
Future Generation Computer Systems 172 (2025) 107864

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

X-DINC: TowardCross-LayerApproXimation for theDistributed and

In-Network ACceleration of Multi-Kernel Applications
Zahra Ebrahimi a,b ,∗,1, Maryam Eslami b,1, Xun Xiao c, Akash Kumar b
a Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany
b Chair for Embedded Systems, Ruhr-Universität Bochum, Bochum, Germany
cMunich Research Center, Huawei Technologies, Munich, Germany

A R T I C L E I N F O

Keywords:
In-network computing (INC)
Distributed computing
Cross-layer approximation
Blind source separation
Independent component analysis
Field programmable gate array (FPGA)
Programmable networks
P4
Energy-efficiency
sustainability

 A B S T R A C T

With the rapid evolution of programmable network devices and the urge for energy-efficient and sustain-
able computing, network infrastructures are mutating toward a computing pipeline, providing In-Network
Computing (INC) capability. Despite the initial success in offloading single/small kernels to the network
devices, deploying multi-kernel applications remains challenging due to limited memory, computing resources,
and lack of support for Floating Point (FP) and complex operations. To tackle these challenges, we present
a cross-layer approximation and distribution methodology (X-DINC) that exploits the error resilience of
applications. X-DINC utilizes a chain of techniques to facilitate kernel deployment and distribution across
heterogeneous devices in INC environments. First, we identify approximation and optimization opportunities in
data acquisition and computation phases of multi-kernel applications. Second, we simplify complex arithmetic
operations to cope with the computation limitations of the programmable network switches. Third, we perform
application-level sensitivity analysis to measure the trade-off between performance gain and Quality of
Results (QoR) loss when approximating individual kernels via various techniques. Finally, a greedy heuristic
swiftly generates Pareto/near-Pareto mixed-precision configurations that maximize the performance gain while
maintaining the user-defined QoR. X-DINC is prototyped on a Virtex-7 Field Programmable Gate Array (FPGA)
and evaluated using the Blind Source Separation (BSS) application on industrial audio dataset. Results show
that X-DINC performs separation up to 35% faster with up to 88% lower Area-Delay Product (ADP) compared
to an Accurate-Centralized approach, when distributed across 2 to 7 network nodes, while maintaining audio
quality within an acceptable range of 15–20 dB.
1. Introduction

In the era of 5G and forthcoming 6G, a staggering amount of
data needs to be processed by computation-intensive and latency-
sensitive applications, e.g., video conferencing, speech recognition, and
e-healthcare. However, real-time processing at such a high data rate
faces substantial challenges, for which cloud computing will no longer
be a promising and sustainable solution due to the following three main
aspects. (1) Response Time: data transmission itself takes a significant
portion of the total execution time in many cloud-based applications
(e.g., more than 70% in some Facebook MapReduce jobs [1]). Clearly,
the projected traffic explosion in the upcoming 6G can exacerbate
the response time in such latency-sensitive applications. (2) Processing
Speed: the general-purpose processors in cloud facilities (at most 50
Gbps in Amazon) operate at a much slower speed than programmable
switches (12–50 Tbps) [2]. This processing speed might be inadequate

∗ Corresponding author at: Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany.
E-mail addresses: zahra.ebrahimi_mamaghani@tu-dresden.de, zahra.ebrahimi@rub.de (Z. Ebrahimi).

1 Zahra Ebrahimi and Maryam Eslami contributed equally to this article.

for offloading prompt critical decision-making actions in the cloud. (3)
Energy-Efficiency and Sustainability : a huge amount of energy, account-
ing for up to 50% in many cases [3], is consumed solely for transmitting
data from endpoints to the cloud, significantly contributing to increased
carbon emissions and environmental footprint. In fact, the electricity
costs, solely to execute the applications in the cloud has already ex-
ceeded the cost of purchasing hardware for the whole data center [4].
These issues have raised the quest for processing data on-the-fly while
being transmitted within the network, dubbed as INC [5].

Although INC is still in its infancy, early research works [2,6,7] have
shown remarkable advantages by offloading single-kernel applications
to the network. In particular, by bringing the processing to the proxim-
ity of data, INC has shown to reduce the network traffic up to 90% for
specific tasks [5]. Moreover, application’s response time and/or energy
have been also reduced thanks to INC, compared to the centralized
https://doi.org/10.1016/j.future.2025.107864
Received 28 November 2024; Received in revised form 24 February 2025; Accepte
vailable online 7 May 2025
167-739X/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
d 15 April 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0000-0002-0727-3584
https://orcid.org/0000-0001-7125-1737
mailto:zahra.ebrahimi_mamaghani@tu-dresden.de
mailto:zahra.ebrahimi@rub.de
https://doi.org/10.1016/j.future.2025.107864
https://doi.org/10.1016/j.future.2025.107864
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2025.107864&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Z. Ebrahimi et al. Future Generation Computer Systems 172 (2025) 107864
Fig. 1. X-DINC framework, prototyped on an FPGA-based testbed: overall design, approximation, and distribution methodology for an INC environment.
solutions [8,9]. For example, processing a single Neural Network (NN)
layer takes 1 ms in the network versus up to 12 ms, when processed
by an end-host CPU [2,10]. In fact, since the intermediate switches are
part of the network, most of such costs are already paid by the packet
processing/forwarding.

However, while this momentum is inspiring, the adoption of INC
is currently limited to a few single-kernel applications. Applying INC
for multi-kernel applications is even less due to following reasons. The
first reason is the limited memory and computing resources, especially
in Application Specific Integrated Circuit (ASIC)-based programmable
network devices [11]. The second reason is that ASIC switches are still
incapable of performing FP and complex arithmetic operations [12,
13], which are often needed by complex applications. Although such
shortcomings are less pronounced in FPGA-based network elements, the
performance gap between ASIC- and FPGA-based implementations, for
some applications, may still limit the gains that can be achieved through
in-network acceleration. Such challenges have therefore hindered the
INC being applied to complex tasks, e.g., running Artificial Intelligence
(AI)/Machine Learning (ML) inference tasks based on INC in 5G and the
coming 6G networks [14,15]. Hence, to fully unleash the potential of
INC, the computing approaches for executing multi-kernel applications
should be rethought.

To address this challenge, alongside tackling energy and sustain-
ability concerns while enabling real-time processing, prior research
has demonstrated promising outcomes by employing various approx-
imation techniques. These methods strategically trade off accuracy to
achieve significant performance gains, offering a balanced solution
for energy-efficient and sustainable computing. Those explored tech-
niques targeted to approximate data type (e.g., FP to fixed-point or
integer [12,16]), basic primitives (multiplication [17], logarithm [18],
and trigonometric functions [19]), or application kernels (matrix multi-
plication/division [7,14,20], edge-detection filter [21], and quantizing
specific NN layers [10,22–25]). Despite the initial efforts of these
works, their approaches have been limited to approximate single or
small-size kernels with one particular technique, rather than combining
them. As a result, not only their achieved performance gains have
been limited, but also the scalability of their approach is not as-
sessed on larger case studies. Although combining multiple techniques
seems straightforward, figuring out a proper combination of multiple
2
techniques in consecutive kernels applications is not a trivial task
(w.r.t. the error-propagation). These issues raise the quest for an error-
aware approximation methodology that utilize the synergistic effects of
multiple techniques to effectively convert larger applications enjoying
INC-acceleration.

To address this question, we present X-DINC (illustrated in Fig.
1), a cross-layer approximation methodology that achieves significant
performance gains by leveraging the error-resiliency of applications.
Specifically, X-DINC first identifies a potential chain of approxima-
tion and optimization opportunities (when the application is executed
within an INC environment). Afterwards, a sensitivity analysis reveals
the error-resiliency of individual application kernels to various ap-
proximation techniques. Furthermore, by adopting a greedy heuristic
algorithm, the approximation knobs in the consecutive kernels are
adjusted in a way to maximize the performance-gain while maintaining
the QoR at an admissible threshold. The heuristic is able to rapidly
generate the optimal or near-optimal accelerator configurations, each
of which enables a different trade-off between QoR and performance.
At the end, w.r.t. a desired accuracy threshold and number of network
nodes, X-DINC selects the optimal or near-optimal configuration of
the approximated kernels, resulting in the minimum response time for
the application. In short, this article makes the following technical
contributions:

• X-DINC modifies the computational structure of application to tai-
lor it for an INC approach (by approximating the implementation
of required, yet unsupported complex arithmetic operations in
programmable network switches).

