1

The output at Yi+1[8 : 0] is the MAC output after 5 itera-
tions which is then used for activation function calculation.
The exact calculation using Eq. (7), returns a value of Yn as

1. Since the binary point is allowed to float for five iteration of right
shift, we stop calculating for the value for Y after 5 iterations.

TABLE 2. Iteration-level calculation shown for MAC computation using CORDIC in
linear mode for fixed 〈8, 5〉 representation.

0.81054 as shown in Table 2. Since we are using quantiza-
tion for 8 bits precision, the value returned after 5 iterations
is 0.78125. We can see that the value returned is just 3%
less than the exact(64-bit floating-point calculation) results.
In order to have an additional saving in static power

dissipation, the add/sub and the shift register blocks are
power-gated as they are not required for the MAC calculation
(shown in Fig. 4).

B. ACTIVATION FUNCTION COMPUTATION USING
RECON
Section II-B describe the general specific equation (Eq. (2))
based on mode selection which can calculate many func-
tions. The generalized unified CORDIC rotation matrix for
all modes of operation including the hyperbolic trajectory of
operation as an extension of Eq. (5) is given as:

[
X(i+1)

Y(i+1)

]
= Ki

[
1 −m · di · 2−i

di · 2−i 1

][
X(i)

Y(i)

]

As this section focuses on the hyperbolic rotation mode
CORDIC architecture, the CORDIC coordinate equations for
hyperbolic calculation are given as:

Xn = Ki· (X coshZ + Y sinhZ) (9a)

Yn = Ki· (Y coshZ + X sinhZ) (9b)

Zn = Input at Z0 −→ 0 (9c)

The generated MAC output after 5 iterations at Yout is
considered as the input for activation function at Zin through
feedback and it is controlled by ctr pin shown in Fig. 4. In
order to evaluate the sinh(Z) and cosh(Z) shown in Eq. (9),
we choose m = −1 and Ki = 0.8281 as the scaling factors
in pseudo rotation which is compensated by applying (i)
1/Ki = 1.2075 at X0[8 : 0], (ii) Y0[8 : 0] = 0 and (iii)
MAC output as input at Z0[8 : 0]. Most significant bits
(MSBs), Y[8] and Z[8] are used for generating ‘di’ signal.
The direction, di is chosen in the range ∈ {−1, 1} based
on the sign of the previous output, i.e., current input in the
each iteration. The signal ‘di’ is fed to the adder/subtractor
block which decides whether addition or subtraction has to
be done. The hyperbolic calculation as shown in Eq. (9),
hence, transforms as shown below:

Xi+1 = Xi + di·Yi· 2−i (10a)

Yi+1 = Yi + di·Xi· 2−i (10b)

VOLUME 2, 2021 175

RAUT et al.: RECON

TABLE 3. Iteration-level calculation shown for activation function using CORDIC in
hyperbolic mode.

Zi+1 = Zi − di· tanh−i(2−i) (10c)

The CORDIC module is used in hyperbolic rotation mode
for realizing sinh and cosh functions using Eq. (10). We take
an example calculation for sinh(30) and cosh(30) as shown
in Table 3. The final output of the MAC operation shown in
Table 2, is taken as input for the activation function calcu-
lation. The final desired outputs for hyperbolic calculations
(sinh(Z) and cosh(Z)) are calculated in another 5 clock cycles
(as shown grayed out in Table 3). After 5 iterations, Y is
again reset at the 6th clock cycle for next evaluation. This
gives Xn and Yn as cosh and sinh functions respectively of
the previous evaluation. The sinh and cosh functions are fur-
ther used to calculate tanh or sigmoid function as activation
function calculation. Zn gives the output of activation func-
tion applied to the MAC output of the succeeding neuron
which is the final resultant.
The generated trigonometric hyperbolic functions are used

for producing exponential function as required from Eq. (2)
are shown in Eq. (11a). The 8-bit CORDIC output is applied
to the adder for producing exponential output as shown in
Fig. 6. The realization of the tanh function in the proposed
architecture can be represented in terms of sigmoid function
as shown in the below equations.