• X-DINC identifies a proper chain of cross-layer approximation and
optimization opportunities in both data acquisition and computa-
tion phases of an application, when it is executed within an INC
setup.

• By applying an error-sensitivity analysis and a greedy heuristic,
X-DINC adjusts the degree of approximations in multiple tech-
niques, in a way to maximize performance-gain while maintaining
an acceptable QoR. The Pareto/near-Pareto mixed-precision con-
figurations of application kernels, swiftly generated by X-DINC,
are then distributed over (a chain of) network nodes in a way to
minimize transmission costs.

Z. Ebrahimi et al. Future Generation Computer Systems 172 (2025) 107864
• As a proof-of-concept, X-DINC is evaluated on the widely-used
BSS application through an end-to-end implementation, proto-
typed on an FPGA-based testbed. Compared to an accurate-
centralized approach, X-DINC performs the separation job signif-
icantly faster with less Area-Delay Product (ADP), when the task
is distributed over various nodes.

• Open-source contribution: to fuel further research on the
in-network/distributed acceleration of multi-kernel applications,
our implementations will be available at https://cfaed.tu-dresden.
de/pd-downloads.

To the best of our knowledge, this is the first work that attempts
to enable the in-network acceleration of multi-kernel applications with
the goal of minimizing response time (while guaranteeing an accept-
able QoR). The rest of this article is organized as follows: Section 2
presents a brief survey of related works (the background knowledge
for this manuscript is presented in Appendix). Section 3 presents the
error-resiliency sensitivity analysis of X-DINC. Afterwards, Section 4
elaborates the proposed cross-layer approximation and distribution
methodology for an INC setting. Section 5 details the experimental
setup and results and the remarks and challenges are discussed in
Section 6. Finally, Section 7 concludes the paper with an outlook to
the future tracks.

2. Related work

2.1. In-network (distributed) computing

INC: studies in this stream of research targeted the deployment of
individual kernels of applications to the network. The investigated do-
mains can be summarized in ML [7], data aggregation [26,27], network
management [28,29], and edge detection for image processing [21]. In
particular, the ML studies have shown promising results for tree-based
classification models such as Decision Tree (DT) and Random Forest
(RF) or less complicated models such as Support Vector Machine (SVM),
and K-Means [30]. However, running resource-hungry models such as
NNs on network switches is an arduous task and faced with practical de-
ployment challenges, especially in ASIC-based switches [10,12,22–25].
In fact, even a heavily-quantized binary NN (BNN) with two layers of
64 and 32 neurons already exhausts the resources of an Intel Tofino
switch [22].

Distributed INC: recently, some works have attempted to partition
applications into multiple kernels and distribute them over a chain
of heterogeneous nodes. In this article, a single kernel is defined as a
combination of operations performing a specific task (e.g., filtering,
transformations, feature extraction, encoding/decoding, matrix multi-
plications, convolutions). A multi-kernel application is built from mul-
tiple single kernels, which may execute sequentially or in parallel.
ClickINC [31] attempts to reduce the search space for the task place-
ment problem by (i) grouping functions into blocks to be mapped
together and (ii) grouping the heterogeneous platforms (switches, FP-
GAs, smart Network Inference Card (NIC)s, etc.) into fewer classes to
reduce the complexity of distribution problem. Flightplan [32] dis-
aggregates P42 kernels into segments manually and then combines
graph-based and formal methods to solve the distribution problem
with exhaustive search, for finding a near-optimal solution. To reduce
the search time, DINC [34] adopts a Multi-objective Integer Linear
Programming (ILP) optimization strategy, where the objective function
is a weighted linear combination of the execution latency (which disre-
gards the transmission latency) and the resource consumption required
for executing the task. Finally, Hermes [35] targets minimizing the
communication overheads in such inter-switch coordination scenarios
by considering the per-packet byte overhead along with the per-packet

2 P4 [33] is the de-facto language for programming network data plane.
3
transmission latency. For solving this multi-objective optimization, the
authors formulate a Mixed-ILP problem and adopt a greedy-based
heuristic. Nevertheless, they still neglect the error-resiliency potential
of applications in their analysis.

2.2. Compatibility of INC approaches with commodity hardware

In FPGA-based network devices, computations are performed via
Look-up Table (LUT)s. In ASIC, computations are carried through
applying a chain of match-actions, implemented via Match-Action
Tables (M/A or MATs) and Arithmetic Logic Unit (ALU)s [36]. De-
spite the higher packet-processing speed and power-efficiency of ASIC
switches compared to FPGA counterparts, ASICs still suffer from mul-
tiple shortcomings. For example, the lack of support for computing
operations (e.g., square root and multiplication/division of arbitrary
operands [13], exhaustively used in e.g., ML and matrix-multiplication
based applications). Moreover, the fixed number of pipeline stages
along with the limited on-switch memory capacity in a typical ASIC
switch (a few 10 s of MB of SRAM [11]) leads to a narrow range of
custom functions that can be implemented via M/A tables [12]. These
deficiencies along with the expensive hardware update in ASIC devices
restrict to deploy complex algorithms to them [14,15].

In fact, major telecommunication enterprises and cloud service
providers already rely on broad utilization of FPGA in the edge-to-
cloud continuum, including switches, routers, base stations, NICs, and
Network Processing Unit (NPU)s [37–39]. In particular, FPGA is used
as a co-processor to accelerate various tasks, from control/traffic man-
agement and load balancing to co-processing statistics, and cryptogra-
phy/security analysis [40,41]. The vast deployment of FPGA is actually
endowed to their multiple advantages over ASICs: (1) FPGAs are not
only well suited for packet processing with different protocols [42], but
also enjoy a post-fabrication hardware data-path versatility along with
a faster prototyping and lower Non-Recurring Engineering (NRE) cost.
(2) Through enabling high parallelism, FPGAs are suitable hardware
platforms for the implementation of e.g., matrix-multiplication based
applications. Such a feature enabled up to an order-of-magnitude (or
more) improvement in throughput and/or latency for a variety of in-
network accelerated tasks. (3) Although integrating an FPGA as the
co-processor for the switches may increase the power consumption of
a single switch, the overall energy or performance per Watt will be en-
hanced for certain application kernels [8,41,43–46], when compared to
network-deployed CPUs, GPUs, and General Purpose Processor (GPP)s.
These reasons encouraged the in-network acceleration with FPGA for
many tasks [40,47].

2.3. Approximation for INC

To cope with the limitations in ASIC switches and in general,
P4 language, some works have adopted approximation techniques to
reduce the complexity of computations. These works are classified and
discussed below.

Approximation of data type: the lack of support for FP operations
in ASIC switches and P4 forced the designers to use integer or fixed-
point precision [12,16]. However, (in contrast to the proposed X-DINC)
none of existing works have yet explored the effect of a mixed-precision
strategy for the in-network acceleration of multi-kennel applications.

Approximation of primitives/individual kernels: the widely-used primi-
tives (e.g., multiplication [7,14,20], logarithm [18], and trigonometric
functions [19]) were simplified either using shift/addition operations
or dedicated LUTs/MATs. However, such approximations are applied
arbitrarily to applications whenever possible without performing a
systematic error-sensitivity analysis (in contrast to X-DINC method-
ology). Therefore, the applications’ ultimate QoR was sacrificed up
to 10%, only by adopting a single technique [17]. Also, storing the
approximate values in dedicated memories is not feasible for more
complex functions.

https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads

Z. Ebrahimi et al. Future Generation Computer Systems 172 (2025) 107864
Approximation of multi-kernel applications: in the context of INC,
cutting-edge works have applied binary quantization (as a precision
scaling technique) on NNs, by substituting the multiplication operation
with XNOR. Beside noticeable accuracy drop, a practical deployment
was possible only for a BNN having 3 layers and on modern SmartNICs
such as N3IC (which benefit from more resources compared to ASIC
switches) [48]. Moreover, such devices are physically deployed, only
at specific locations within the network.

Approximate sampling : studies in this track have adopted either a
random or stratified sampling approach (which divides the signal to
segments and picks multiple samples from each group). For example,
StreamApprox [49] proposed an adaptive sampling algorithm that per-
forms the computation over disjoint sub-streams coming from various
sources. However, no study explored the effect of reducing samples on
the accuracy-performance trade-off of an INC accelerated program. In
X-DINC, we investigate this by pursuing a uniform stratified approach
to keep a homogeneous proportionality of samples, from the whole
dataset.

2.4. INC -accelerated BSS

Aside from ML, most of INC works targeted the in-network ac-
celeration of BSS problem3 [50–57], due to two reasons. (1) BSS is
a common task in various signal processing domains from audio to
image, and bio-signals [58]. Specifically, acoustic BSS is a crucial step
for speech recognition, natural language processing, voice assistants,
etc. Moreover, with the emergence of smart factory within the era of
5G, acoustic BSS also plays a pivotal role in quality control and the
automated supervision of production line (to detect the malfunction
in faulty products at early stages, prevent the product failure, and
decrease the downtime and maintenance costs, dubbed as predictive
maintenance). (2) Performing controlling tasks such as BSS at real-
time is paramount in latency-critical applications (especially anomaly
detection and decision-making) so that the necessary responses can
be triggered prior to deterioration. However, it has been shown that
the performance of centralized cloud-deployed BSS is bounded by data
collection and transmission time. The long data transfer time may
delay the prompt actions in mission-critical services in the upcoming
6G era [51]. Hence, performing BSS at real-time is highly desired.
Tackling these issues, recent studies have attempted to accelerate this
application by offloading it to the network, to reduce its Mean Ttime
To Respond (MTTR).

Solving BSS problem in those studies is either via a NN-based [52–
54] or an algorithmic-based approach [55–57]. For NN-based approach,
their key drawbacks hindering practical deployment in an INC setup
are: (1) the adopted models such as ResNet and MobileNet are resource-
intensive and hence, cannot be easily accelerated on the resource-
constrained network nodes; and there exists many complex operations
in the structure of BSS application that are not directly supported in
P4 (see Section 3.1). These issues have been neglected in all previous
studies. (2) It is hard to obtain sufficient labeled audio data for model
training [55,59]. (3) Updating and re-training the NN models is costly,
especially after being deployed on network nodes.

Algorithmic-based approaches (e.g., Fast Independent Component
Analysis (ICA) [60] implemented based on the ICA algorithm) provide
an early separation result and then progressively optimize its accuracy
by iteratively increasing samples over a chain of hops along the net-
work forwarding path. Although these works realized the drawbacks of
the NN-based approaches and looked for alternative decentralized/INC-
oriented strategy, they still suffer from four shortcomings: (1) if the
threshold for the gradient of improvement over consecutive hops is
too loose, the construction of the separation matrix may terminate

3 BSS separates a set of signals from their mixed combination without prior
knowledge about the sources or mixing process (see Appendix).
4
prematurely; if it is too tight, it may never terminate [61]. (2) The
complexity of the algorithmic solutions is still high. For example, those
algorithms adopted FP precision for their computations, which not only
is unsupported in P4, but also is costly in terms of resource-footprint
(see Section 3.1). (3) The computation time for such high-precision
solutions is still several orders of magnitude larger than the usual
packet-size processing time [55]. (4) Finally, the computation itself is
delayed, due to caching of the new data at each intermediate network
node, the latency of which is not considered in such measurements.
Overall, these issues increased the application response time and lim-
ited the performance gains from network acceleration. In fact, as also
admitted by the authors in [56,61], in some extreme cases (large num-
ber of hops), the processing time would be worse than the centralized
approach.

In X-DINC, we target the algorithmic approach and address afore-
mentioned issues, through (1) tailoring the computational structure of
such multi-kernel applications for an INC setup; and (2) aiming an
end-to-end performance gain in a distributed implementation approach,
by capitalizing on the error-resiliency of these applications and other
optimization opportunities, in a network hierarchy.

3. X-DINC error-resiliency sensitivity analysis

As discussed in Sections 2.2 and 2.3, cramming multi-kernel appli-
cations into the network devices is neither straightforward nor a trivial
task. In fact, an accurate and high-precision implementation may not
be even possible, due to both resource-constraints and the limitation
of P4 language. For example, as shown in Fig. 2, not only the area,
latency, and energy of accurate multiplication, division, and square root
operations are significantly larger than those of addition of the same
size, but also these performance metrics grow exponentially when the
operand size is increased. Therefore, to address aforementioned issues,
we propose to investigate and capitalize on error-resiliency opportuni-
ties across the layers of abstraction. To this end, as also shown in Fig. 1,
we identify several approximation/optimization knobs in Section 3.1,
and then in Section 3.2 we present a generic methodology to measure
the error-sensitivity of application kernels to various approximation
techniques.

The sensitivity analysis results are then imported to the proposed
approximation heuristic of X-DINC (presented in Section 4), where the
goal of the algorithm is to maximize the performance gain (i.e., im-
provements in resource footprint, energy, or response time of applica-
tion) while maintaining an acceptable QoR via operating the possible
knobs. Finally, as our ultimate goal, we distribute the approximated
configurations of kernels over a chain of network elements in a way to
minimize the transmission latency (with which the application response
time will also be minimized). This is particularly important because
the existing INC approaches (cited in Section 2.4) may be impractical
for a single-node deployment due to limited resource capacity, or in a
distributed setting due to the transmission overheads.

In this context, BSS problem is a symbolic case study among other
multi-kernel applications to showcase the efficacy of X-DINC method-
ology, since it inherits all the challenges discussed before and cited as
a desirable target for in-network acceleration (recalling Section 2.4). In
the following, we will see that a high-precision and accurate implemen-
tation of BSS is not feasible in the network nodes, due to both limited
resource footprint of network nodes and inability of P4 in supporting
complex arithmetic operations.

3.1. Cross-layer approximation Knobs

As listed in Table 1, we have identified various approximation/opt
imization opportunities in data acquisition and computation phases
of the applications, executed in an INC environment. In this article,
these knobs – adopted from different layers of abstraction in the

Z. Ebrahimi et al. Future Generation Computer Systems 172 (2025) 107864
Fig. 2. Comparing area, delay, and energy of arithmetic operations in integer and FP precision (in Virtex-7 AMD/Xilix FPGA). The performance metrics of each operation is
normalized to the same-size adder (only FP is normalized to 32-bit integer).
Fig. 3. Cumulative percentage and energy of each operation in the kernels of BSS application, 32-bit fixed-point implementation.
Table 1
The leveraged cross-layer approximation knobs in the sensing and computing phases
of applications, for a distributed and INC-setting.
 Data acquisition (Sensing) Computation

 Architecture-level Application-level
 Sampling period Multiplication Precision scaling
 Sampling frequency Division Loop perforation
 Square root

computing stack – target the optimization of both the pre-processing
and processing kernels of the BSS application.4

Sampling period and frequency : analog signals around us, such as
audio and bio-signals, are sampled and converted to the digital domain
using an Analog to Digital Converter (ADC). These signals often contain
substantial correlated or redundant data, partly due to their periodic
structures. Thus, reducing the number of samples can significantly
improve the processing requirement and response time of these appli-
cations [62]. In previous studies [54,55,63,64], the adopted sampling
period and frequency for the implementation of audio-based BSS range
from ∼1–10 s and 4–16 kHz, respectively. Therefore, as the first knob,
we propose to analyze the consequences on the QoR and performance
metrics of changing sampling frequency (2–16 kHz) and period (4–10
s). The result of this trade-off is presented in Section 5.2.

Architecture-level: for the second set of knobs, some basic but
ubiquitously-used arithmetic operations (i.e., multiplication, division,
and square root) are approximated based on techniques with low
error-bias.5 Choosing these operations targets to overcome the in-
ability of P4 for implementing them in ASIC switches; in addition,

4 These knobs are not exclusive to the BSS; they exist and can be leveraged
in a wide range of applications.

5 Low error-bias plays a pivotal role in minimizing the accumulated error
in consecutive kernels with an aggregation-based structure [65–69].
5
these operations require significantly higher area, delay, and energy
compared to simpler ones such as addition and multiplication (the
comparison results can be found in Fig. 2). Note that we did not
approximate the addition and subtraction operations because: (1) the
accurate implementation of addition/subtraction is already supported
in ASIC switches, (2) the cumulative energy of the operations are
negligible (e.g., in BSS application), compared to the cumulative energy
for aforementioned complex operations (see Fig. 3), and (3) both
previous studies [67,70] and our sensitivity analysis showed that the
approximation of addition in matrix-multiplication based kernels may
result in high accuracy fluctuations, especially when the errors of the
inexact adder are biased toward the same sign. Besides, these situations
also hold true for other classification, bio-signal, and image-processing
applications [66–68,71]. Sensitivity analysis of this type of knobs will
be presented in Appendix.