ez = sinh(z) + cosh(z) (11a)

f1(z) = tanh(z) = sinh(z)

cosh(z)
= ez − e−z

ez + e−z
(11b)

f2(z) = sigmoid(z) = 1

1 + e−z
= ez

1 + ez
(11c)

The proposed work further explores the relationship
between tanh and sigmoid functions using Eq. (11b). The
configuration between sigmoid or tanh activation function is
based on the select_af line. The tanh function is realized
using the Eq. (11b). When select_af = 1, the CORDIC output
is directly transferred to the divider through the MUX to gen-
erate tanh function. The subtraction and the shift operation
are the two basic operations that are used within the divider
circuit [43] for calculating tanh. Additionally, in the proposed
architecture, the execution of tanh function does not require
the additional adder block as compared to [24]. However, this
unused block can dissipate static power. Addressing this issue
and considering the trade-off between leakage current and the
speed of operation, Power Gating (PG) technique is used to

FIGURE 6. Block-level architecture for RECON. The red dotted line shows blocks
required for MAC computation. The blue and green dotted lines represent the blocks
used for tanh and sigmoid function computation.

minimize the leakage power and to improve the performance.
We have implemented adders with the PG technique used
in the proposed architecture as shown in Fig. 6.
The sigmoid function is realized using the Eq. (11c) when

select_af = 0. For calculation of sigmoid, additional adders
and dividers are used as given in Eq. (11c). The select_af
= 0 is used to activate the adder logic block for sigmoid
calculation. In comparison to [37], which used an additional
step for calculating 2’s complement for calculating nega-
tive exponents, our sigmoid function does not need negative
exponents as shown in Eq. (11c). This gives an additional
saving in terms of area and delay.
The output from the MAC unit is then applied as feedback

along with the initialization of the predefined parameters.
The overall design allows reconfiguration, and hence the user
can configure the activation function depending upon appli-
cation requirement. This is the key difference between the
previous approaches and the proposed architecture, leading
to significant performance enhancement.

C. RECON FOR NEURON COMPUTATION
Fig. 6 shows the complete RECON architecture. Three parti-
tions can be seen depending upon the configuration. The red
encircle represents the CORDIC unit which is used in linear
mode for MAC computation. The blue and green encircle
represent the blocks required for tanh and sigmoid func-
tion respectively. It can be noticed that only in the case of
sigmoid function calculation, all blocks are needed. While,
RECON provides a configurable design to implement both
MAC and activation function, the proposed design compo-
nents can also be used independently depending upon the
user requirement.
The overall flow for a neuron is shown in Fig. 7. In

this CORDIC-based architecture, the select signal is set to
0 to compute the multiply-accumulate operation. The power
gated blocks (Add/Sub and shift register) connected with the
select signal, is isolated from the power supply for saving
static power dissipation. When the value of select is 0, m is
set to 0 so that the CORDIC operates in linear mode. The
value of the MAC operation is calculated after the five clock
cycle as explained before. This is represented by the count
variable in Fig. 7. The output after the MAC computation

176 VOLUME 2, 2021

FIGURE 7. Complete flow for RECON architecture to iteratively compute MAC and
activation function.

is then fed as a feedback to the same architecture for ini-
tialization to compute the activation function. The generated
MAC output at Yn is the input for activation function at Z0.
Here, select_af signal is initialized to the type of activation
function to be used. The architecture employs a configurable
activation function based on the application requirement. The
output of the activation function is calculated in next five
clock, i.e., count=10. At count=10, the complete compu-
tation of a single MAC followed by activation function is
done. At count=10, the count register is reset and the final
output of a neuron is the input for the next layer neuron. The
complete iterative computation for the neuron architecture is
shown in Appendix B.