Application-level: three techniques are considered here. First, preci-
sion scaling is adopted, as it is a widely-used approximation technique.
It has been tested on a broad range of programs [10,12,22–24], where
significant resources can be saved in both computing and memory
aspects. In addition, processing at a lower precision can also reduce
application’s end-to-end latency, because of the shortened propaga-
tion delay of the individual (precision-reduced) operations. Moreover,
the loop perforation, i.e., skipping loop iterations is another effective
method that we applied for example on the BSS application (in Gram
Schmidt decorrelation, Back substitution solver, and tan Hyperbolic
– tanh – analysis kernels). Last but not least, function approximations
applied to simplify the implementation of complex functions thus fur-
ther increase the resource efficiency. For example, to approximate the
tanh function, the highly-accurate implementation of Python Piece-
wiseLinFit from pwlf library was approximated via a piecewise
linear segmentation approach using 4, 8, and 16 segments. Finally,
the 8 segments has been adopted because of its negligible accuracy
difference compared to the Intellectual Property (IP)-based implemen-
tation of tanh function in AMD/Xilinx Vivado [72]. Another example
is the Gram–Schmidt de-correlation, which is implemented based on

Z. Ebrahimi et al. Future Generation Computer Systems 172 (2025) 107864
Scikit-learn open-source python library [73] and further modified for
a resource-efficient implementation. Next, three types of optimization
knobs are tested individually and jointly, to understand the (synthetic)
effects to the performance of the BSS application.

3.2. End-to-end kernel-wise sensitivity analysis

A sensitivity analysis is needed to understand the consequence of
adjusting multiple optimization knobs to the error resiliency of the
approximated application. In fact, such an analysis is motivated by
the observations in previous studies [66,67,74] which state that not
only kernels contribute differently to each of the performance metrics
(e.g., application latency, area, or memory footprint), but also after
approximation, their significance to the performance gains might dif-
fer from their importance influencing the error-resiliency. Therefore,
revealing the relation (i.e., trade-off) between the gained-performance
and QoR-loss for individual kernels is critical to guide us to design an
approximation strategy, subject to different approximation techniques.

The sensitivity analysis performed in X-DINC is inspired from [67].
However, [67] only considered the approximation of multiplication
and division operations and precision scaling. We further expand it
in this work in the following aspects. First, analyzing the sampling
frequency and period needs to be considered in a distributed INC-
setup. This is because the data is usually gathered from multiple
sources (e.g., sensors) and changing data size can significantly affect
the required time and/or resources for processing. Second, our analysis
assessed the memory footprint, which is another constraint in a variety
of network nodes but missed out in [67]. Third, additional approxi-
mation techniques were evaluated in our analysis. For example, loop
perforation will significantly affect the response time of an application;
and simplifying the square root operation and more complex functions
are also necessary, as they are not supported in ASIC switches. Fourth,
the error metrics considered in this article are expanded to Signal-
to-Noise Ratio (SNR) and Signal-to-Distortion Ratio (SDR) (originally
was Peak Signal-to-Noise Ratio (PSNR) in [67]). In fact, SNR and SDR
not only consider the background noise, but also reflect the effects of
distortion and unwanted artifacts due to both compression and various
approximation [56]. Finally, the integer to integer precision scaling
approach of [67] is changed to a FP to fixed-point scaling, to also
consider the effect of data type approximation.

Our sensitivity analysis has four steps (the results are detailed
in Section 5.2): 1⃝ We report the performance-accuracy trade-off for
executing the whole multi-kernel BSS application at different sampling
periods and frequencies and show that processing at a high data rate
requires significant amount of resources (numerical comparison can
be observed in Fig. 4). This hinders or exacerbates the difficulty of
executing multi-kernel applications on resource-constrained network
nodes. 2⃝ We replace the accurate arithmetic multiplication, division,
and square root operations and tanh functions with the INC-tailored
(inexact) alternatives, in all application kernels, and demonstrate their
marginal effect on the final accuracy (see Fig. 5). 3⃝ To apply the
mixed-precision tuning on consecutive kernels, we performed a kernel-
wise precision scaling investigation (as multi-kernel applications usually
show a more diverse error-resiliency spectrum to the precision scaling
technique [66,67,74]). To this end, the precision scaling is applied
– on top of the previous techniques – on each kernel individually,
while the rest of the kernels are accurate (32-bit fixed point precision
with exact operations). The result of precision scaling analysis is also
depicted in Fig. 5. 4⃝ Finally, we analyze the effect of loop perforation
(loops that are used to calculate and update the separation matrix in an
iterative approach) on the accuracy of the application. Specifically, we
analyze the effect of reducing the loop iteration from 200 for a highly-
accurate implementation [56] to 1. The loop perforation is applied on
top of previous techniques and the result shows that the application
successfully converges after 35 iterations, even when it is implemented
with a reduced precision and with lower sampling frequency and period
6
(see Fig. 6). The output of this analysis is multiple lists, each belongs
to a specific kernel and reports a pair of {𝛥ADP, 𝛥QoR} that reveals
the end-to-end performance-accuracy trade-off, when only that kernel
is approximated while the rest are accurate.

4. X-DINC cross-layer approximation and distribution methodol-
ogy

4.1. Greedy-based approximation heuristic

Targeting a high accuracy, computations can be carried out in
FP precision. However, as discussed earlier, reducing the precision to
e.g., 16-bit has also reported to be satisfactory for many applications
including BSS [75]. The main goal of the cross-layer approximation
methodology is to appropriately adjust the precision of each kernel (on
top of other techniques applied on the kernels) in order to maximize
the performance gain while minimizing the end-to-end quality loss
(or maintaining a predefined accuracy threshold). The importance of
such methodology becomes pronounced for preventing the need for
an exhaustive Design Space Exploration (DSE) for multi-kernel appli-
cations. In this regard, to tune the precision of consecutive kernels in
a multi-kernel application, we customized and further improved the
greedy-based heuristic of [67], where the pseudo-code of the modified
heuristic is depicted in Algorithm 1. Note, the greedy heuristics have
a lower complexity than other conventional choices such as ILP and
Genetic Algorithm (GA) and faster convergence to the near-optimal
solutions than simulated annealing approaches [67]. These are highly
important factors for runtime decision-making actions in INC scenarios.

The inputs of the heuristic are the predefined QoR threshold and
the information obtained from the sensitivity analysis, i.e., two lists 𝐿1
and 𝐿2 that detail the end-to-end performance-gain and QoR-loss for
down-scaling the precision of the kernel to either 16- or 8-bit (while
other approximations are already applied on that kernel). Each item of
these lists reveals the end-to-end gain/loss only for one approximate
kernel, while the rest of the kernels are 32-bit precision. The cus-
tomization of the heuristic applied in this article involves reducing the
number of required lists, from one list of {performance-gain, QoR loss}
(for each approximation technique [67]), to only two (which shows
the performance-gain and accuracy trade-off for 16- or 8-bit kernels),
overall. This means that in the baseline configuration (input of the
heuristic), the loop perforation, operation/function approximations and
reducing sampling period/frequency are already applied. Therefore, the
heuristic itself only determines the precision of the kernels.

The reason behind is two-fold and is made based on the result of
sensitivity analysis. First, the precision scaling technique has shown a
more pronounced effect on the kernels than other techniques (see Figs.
4 to 6). Second, pruning the dominated points in the final design space
that needs to be explored is highly desirable, especially for runtime
decision making in the 5G and upcoming 6G networks. In fact, in run-
time scenarios, heterogeneous nodes are dynamically added or removed
from the network, necessitating a quick redistribution of application
kernels to the updated network nodes. Therefore, compared to the
original version of the heuristic [67], we combined the techniques
(which have a lower impact on the ultimate application accuracy). This
has significantly reduced the size of the design space and hence, the
exploration time of the heuristic.