V. EXPERIMENT
A. EXPERIMENTAL SETUP
To evaluate the proposed design architecture, the neuron unit
having a multiply-accumulate unit and configurable activa-
tion function are represented in HDL using Verilog hardware
description language. The RTL for our RECON architec-
ture is synthesized and results are produced by Design
Compiler-Synopsys [44]. The netlist file is extracted from
Encounter-Cadence and the generated .cdl is used for RTL
digital design extraction into CMOS design using the v2lvs-
Mentor Graphics [45]. The extracted design is simulated
in Cadence-Virtuoso [46] for performance-parameter valida-
tion at different process corners, temperature, and mismatch.
Following experiments are done to validate our proposed
design:
1) The first experiment shows the results for the FPGA

prototyping of the proposed design.
2) In the second experiment, we evaluate the effect of

power gating technique. We use a logic gate with wide-
gate sized transistors so that the performance is not

TABLE 4. Hardware implementation result for RECON.

FIGURE 8. (a) Power gating technique applied for the adder block. The select signal
is used to isolate the circuits from power supply. (b) Inverter Circuit ON current and
delay variations with respect to technology scaling.

compromised. The coarse-grain technique is used in
the design for better efficiency, less circuit complexity,
and moderate switching time.

3) In order to evaluate the impact of process variation
and mismatch (which increases significantly in 65nm
and lower CMOS technology), in the third experiment,
the circuit is simulated at all PVT variations.

4) In the fourth experiment, the proposed design is com-
pared with the state-of-the-art for both MAC and AF
configuration at technology nodes of 45nm.

5) In the last experiment, we carry out Monte-Carlo simu-
lation to model the probability of different outcomes of
dynamic power. It helps to calculate random variations
in dynamic power dissipation due to device-mismatch
in the characteristics of identically designed devices,
occurring during the manufacturing of ICs.

VI. RESULTS AND DISCUSSION
A. HARDWARE IMPLEMENTATION
In order to validate the proposed design, it is implemented
on FPGA ZyboXC7z010-board. We implement a three layer
4:4:2 fully connected artificial neural network using 8-bit
precision (i.e., 8-bit weight, bias, input). The single neu-
ron consists of a MAC followed by sigmoid AF design
using the proposed CORDIC based architecture. The post
implementation hardware resources utilization is given in
Table 4.

B. GATE SIZING
At lower technology nodes, static power dissipation is the
biggest concern. In order to implement power-gating tech-
nique, appropriate gate-sizing is an important step. For
CMOS-based inverter circuit with coarse-grain power gating

VOLUME 2, 2021 177

RAUT et al.: RECON

FIGURE 9. Performance parameter variation due to process, voltage and
temperature (PVT) variation effects on proposed 8-bit precision integrated
architecture @45nm technology node (a) the different process corner and temperature
at power supply = 0.62V (b) for TT corner with power supply variation.

technique, the ON current and delay variations with respect
to technology scaling is shown in Fig. 8 (b). We determine
the power gate size for a larger slew rate with a lower
response time and the same is used for our RECON circuit
simulations. The add/sub, shift register logic blocks used in
Fig. 4 Is designed using the same power getting technique.
These logic blocks are isolated when they are not in use in a
specific computation task such as multiply-accumulation or
tanh calculation. We save 30% static power dissipation with
minimal area overhead compared to non power-gated archi-
tecture. Based on simulation results and merit, the power
gate size should be around 3× large as compared to its
standard size to maintain similar performance.

C. OPERATING VOLTAGE
Circuit design with a lower power supply is beneficial as it
minimizes power dissipation. These savings are due to scal-
ing in the technology model that has an impact on physical
parameters such as mobility (μ0) and saturation velocity
(Vsat). However, it comes with an increased propagation
delay. Equation 12 shows the relation between the power
supply and the propagation delay in the CMOS circuit.

Td = CL·Vdd
(Vdd − Vt)α

(12)

The CMOS logic based circuit design is extracted using
cadence virtuoso and post-layout circuit simulation of the
proposed design is carried out for current and voltage vari-
ation at different process corners and supply variation. The
leakage power increases with the increasing supply volt-
age, and it exceeds the dynamic power for supply greater
than 0.7V at 45nm technology. The parameters calculated at
three different process corners FF, TT and SS are shown in
Fig. 9(a). It observed that the static power is more than
the dynamic power in the fast-fast (FF) process corner
with temperature 85◦C. The circuit simulated at different
supply voltages with typical-typical (TT) process corner
and observed variations in simulation results are shown in
Fig. 9(b). It seems from the figure that an operating voltage
of around 0.62 returns the lowest value for leakage current
and dynamic power.