The heuristic runs as follows: first, all application kernels (already
approximated by other techniques except the precision scaling), are
uniformly set to 32-bit precision. Afterwards, the Salience List is con-
structed by adding the 𝛥ADP𝛥QoR for each pair of {kernel, precision} (i.e., the
precision of that kernel is reduced to 16- or 8-bit). Note that this value
is obtained in the sensitivity analysis phase. The list is then sorted in
a descending order to reveal the significance order of kernels for the
combined approximations: the kernels at the top of the list can enable
a higher end-to-end performance gain while imposing less QoR loss

Z. Ebrahimi et al. Future Generation Computer Systems 172 (2025) 107864
Fig. 4. The contribution of each kernel in the total performance metrics of the BSS application (left). The effect of changing sampling period and frequency on the accuracy and
performance metrics of BSS application (right).
Fig. 5. Sensitivity analysis of BSS application to cross-layer approximation techniques, i.e., precision scaling on top of function approximation (multiplication, division, square
root, tanh). The figures show the trade-off between the end-to-end 𝛥performance and 𝛥QoR after approximating each kernel, individually (while the rest are accurate FP precision).
Fig. 6. The effect of loop perforation technique on the convergence and accuracy of the BSS application.
to the ultimate application accuracy (when approximated by all the
techniques). Based on this list, the greedy heuristic is applied in an
iterative manner: in each iteration, the pair of {kernel, precision} which
appears at top of the salience list, is chosen for precision scaling. After
generating a new configuration of kernels at each step of the heuristic,
the configuration is evaluated on diverse samples to assess whether
the final desired QoR threshold is preserved. Whenever the accuracy
of the generated configuration crosses the threshold (having up to 5%
difference with the user-defined threshold), the heuristic backtracks to
7
the previous accuracy-satisfied configuration and continues the search
by evaluating the next candidate at the top of the salience-list.

4.2. Distributing approximate kernels over heterogeneous network nodes

A distributed approach in INC setup entails decomposing the appli-
cation into multiple partitions, each of which is assigned to a network

Z. Ebrahimi et al. Future Generation Computer Systems 172 (2025) 107864
Algorithm 1: Greedy-Based Precision-Tuning Heuristic
for Multi-Kernel Applications (customized from [67])

Input: L1: {E2E ADP Gain PS, QoR-Loss}∀16-bit Prec. Kernel
Input: L2: {E2E ADP Gain PS, QoR-Loss}∀8-bit Prec. Kernel
Input: User-Defined-QoR-Threshold, Kernel-List
Output: Approximated-Kernels [Precision]

1 Salience-List = Array [];
// Calculate ADP-gain of precision scaling, on each kernel, individually

2 for i in Kernel-List do
// Precision of this kernel is reduced to 16-bit, others are 32-bit

3 Salience-List ← L1 [i] ˃𝛥𝐴𝐷𝑃
𝛥𝑄𝑜𝑅

(16);

// Precision of this kernel is reduced to 8-bit, others are 32-bit
4 Salience-List ← L2 [i] ˃𝛥𝐴𝐷𝑃

𝛥𝑄𝑜𝑅
(8);

5 end
6 Descending Sort (Salience-List);
7 while (!timeout) do
8 for i in Salience-List do

// Apply approximation in descending order of 𝛥𝐴𝐷𝑃
𝛥𝑄𝑜𝑅

9 Config {Approx, Prec. Reduced} = Kernels [Salience-List𝑖];
10 Output-QoR = Evaluate (Config {Approx, Prec. Reduced});

// Also explore temporary configurations
11 if Output-QoR ≥ 0.95 × User-QoR-Threshold then
12 if Output-QoR ≥ User-QoR-Threshold then

// Update candidate configuration
13 Config temp ← Config {Approx, Prec. Reduced};
14 end
15 i++;
16 go to 10;
17 else
18 Break;
19 end
20 end
21 end

device,6 and the network devices are connected with a network topol-
ogy [32,34]. For such a distributed setting, X-DINC methodology needs
to distribute the 𝑁 kernels across 𝑀 network nodes (𝑀 ∈ {2,… , 𝑁−1})
by finding an optimal or near-optimal grouping. The goal is to minimize
the transmission latency by identifying the best partitioning points that
minimizes the size of the transmitted data (such goal has neither been
considered nor explored in any of the related works cited in Sections 2.3
and 2.4). In this context, our approximation approach helps finding
an optimal or near-optimal distribution solution: we propose to focus
only on Pareto or near-Pareto configurations (generated by Algorithm
1) that not only render the highest ADP gain for a user-given QoR
threshold, but also contain more kernels having the lowest precision
(8-bit in this article).

Recall that Algorithm 1 tunes the precision of kernels in a way to
minimize the {𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 × 𝑙𝑎𝑡𝑒𝑛𝑐𝑦} of the application (while satisfying
the user-given QoR-level). Therefore, multiple Pareto or near-Pareto
configurations are already generated, which have the minimum or near-
minimum latency for a given accuracy threshold (see Fig. 7). It is worth
highlighting the unique features enabled by the X-DINC, that are not
supported by the existing works: through reducing the size (bit-width)
of intermediate data that need to be communicated, our methodology
minimizes the transmission latency (which could be the dominant
portion in the end-to-end latency of the application, as discussed in

6 Finding the optimal re-partitioning and re-distributing application kernels
w.r.t. network dynamic changes (e.g., in distributed training or inference of
NNs) is an interesting track, out of the scope of this paper.
8
Section 1). Moreover, X-DINC enables the flexibility to choose among
multiple kernel configurations having an admissible accuracy. In fact,
each of these (mixed-precision) configurations might be suited for a
specific distribution scenario in an INC-setup, in which network nodes
have heterogeneous resource footprints. To show the efficacy of the
proposed distribution approach over the centralized counterpart, we
assess various scenarios having different number of network nodes and
QoR thresholds in Section 5.4.

5. Results and discussion

5.1. Experimental setup

5.1.1. Application partitioning and mapping
We developed the C++ implementation of BSS application based

on [56,76] and afterwards, it was synthesized with Vitis High-Level
Synthesis (HLS) 2020 on a commodity FPGA (AMD/Xilinx Virtex-7
VC709). For the exact performance analysis, the Hardware Description
Language (HDL)-generated design from HLS was further passed to
the downstream implementation phase, placed and routed on Virtex-
7 through AMD/Xilinx Vivado. In the experiments, the Digital Signal
Processing (DSP) units are disabled and only the 6-LUTs are used for
the synthesis. The reason behind is two-fold. First, utilizing only 6-
LUTs eases the comparison of different approaches in terms of area
(as estimating the required number of LUTs to be replaced with a DSP
varies for each function and hence, is not a straightforward task). Sec-
ond, adopting an LUT-based implementation is also recommended by
many FPGA vendors, for low bit-widths operations (e.g., at 8-bit) [77].
It should be mentioned that the kernels include all the computational
segments of the application and only the non-computational and critical
parts (e.g., memory or loop index calculation) are exempted from the
approximations. Finally, as shown in Appendix (Fig. 10), the applica-
tion is partitioned into eight computational kernels and analyzed by the
sensitivity analysis process.

5.1.2. Benchmark
Similar to State of the Art (SoA) works [52,54–56], we have utilized

the widely-used acoustic data-set of Malfunctioning Industrial Machine
Investigation and Inspection (MIMII) [78] that collects real-world data
from industry machines. MIMII contains 26 092 normal and abnormal
operating acoustic data from four types of machines: valves, pumps,
fans, and slide rails. Every segment has a duration of 10-s audio,
sampled at the frequency of 16 kHz.

5.1.3. QoR metrics
The accuracy of an approximation configuration is assessed w.r.t.

different metrics with simulations. We measured SDR and SNR as the
indicators for the separation quality of the audio-based BSS application.
These metrics are the most widely used audio accuracy metrics in the
BSS studies, comprehensively covering different types of errors [56].
SDR and SNR are defined in Eqs. (1) and (2) respectively, wherein 𝑆
and 𝑆̂ denote the original and estimated source. 𝑒𝑖𝑛𝑡𝑒𝑟𝑓 , 𝑒𝑛𝑜𝑖𝑠𝑒, and 𝑒𝑎𝑟𝑡𝑖𝑓
represent the errors attributed from interference, noise, and artifacts,
respectively.