TABLE 5. Comparison for the proposed design and the state-of-the-art for MAC
computation @45nm TT process corner for 8-bit precision.

TABLE 6. Comparison for the proposed design and the state-of-the-art
CORDIC-based design for sigmoid activation computation @45nm TT process corner
for 8-bit precision.

D. RECON IN MAC CONFIGURATION
We compare our RECON architecture in MAC configura-
tion with the state-of-the-art designs [20]–[22]. For RECON,
the area of the corresponding module performing the MAC
is shown in Fig. 6. For the sake of comparison, we have
implemented the designs proposed in [20]–[22] with 8-bit
precision at 45nm since they were proposed at different tech-
nology node. The post-synthesis performance parameters are
populated in Table 5.
It can be observed from the Table 5 that our proposed

design has the least area as compared to other proposed
designs [20]–[22]. While the design in [22] shows the least
static and dynamic power, it requires more number of clock
cycles along with a larger delay to compute the results
as compared to our proposed design. Hence, our proposed
design shows a lower power-delay-product (PDP) as com-
pared to the design proposed in [22]. To evaluate the overall
hardware overheads, we adopt a figure of merit, which is
characterized by area, latency, and power product (ALP =
area × latency × power) and is 60% less as compared to
the architecture proposed in state-of-the-art [22].
An important point to note here is that while other designs

focused primarily on unsigned values, our proposed design
architecture can support both signed and unsigned numbers.
It is particularly relevant considering hardware implementa-
tions for neural architecture, as it has a direct impact on the
accuracy.

E. RECON IN AF CONFIGURATION
Just as we have evaluated RECON in MAC configuration, we
compare our design in sigmoid AF configuration with other
works proposed in [24], [25] which employed CORDIC-
based architecture for AF computation at both 45nm. Results
and comparison of proposed architecture with and with-
out power gating and state-of-the-art are shown in Table 6.

178 VOLUME 2, 2021

TABLE 7. Sigmoid activation function using proposed design and combinational logic-based design [18] at 180nm and 45nm TT process corner.

While, it is to be noted that power gating technique is not
applicable for sigmoid AF calculation, the overheads of using
power gating technique are applicable, as shown in Table 6.
It can be observed that our design achieves better numbers
for area, power, and delay as compared to other CORDIC
based designs [24], [25].
In order to carry out evaluation for our proposed design

for AF computation, we also compare it with combinational
logic design based AF computation as proposed in [18]. We
synthesise both the designs at two technology nodes of 45nm
and 180nm at different precisions to have a fair comparison.
The reason we are choosing the sigmoid AF configura-
tion because it uses all the components in our proposed
architecture as shown by green encircle in Fig. 6.
The combinational logic design-based AF proposed in [18]

uses the concept of quantization states to implement non-
linear activation functions. Realization of quantization states
is done through memory elements and selection using MUX
tree and combinational logic gates. The number of quantiza-
tion states depends upon the bit precision used. Hence, for
8-bit precision, the number of quantization states is equal to
28 = 256. The selection then further requires 8:1 multiplexer
tree.
The results of our comparison are shown in Table 7. It

can be seen that at low precision, i.e., 8-bit, design proposed
in [18] fairs better as compared to RECON in terms of area
and power. However, we can observe an exponential increase
at higher bit precisions. Moving from 8-bit to 12-bit results
in 10× increase in area and power for the design proposed
in [18]. The reasons can be ascertained to the fact that for
12-bit precision, number of quantization states is equal to
212 = 4096 which leads to an exponential increase in the
memory elements required. Apart from memory elements,
a bigger 16:1 muliplexer tree is also required which further
leads to additional overheads. Similarly, for 16-bit precision,
the number of memory elements required increases to 216 =
65536 with the same 16:1 multiplexer tree. Hence, the area
increase from 12-bit to 16-bit is just 5×.
It concludes that CORDIC based architecture is an

admirable choice for higher precision neural network design
architecture. The results shown in Table 7 demonstrate that
for the CORDIC-based architecture, the progression in phys-
ical parameters such as area and power with respect to the
increment in bit precision guarantees much better scaling
as compared to [18]. However, the number ofclk edges

FIGURE 10. 1000 Monte Carlo simulation with process variation and mismatch for
mean dynamic power variation of signed 8-bit sigmoid activation function.

required is more in our proposed design as compared to
the combinational design. This is obvious considering the
same CORDIC block is used iteratively for calculating MAC
and activation function in different modes. Hence, CORDIC
based design is favorable for applications where the energy
and area requirements are less. Hence, the proposed design
offers an excellent choice for IoT applications.

F. PROCESS VARIATION AND MISMATCH
At lower technology nodes, process variation and mismatch
is also an important issue in addition to power dissipation,
stability, and reliability. We have simulated the circuit at
45nm technology node. The Monte-Carlo simulation for
dynamic power variation due to process and mismatch is car-
ried out for 1000 samples for the proposed architecture (with
select=0 & select_af=0) and the state-of-the-art as shown
in Fig. 10. The mean dynamic power and standard devia-
tion of the proposed architecture are 189.30μW and 58.2μW
respectively. The mean dynamic power of the proposed work
is 90% compared to architecture proposed by [15] (shown
in green color) and 63% as proposed by [24] (shown in
red color). The standard deviation for power variation in
the case of RECON is 58.2μW which is less compared
to 66.15μW [15] (shown in green color) and 78μW [24]
(shown in red color) respectively. It shows that the proposed
architecture is more reliable in terms of power variation due
to process and mismatch.

VII. CONCLUSION
In this work, we have proposed a resource-efficient and
configurable CORDIC-based design, RECON for a neuron

VOLUME 2, 2021 179

RAUT et al.: RECON

TABLE 8. Accuracy comparison of different DNN architecture at different fixed point
bit-precision computation for MNIST and CIFAR-10 data-set.

FIGURE 11. Waveform for complete neuron architecture computation with each
iteration.

architecture. The CORDIC-based design allows configura-
tion and the same block can compute both MAC and multiple
activation functions. Additionally, our proposed design can
also compute both signed and unsigned computations. The
proposed architecture is area and power efficient as compared
to the state-of-the-art designs for both MAC and activation
function computation. Using extensive evaluation, we show
that our proposed design gives better returns at higher bit
precision as compared to other designs.

APPENDIX A
In order to finalize the number of digits after the deci-
mal point in fixed-point number representation, we carry
out experiments using different artificial neural networks.
Accuracy comparison at different bit-precision is shown in
Table 8. It can be seen that their is a very low (≤2%) loss of
accuracy between usage of 8-bit and 32-bit fixed-point com-
putation. This leads to reduction in memory consumption by
factor of 4. Hence, Hence, we have taken 8-bit fixed-point
with 〈8, 5〉 representation in computation with fractional for
RECON.

APPENDIX B
In order to show the iterative computation the complete neu-
ron architecture, complete waveform is shown in Fig. 11.
Here, we have selected the input (Xi), weight (Zi), bias (Yi)
for the MAC computation and Tanh function as an activation
function.

ACKNOWLEDGMENT
The authors would like to thank the Special Manpower
Development Program Chip to System Design, Department
of Electronics and Information Technology (DeitY) under
the Ministry of Communication and Information Technology,
Government of India for providing necessary research
facilities.

REFERENCES

[1] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, “Deep neu-
ral nets as a method for quantitative structure–activity relationships,”
J. Chem. Inf. Model., vol. 55, no. 2, pp. 263–274, 2015.

[2] Du, Ke-Lin, and M. N. S. Swamy, “Neural network circuits and par-
allel implementations,” in Neural Networks and Statistical Learning.
London, U.K.: Springer, 2019, pp. 829–851.