𝑆𝑁𝑅 = 20
𝑛
∑

𝑖=1
log10

|𝑆𝑖|

|𝑆̂𝑖 − 𝑆𝑖|
, 𝑖 = 1, 2,… , 𝑚 (1)

𝑆𝐷𝑅 = 10 log10
‖𝑆2

‖

‖𝑒 + 𝑒 + 𝑒 ‖

2
(2)
𝑖𝑛𝑡𝑒𝑟𝑓 𝑛𝑜𝑖𝑠𝑒 𝑎𝑟𝑡𝑖𝑓

Z. Ebrahimi et al. Future Generation Computer Systems 172 (2025) 107864
Fig. 7. Different performance-QoR trade-offs are enabled by the approximate, mixed-precision configurations which also achieve similar/higher gains compared to uniform configs.
The heuristic also finds many Pareto/near-Pareto points in the 10%, 20%, and 30% time of the exhaustive search.
5.2. Cross-layer error-sensitivity analysis results

In the left-hand side of Fig. 4, we first detail the contribution of each
kernel, when the BSS application is implemented in accurate mode.
The evaluated metrics are the end-to-end latency (the summation of
kernels’ delays), 6-LUT count, and ADP as a representative of energy.7
This figure shows that the kernels contribute differently to each of the
performance metrics (e.g., application latency or energy). This infor-
mation is important to be considered by the designer, when targeting
a high-performance or energy-efficient design.

In the following, we present the results of sensitivity analysis. As
discussed in 3.2, this process is applied in four steps. The right side
of Fig. 4 demonstrates the result of the first step, i.e., the sensitivity
(i.e., separation accuracy) of BSS to various sampling periods and
frequencies. Afterwards, Fig. 5 reveals the low sensitivity of individual
kernels to replacing the complex operations/functions in all kernels
with the approximated alternatives. Moreover, this figure also shows
the sensitivity of individual kernels to precision scaling, by applying
this technique with a one-kernel-at-a-time strategy discussed earlier.
Finally, Fig. 6 shows the effect of loop perforation (on top of other
approximation techniques) on the accuracy of the application and
proves the convergence of separation matrix, for all the scenarios. The
key observations from the sensitivity analysis are pin-pointed herein.

• Changing the sampling period and frequency : as can be observed in the
right-side of Fig. 4, implementing the BSS application at the high

7 A comprehensive and detailed energy calculation for such a large
multi-kernel application is arduous and considered for the follow-up track.
9
accuracy of FP precision with high sampling frequency and period
(similar to [52,54–56]) is significantly resource-hungry. For example,
the right-most Green bar and Red bar in this sub-figure represent the
requirement of 50860 LUTs and 84 MB memory, respectively, for im-
plementing the BSS configuration that can support processing a 10 s
audio, sampled at the frequency of 16 kHz. Such a resource-hungry
implementation hinders the practical deployment of this multi-kernel
application in most of FPGA- or ASIC-based network switches. In
fact, only few FPGAs from Xilinx/AMD Versal, UltraScale, or Virtex
have the memory capacity of higher than 30 MB. However, as can be
observed in this figure, reducing the sampling frequency and period
to 4-s and 4 kHz (Green and Red bars on the left side), not only
reduces the required resources significantly (up to 93% reduction
in memory and 42% reduction in 6-LUTs), but also maintains the
accuracy at an acceptable level (>16 dB) and satisfies the Nyquist-
rate sampling criteria [79]. It is worth noting that the SDR/SNR value
above 15 dB is considered as an acceptable separation quality for BSS
application [53,80,81]. Therefore, based on this observation we have
chosen the audio period of 4 s, sampled at the frequency of 4 kHz,
for the rest of the experiments.

• Approximation of operations (multiplication, division, square root) and
functions (tanh): as can be seen in Fig. 5, replacing the exact opera-
tions with the SIMDive-based version [82] (which is P4-compatible8)
not only can significantly improve the ADP of the kernel, but also
marginally affects the accuracy in most kernels, when the preci-
sion is 32- or 16-bit (all bars with 32- or 16-bit label have a high

8 Further reasons for using SIMDive MUL/DIV is discussed inAppendix.

Z. Ebrahimi et al. Future Generation Computer Systems 172 (2025) 107864
SDR/SNR accuracy of more than 16 dB). In fact, even when these
operations/functions are approximated in all application kernels, the
SDR (SNR) metrics are higher than 18 (14) dB (see the black hexagon
markers in Fig. 7). Our analysis has shown that this negligible quality
drop is endowed to the near-zero biased errors of SIMDive multi-
plication/division, which can cancel out each other in consecutive
kernels. Moreover, as mentioned earlier, cutting-edge studies have
also shown that a low error-bias error plays a pivotal role in mini-
mizing the error accumulation in applications having multiple kernels
with an aggregation-based structure (i.e., mostly addition/multiplica-
tion operations) [65–69]. Based on this observation, SIMDive-based
operations have been deployed in all pre-processing and processing
kernels of the BSS application. The replacement of accurate mul-
tiplication/division with SIMDive, in all kernels, has pruned the
dominated points and efficiently reduced the size of design space
that needs to be explored, in which only the precision of kernels is
required to be changed (see Section 5.3).
In contrast to the approximation of multiplication and division, our
analysis shows that truncating the output of the addition/subtrac-
tion operations (more than few bits) can significantly affect the
accuracy, especially when applied in kernels such as Covariance.
The high-sensitivity of addition to approximation for other matrix
multiplication-based applications is also endorsed by [70]. Therefore,
addition and subtraction operations are maintained accurate in our
implementations. Moreover, the small contribution of these opera-
tions in the total energy of application kernels, (Fig. 2) justifies our
decision that it is better to preserve the accurate structure of the these
operations.

• Kernels contribute differently to the QoR fluctuations and the gained
performance: as discussed earlier, the kernels contribute differently,
to each of the performance metrics (Fig. 4 left side). Therefore, the
importance order of kernels (for approximation) would be different,
w.r.t. the ultimate design goal. For example, Fig. 5 shows that when
a high-performance design with a shorter separation time is the goal,
approximation of the covariance kernel results in higher latency re-
duction (due to its division, acting as the speed bottleneck operation).
However, when resource (LUT) saving is the goal, the approximation
of Hessenberg and QR Decomposition kernels is more beneficial. More-
over, this figure also reveals that the significance order of kernels in
their QoR loss can vary from their order in the gained performance
(after applying the same approximation technique). For example,
as can be seen in Fig. 5, the most error-resilient kernel is Evolving
Separation, while, in general, the approximation of Covariance can
result in higher performance gain.
Overall, aforementioned insights further corroborate our initial state-
ment, i.e., that the relation between 𝛥Performance and 𝛥QoR should
be considered for adjusting the approximation knobs in a multi-kernel
application, and not based on the primary appearance order of kernels
(or their contributions), in the accurate configuration.

• Effect of loop perforation on accuracy and convergence of separation
matrix: Fig. 6 shows that the accuracy fluctuations and convergence
of the separation matrix after applying the loop perforation (on top
of other techniques) on the last three kernel of BSS (which consist
of loops and can be tuned to 8−, 16−, or 32−bit precision). As
can be seen in this figure, reducing the number of iterations in the
convergence checking to ∼25–35 not only maintains an acceptable
QoR-level for many of the kernel configurations (i.e., the configu-
rations which maintain the SDR above 15 dB), but the separation
matrix also successfully converges. Skipping further and unnecessary
iterations can greatly reduce the response time of the application.
Therefore, we have opted to update the separation matrix until 35
times in our experiments.

The outputs of the sensitivity analysis (the lists of end-to-end {𝛥per-
formance gain, 𝛥QoR}) are given to the precision-tuning heuristic in the
next step.
10
5.3. Performance gains of approximate configurations obtained by the
cross-layer approximation methodology

Herein, the overall efficacy of the cross-layer approximation
methodology is evaluated. Fig. 7 illustrates the accuracy and perfor-
mance gain of approximate configurations over the baseline double-
precision FP configuration having the accurate operations (each of the
eight kernels can have the precision of 8-, 16-, or 32-bit, resulting in 38 =
6561 approximate configurations). Moreover, Fig. 7 also demonstrates
the efficiency of the greedy heuristic in finding the Pareto- or near-
Pareto points by distinguishing the ones that are found by the heuristic,
in different exploration time-limits. The results show that not only
new ADP-QoR trade-off levels (mixed-precision configurations) are
generated by the X-DINC methodology, but also these approximate
configurations reach a higher performance gain than the uniform-
precision ones. Please note that not only one unique, but a set of
configurations reach permissible ADP-QoR trade-offs, which can be
utilized for network nodes having different resource-footprint. For
example, it is worth highlighting that the proposed X-DINC method-
ology has been able to generate the Pareto-optimal configuration of
the BSS application which can be fit into one single FPGA (in terms
of both memory and LUT) while maintaining an acceptable accuracy
of >16 dB (see overlapping pink circles and green stars in e.g., sub-
figures at the right side of Fig. 7). X-DINC can also support dynamic
scenarios in multi-hop networks and energy management routines for
heterogeneous resources: arbitrary heuristic-generated configurations
can be stored in FPGA SPI/BPI flash memory and loaded at runtime,
enabling X-DINC to adapt to e.g., network congestion, node failures,
or bandwidth changes, by switching configurations and redistributing
approximated kernels.