[3] Y. Umuroglu et al., “FINN: A framework for fast, scalable bina-
rized neural network inference,” in Proc. ACM/SIGDA Int. Symp. Field
Program. Gate Arrays, 2017, pp. 65–74.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014. [Online]. Available:
arXiv:1409.1556.

[5] R. Pottathuparambil and R. Sass,“An FPGA-based neural network for
computer vision applications,” in Proc. Workshop Comput. Vis. Low
Power Reconfig. Architect. (FPL), Crete, Greece, 2011, pp. 1–7.

[6] J. Gama, R. Sebastião, and P. P. Rodrigues, “Issues in evaluation of
stream learning algorithms,” in Proc. 15th ACM SIGKDD Int. Conf.
Knowl. Disc. Data Min., 2009, pp. 329–338.

[7] E. Nurvitadhi et al., “Accelerating binarized neural networks:
Comparison of FPGA, CPU, GPU, and ASIC,” in Proc. IEEE Int.
Conf. Field Program. Technol. (FPT), 2016, pp. 77–84.

[8] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26,
no. 2, pp. 203–215, Feb. 2007.

[9] F. Kastner, B. Janßen, F. Kautz, M. Hübner, and G. Corradi,
“Hardware/software codesign for convolutional neural networks
exploiting dynamic partial reconfiguration on PYNQ,” in Proc. IEEE
IPDPSW, 2018, pp. 154–161.

[10] E. Wu, X. Zhang, D. Berman, I. Cho, and J. Thendean, “Compute-
efficient neural-network acceleration,” in Proc. ACM/SIGDA Int. Symp.
Field Program. Gate Arrays, 2019, pp. 191–200.

[11] A. Arthurs, J. Roark, and J. Di, “Ultra-low voltage digital circuit
design: A comparative study,” in Proc. IEEE Faible Tension Faible
Consommation, 2012, pp. 1–4.

[12] P. K. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna “50
years of CORDIC: Algorithms, architectures, and applications,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 9, pp. 1893–1907,
Sep. 2009.

[13] L. Vachhani, K. Sridharan, and P. K. Meher, “Efficient CORDIC
algorithms and architectures for low area and high throughput imple-
mentation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 1,
pp. 61–65, Jan. 2009.

[14] M. Qian, “Application of cordic algorithm to neural networks VLSI
design,” in Proc. Multiconf. Comput. Eng. Syst. Appl., vol. 1, 2006,
pp. 504–508.

[15] M. Ercegovac, D. Kirovski, and M. Potkonjak, “Low-power behavioral
synthesis optimization using multiple precision arithmetic,” in Proc.
IEEE Design Autom. Conf., 1999, pp. 568–573.

[16] S. Anwar, K. Hwang, and W. Sung, “Fixed point optimization of deep
convolutional neural networks for object recognition,” in Proc. IEEE
ICASSP, 2015, pp. 1131–1135.

[17] A. S. Abraham and S. Anand, “An ASIC design of an optimized
multiplication using twin precision,” in Proc. IEEE ICICCS, 2017,
pp. 455–461.

[18] S. J. V. Rani and P. Kanagasabapathy, “Multilayer perceptron neural
network architecture using VHDL with combinational logic sigmoid
function,” in Proc. IEEE Int. Conf. Signal Process. Commun. Netw.,
2007, pp. 404–409.

[19] B. Karlik and A. V. Olgac, “Performance analysis of various activation
functions in generalized mlp architectures of neural networks,” Int. J.
Artif. Intell. Expert Syst., vol. 1, no. 4, pp. 111–122, 2011.

[20] A. S. K. Vamsi and S. Ramesh, “An efficient design of 16 bit MAC
unit using vedic mathematics,” in Proc. IEEE Int. Conf. Commun.
Signal Process. (ICCSP), 2019, pp. 319–322.

[21] H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. custom CMOS
and the impact on processor microarchitecture,” in Proc. 19th ISFPGA,
2011, pp. 5–14.