Table 2 also details two commonly utilized metrics, i.e., the fraction
of Pareto points (which are found in 5% to 50% of the exhaustive
search time) and the coverage ratio for the total number of non-
dominated design points and the significance of these points, known
as the hypervolume indicator [83]. Although a heuristic algorithm may
not always find all globally optimal solutions, the results show that our
heuristic has been able to find more than 80% of the Pareto points,
within the first 5% of the exhaustive DSE time (as shown in Table 2).
This Table also asserts the efficiency of X-DINC methodology in saving
the exploration time, which would be highly desired for the larger
design spaces, where a brute-force search is not time-wise tractable. For
example, simulating the accuracy of 6561 possible kernel configurations
in C++ for BSS takes 312 h (on a Rack Server equipped with Intel
Xeon E5-2667 CPU @ 3.20 GHz and 512 GB RAM), when analyzed
on 25 set of 4-s audio samples from the MIMII database. Please note,
many near-Pareto points (that are found by the heuristic) also render
admissible resource-accuracy trade-off but are not reported in this
Table.

We have also compared the greedy strategy of [74,84] against ours.
Such approaches only considered the 𝛥QoR as the deciding metric in
navigating the heuristic (i.e. the precision of which kernel should be
reduced at each step). In contrast, our approach considers the 𝛥ADP𝛥QoR as
the salience metric. We have compared these heuristics by analyzing
various accuracy levels for the BSS QoR threshold. Fig. 8 compares
the ADP and memory requirement of the configurations generated by
the heuristics (normalized to the respective values for the FP-based
configuration). As can be seen in this figure, for most of accuracy-
thresholds, our heuristic can achieve higher performance gain in terms
of both ADP and memory (and also in a shorter searching time). The
effectiveness of our heuristic is also even more pronounced, when the
accuracy threshold is higher: as can be seen in Fig. 8, the proportional
gap between the heuristics (in terms of resource savings) is higher for
the higher accuracy levels. Such an efficient heuristic can therefore
obviate the need of an exhaustive search (the size of the design space
increases exponentially w.r.t. the number of application kernels or

Z. Ebrahimi et al. Future Generation Computer Systems 172 (2025) 107864
Fig. 8. Comparing the proposed 𝛥ADP
𝛥QoR based versus the 𝛥QoR based greedy heuristic [74,84] in various QoR levels: the former (X-DINC) finds configurations with higher performance

gain and lower memory requirement.
Table 2
Percentage of 35 Pareto points, found in different exploration time of the heuristic.
 Heuristic iteration (% of exhaustive search) 5 15 25 35 50
 Coverage ratio of Pareto points (%) 80 85.7 85.7 85.7 88.6
 Coverage ratio of Hypervolume (%) 61.8 69.8 69.8 69.8 72.5

nodes within the network) and expedite the selection of a Pareto or
near-Pareto configuration at run-time and speed up decision-making
actions.

5.4. End-to-end performance gains of distributed (INC) over centralized
approach

For the final evaluation of proposed INC-tailored approximation
methodology, we have considered various scenarios from Accurate-
Centralized, Accurate-Distributed (INC), Approximate-Centralized, and
Approximate-Distributed (INC). The experimental testbed for the dis-
tributed scenarios is established by connecting one to six hops, each
is equipped with a network-connected Virtex-7 FPGA. For each dis-
tribution scenario, we have also measured the end-to-end latency of
the application for six levels of QoR (i.e., SDR accuracy-levels of
14, 16, 18, 20, 21, and the FP precision as the highest accurate one). The
definition of the end-to-end latency denoted as 𝑙e2e of INC-accelerated
scenarios for the 𝑚 number of network nodes is given in Eq. (3). In
this equation, 𝑡𝑐 , 𝑡𝑝, 𝑡𝑢, and 𝑡𝑑 represent the delays for computation,
propagation, upload, and download, respectively.9

𝑙e2e = 𝑚 ⋅ 𝑡𝑐 + (𝑚 − 1) ⋅ (𝑡𝑢 + 𝑡𝑝 + 𝑡𝑑) (3)

The representative values of network’s communication parameters
are adopted from the 5G International Mobile Telecommunications
(IMT)-2020 Key Performance Indicator (KPI) standards [85] for a con-
nected network in an industrial automation setting [86]. In this setting,
the nodes are connected by links having a propagation delay of 1 ms
which shows the transmission latency (𝑡𝑝) between two consecutive
hops. The user experienced data rates for downlink and uplink are also
100 and 50 mbps, respectively. Note, while 𝑡𝑝 is constant, the other
variables are computed based on the size of the data that is transmitted

9 Although packing/unpacking data is also a communication overhead,
evaluation of [34] shows it is a minor cost (<2%) in the overall traffic.
11
Table 3
Grouping 8 kernels of BSS application into 2–7 nodes for distributing on network nodes
in an INC scenario.
 Distribution
scenario

Grouping Distribution
scenario

Grouping

 2-Node {1,2},{3,4,5,6,7,8} 5-Node {1},{2},{3},{4,5},{6,7,8}
 3-Node {1},{2},{3,4,5,6,7,8} 6-Node {1},{2},{3},{4},{5},{6,7,8}
 4-Node {1},{2},{3,4,5},{6,7,8} 7-Node {1},{2},{3},{4},{5},{6,7},{8}

between consecutive hops. Fig. 9 compares the end-to-end latency
of the centralized versus distributed (INC-accelerated) scenarios, for
different QoR-levels. Table 3 also shows the grouping of 8 kernels into
2−7 nodes (for SDR = 20 dB). The following deductions can be inferred
based on this figure:
• First, the left part of Fig. 9 compares the end-to-end latency of central-
ized implementations for accurate versus approximate configurations
(i.e., 14 dB ≤ SDR ≤ 21 dB). Results show that the proposed approx-
imation methodology significantly improves application’s response
time, compared to the accurate approach (having 76 ms latency),
while QoR is also kept at an admissible threshold.

• Second, as shown in the right part of this figure, the associated
costs of download, upload, and propagation, altogether are growing
linearly w.r.t. the number of network links and are much less than of
the computation latency. In fact, the transmission cost for 2-nodes
is 2% of the total latency and it becomes at most 12% for the 7-
node scenario.10 This is attributed to the proposed approximation
methodology which (1) efficiently reduces the required number of
samples and (2) reduces the bit-width of the data that needs to be
transmitted between the hops by applying precision scaling. This
means that the data separation job can be performed faster via
the in-network acceleration, through the network hops. The results
also pronounce the efficacy of the proposed in-network acceleration
methodology, especially when the resource footprint of one single
node may not be sufficient for implementing the whole application
kernels at a high precision: in contrast to the Accurate-Centralized
FP-based implementation (which require 84 MB of memory and in-
feasible to be implemented in one single FPGA), all the proposed
Approximate-Distributed scenarios can be practically implemented in

10 Communication overhead will be >50% for the 8-node scenario, as all
input samples must be transferred again to the 𝑇 𝑎𝑛ℎ kernel, if separated.

Z. Ebrahimi et al. Future Generation Computer Systems 172 (2025) 107864
Fig. 9. The end-to-end latency (response time) of BSS application in the centralized
(left) versus INC-accelerated and distributed approach (right).

one single FPGA, with the memory requirement of less than 30 MB
per node.