[22] G. B. Joseph and R. Devanathan, “Algorithms for multiplierless
multiple constant multiplication in online arithmetic,” Circuits Syst.
Signal Process., vol. 37, no. 11, pp. 5127–5142, 2018.

180 VOLUME 2, 2021

[23] G. Raut, V. Bhartiy, G. Rajput, S. Khan, A. Beohar, and
S. K. Vishvakarma, “Efficient low-precision cordic algorithm for hard-
ware implementation of artificial neural network,” in Proc. Int. Symp.
VLSI Design Test, 2019, pp. 321–333.

[24] V. Tiwari and N. Khare, “Hardware implementation of neural network
with sigmoidal activation functions using CORDIC,” Microprocess.
Microsyst., vol. 39, no. 6, pp. 373–381, 2015.

[25] M. Alçın, İ. Pehlivan, and İ. Koyuncu, “Hardware design and imple-
mentation of a novel ANN-based CHAOTIC generator in FPGA,”
Optik, vol. 127, no. 13, pp. 5500–5505, 2016.

[26] M. Yuvaraj, B. J. Kailath, and N. Bhaskhar, “Design of optimized
MAC unit using integrated VEDIC multiplier,” in Proc. Int. Conf.
Microelectron. Devices Circuits Syst. (ICMDCS), 2017, pp. 1–6.

[27] W. Xu, Z. Zhang, X. You, and C. Zhang, “Efficient deep convolutional
neural networks accelerator without multiplication and retraining,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), 2018,
pp. 1100–1104.

[28] D. A. Gudovskiy and L. Rigazio, “ShiftCNN: Generalized low-
precision architecture for inference of convolutional neural networks,”
2017. [Online]. Available: arXiv:1706.02393.

[29] H. Kim, Q. Chen, T. Yoo, T. T.-H. Kim, and B. Kim, “A 1–16b
precision reconfigurable digital in-memory computing macro featuring
column-MAC architecture and bit-serial computation,” in Proc. IEEE
45th Eur. Solid-State Circuits Conf. (ESSCIRC), 2019, pp. 345–348.

[30] D. Nguyen, D. Kim, and J. Lee, “Double MAC: Doubling the
performance of convolutional neural networks on modern FPGAs,”
in Proc. Design Autom. Test Europe Conf. Exhibit. (DATE), 2017,
pp. 890–893.

[31] J. Kadmon and H. Sompolinsky, “Transition to chaos in random
neuronal networks,” Phys. Rev. X, vol. 5, no. 4, 2015, Art. no. 041030.

[32] M. Wedlake and H. L. Kwok, “A CORDIC implementation of a digital
artificial neuron,” in Proc. IEEE Pac. Rim Conf. Commun. Comput.
Signal Process. (PACRIM), vol. 2, 1997, pp. 798–801.

[33] C.-H. Chang, H.-Y. Kao, and S.-H. Huang, “Hardware implementation
for multiple activation functions,” in Proc. IEEE Int. Conf. Consum.
Electron. Taiwan (ICCE-TW), 2019, pp. 1–2.

[34] S. Gomar, M. Mirhassani, and M. Ahmadi, “Precise digital implemen-
tations of hyperbolic TANH and sigmoid function,” in Proc. IEEE 50th
Asilomar Conf. Signals Syst. Comput., 2016, pp. 1586–1589.

[35] B. Zamanlooy and M. Mirhassani, “Efficient VLSI implementation
of neural networks with hyperbolic tangent activation function,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 1, pp. 39–48,
Jan. 2014.

[36] S. Aggarwal, P. K. Meher, and K. Khare, “Scale-free hyperbolic
CORDIC processor and its application to waveform generation,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 2, pp. 314–326,
Feb. 2013.

[37] C. B. Bidhul, N. Hampannavar, S. Joseph, P. Jayakrishnan, and
S. Kumaravel, “Comparison of architectures of a coarse-grain
reconfigurable multiply-accumulate unit,” in Proc. IEEE Int. Conf.
Green Comput. Commun. Conservation Energy (ICGCE), 2013,
pp. 225–230.

[38] P.-Y. Chou et al., “Near-threshold cordic design with dynamic circuitry
for long-standby IoT applications,” in Proc. 31st IEEE Int. Syst. Chip
Conf. (SOCC), 2018, pp. 250–253.

[39] J. Volder, “The CORDIC computing technique,” presented at the the
Western Joint Comput. Conf., Mar. 1959, pp. 257–261.

[40] T. Lang and E. Antelo, “CORDIC-based computation of ARCCOS
and ARCSIN,” in Proc. IEEE Int. Conf. Appl. Specific Syst. Architect.
Process., 1997, pp. 132–143.

[41] Y. Luo, Y. Wang, Y. Ha, Z. Wang, S. Chen, and H. Pan, “Generalized
hyperbolic CORDIC and its logarithmic and exponential computation
with arbitrary fixed base,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 27, no. 9, pp. 2156–2169, Sep. 2019.

[42] T.-Y. Sung and H.-C. Hsin, “Fixed-point error analysis of
CORDIC arithmetic for special-purpose signal processors,” IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., vol. 90, no. 9,
pp. 2006–2013, 2007.

[43] N. Sorokin, “Implementation of high-speed fixed-point dividers on
FPGA,” J. Comput. Sci. Technol., vol. 6, no. 1, pp. 8–11, 2006.

[44] Synopsys. [Online]. Available: https://www.synopsys.com
/implementation-and-signoff/rtl-synthesis-test/design-compiler-
graphical.html

[45] Communities Mentor. [Online]. Available: https://communities.mentor.
com/docs/doc-3114

[46] Cadence. [Online]. Available: https://www.cadence.com/en_us/home
/tools/custom-ic-analog-rf-design/circuit-design/virtuoso-schematic-ed
itor.html

GOPAL RAUT (Graduate Student Member, IEEE)
received the B.Engg. degree in electronic engi-
neering and the M.Tech. degree in VLSI design
from the G. H. Raisoni College of Engineering
Nagpur, India, in 2015. He is currently pursuing
the Ph.D. degree with the Electrical Engineering
Department, Indian Institute of Technology Indore,
where he is currently with the Nanoscale
Devices, VLSI Circuit and System Lab, Electrical
Engineering Department. His research focus is
compute-efficient and configurable VLSI circuit

design for IoT applications.

SHUBHAM RAI (Graduate Student Member, IEEE)
received the B.Engg. degree in electrical and elec-
tronic engineering and the M.Sc. degree in physics
from the Birla Institute of Technology and Science
Pilani, India, in 2011. He is currently pursu-
ing the Ph.D. degree with Technische Universität,
Dresden, Germany. His research focus is on cir-
cuit design for reconfigurable nanotechnologies
and their logical applications.

SANTOSH KUMAR VISHVAKARMA (Member,
IEEE) received the Ph.D. degree from the Indian
Institute of Technology Roorkee, India, in 2010.
He is currently an Associate Professor with
the Department of Electrical Engineering, Indian
Institute of Technology Indore, India, where he is
leading the Nanoscale Devices and VLSI Circuit
and System Design Lab. From 2009 to 2010,
he was with the University Graduate Center,
Kjeller, Norway, as a Postdoctoral Fellow under
the European Union Project “COMON.” His cur-

rent research interests include nanoscale devices, reliable SRAM memory
designs, and configurable circuits design for IoT applications.

AKASH KUMAR (Senior Member, IEEE) received
the joint Ph.D. degree in electrical engineer-
ing in embedded systems from the Eindhoven
University of Technology, Eindhoven, and the
National University of Singapore, Singapore, in
2009. He is currently a Professor with Technische
Universität Dresden, Germany, where he is direct-
ing the Chair for Processor Design. From 2009
to 2015, he was with the National University of
Singapore. His current research interests include
design, analysis, and resource management of

low-power and fault-tolerant embedded multiprocessor systems.

VOLUME 2, 2021 181

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