• Note that the performance gains reported here, compared to the cen-
tralized approach, are based on distributing the kernels over a chain
of FPGA-based nodes. The gains in the computation time become
even more significant when the kernels are offloaded to other types
of hardware, especially (ASIC) switches having orders of magnitude
higher processing speed than a general purpose processor, embedded
in a stand-alone host (i.e., in a centralized approach). In fact, as
discussed before, besides the computation time, the proposed approx-
imation and distribution methodology also reduces the transmission
time. Therefore, such a methodology is highly desirable, especially in
distributed scenarios with a higher number of network nodes, where
the transmission latency might become the dominant portion of the
end-to-end latency.

• The optimal number of distributed nodes depends on application
structure (e.g., kernel/operation parallelizability), required end-to-
end response time, computational/memory size and node resources,
and kernel output data size. X-DINC can speed up such optimization
by leveraging the error-resiliency of kernels, reducing the required
resources and, consequently, the number of network nodes needed to
implement the target application.

6. Remarks and challenges

6.1. Remarks

Scope of X-DINC: the focus of this article is narrowed to analyze the
in-network acceleration of multi-kernel applications from the approxi-
mation perspective. We shown that by capitalizing on error-resiliency
potentials across the abstraction layers within a network hierarchy,
properly approximating and distributing application kernels over the
network hops can result in a shorter (application) response time and
resource requirement, when compared to the accurate-centralized ap-
proach. A further analysis on a packet-processing basis is an interesting
future track, different from the scope of this article and its claimed
contributions.

Applicability to heterogeneous devices and other applications: X-DINC
attempts to cope with the limitations of switches and P4 by introducing
and adjusting various approximation/optimization knobs, which are
agnostic from the underlying architecture. For instance, our impre-
cise MUL/DIV/SQRT algorithms use only shift and ADD/SUB oper-
ations. Additionally, reducing processed samples and skipping loop
iterations remain hardware-agnostic. Precision scaling (4, 8, 16-bit) is
supported in SoA SmartNICs from vendors like NVIDIA (BlueField),
Intel (Infrastructure Processing Unit (IPU)), and Netronome. While
programmable ASIC switches do not natively support this, P4 enables
bit-masking and shifting to emulate lower-precision operations for both
storage and computation. Similarly, loop perforation is also applicable
12
to such devices through skipping the iterations in the so-called recircu-
lation process. Thus, while we prototyped our methodology on the BSS
case study and on an FPGA-based testbed, the proposed approximation
techniques and methodology are applicable to other multi-kernel ap-
plications and heterogeneous network devices as well. For example,
many ML algorithms, especially NNs, can significantly benefit from
the proposed kernel-wise sensitivity analysis and the mixed-precision
strategy (for a layer-wise quantization in the scope of NNs), considering
that the multiplication, division, and square root operations are also
abundantly used in such algorithms.

Task scheduling and placement : While multiple configurations with
different resource-accuracy trade-offs, generated by X-DINC, can aid
addressing dynamic scenarios in multi-hop networks and energy man-
agement techniques for heterogeneous resources, a Software-Defined
Networking (SDN) controller is responsible for such coordination and
dynamic resource allocation tasks, adapting the workloads w.r.t. the
network conditions, and orchestrating distributed tasks across network
infrastructures [7]. Such task management strategies (briefly discussed
in the studies cited in Section 2.1) are not within the scope of this paper.

6.2. Challenges

Compatibility of INC-based approach with current network setup and
infrastructures: although the preliminary results in this paper and those
cited in Section 2 have shown the advantages of INC, the question that
how INC should be efficiently integrated in the current network setting
(to minimize the additional overheads) is an ongoing research field
for the 6G network providers. In fact, to the best of our knowledge,
there is no existing work or simulation tool that models and compares
the performance of applications when implemented in an INC setup.
Going into details, utilizing the existing forwarding layer to support INC
is a non-trivial job11 that is partly investigated in [55,87]. Moreover,
although there is currently no hardware platform that is specifically
designed for in-network based approaches, Intel has announced that its
IPU carries great potential to facilitate the INC solutions [9].

Traffic management in a heterogeneous co-design approach: coupling an
FPGA to an ASIC switch in a co-design approach necessitates further
implementation efforts. First, the computations should be efficiently
divided to two different architectures. Second, matching and merging
the traffic rates (without leading to congestion) requires meticulous
attention. In fact, transferring packets between an ASIC switch and
its co-processor FPGA is not straightforward, since the interconnect
between them may act as a performance bottleneck. Such packet rates
can be fixed or workload dependent, therefore, the switch should adapt
to such dynamic scenarios. Addressing this, either all switch pipelines
can connect to the FPGA via a single egress port or each pipeline can
connect independently, via a dedicated port [36]. Moreover, the switch
also needs to differentiate between new incoming traffic and returning
packets from the FPGA [41]. Few potential solutions for such concerns
are already proposed in [41] which includes bus adaptation and traffic
encapsulation.

7. Conclusions and future work

This paper presented X-DINC, a cross-layer approximation and dis-
tribution methodology to enable or facilitate the in-network accelera-
tion of multi-kernel applications, by capitalizing on the error-resiliency
of the applications. X-DINC introduces various approximation and op-
timization knobs across the abstraction layers (within a network hi-
erarchy) and efficiently adjust them to generate multiple optimal or
near-optimal configurations with acceptable performance-QoR trade-
offs. Finally, X-DINC distributes the (mixed-precision) approximate

11 The application computation problem is always decoupled from the
data-forwarding, in literature studies.

Z. Ebrahimi et al.

𝐴

Future Generation Computer Systems 172 (2025) 107864
kernel configurations over a set of network nodes in a way to mini-
mize the transmission overhead and end-to-end response time of the
application (which are significantly shorter compared to the tradi-
tional accurate-centralized approach). We believe these contributions
make steps towards the in-network acceleration of multi-kernel applica-
tions, as both intermediate network nodes and Internet of Things (IoT)
edge devices have heterogeneous resource footprint and processing
speed. Another potential use-case the X-DINC methodology could be
an approximate-aware partitioning of the NN models, especially for
an edge-cloud collaborative setting, which is a cutting-edge topic in
the literature. In this context, utilizing the proposed approximation
methodology can help to adjust the load of computation w.r.t the such
requirements.

In the envisioned follow-up work, we will expand the X-DINC ap-
proximation and distribution methodology for the in-network acceler-
ation of NNs in various distribution scenarios. Furthermore, we will
present a co-design approach through which the application kernels
will be efficiently grouped to be offloaded to an ASIC-switch and
its co-processing FPGA. Another interesting track could be to imple-
ment a runtime coordination/management process which finds the best
re-distribution scenario, that can address the dynamic changes with
minimum reconfiguration overhead.

CRediT authorship contribution statement

Zahra Ebrahimi: Writing, Visualization, Review & editing, Con-
ceptualization, Ideation, Methodology, Resources, Funding acquisition,
Supervision, Project administration. Maryam Eslami: Methodology,
Visualization. Xun Xiao: Supervision, Review & editing. Akash Kumar:
Supervision, Project administration, Review & editing.

Acknowledgment

This research is co-funded by the following projects: X-DNet (BMBF,
Förderkennzeichen 01∣S17044, Software Campus program), X-ReAp
(DFG, United States, Number 380524764) and in part by EXIGENCE
(HORIZON-JU-SNS-2023, GA: 101139120).

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix. Background and preliminaries

A.1. Blind source separation problem

Consider 𝑛 sources of signals that are sampled in 𝑚 time slots,
the size of the data matrix is 𝑆𝑛×𝑚. Due to the mutual interference
of original signal(s) and possible noises emitted by other sources, the
sensed data, is inevitably a mixture of multiple sources (mixed-data
matrix 𝑋). The relation between 𝑆 and 𝑋 can be formulated as 𝑋 =
𝐴 × 𝑆, wherein 𝐴 is the interference matrix that distorted the original
signal. In reality, the coefficients of the original signal 𝑆 and the
interference matrix 𝐴 are unknown, making the receiver blind to the
source signal. BSS attempts to invert the mixing process and recover a
near-optimal estimation of original signal 𝑆. Mathematically this can
be formulated as 𝑆 = 𝐴−1 × 𝑋. This is obtained by calculating the so-
called separation-matrix 𝑊 and then applying it on the mixed-signal 𝑋
through 𝑆 = 𝑊 × 𝑋. BSS consists eight kernels, which are discussed
herein (also depicted in Fig. 10).

First, whitening process is performed which decorrelates the sampled
data and makes the sources as statistically-independent as possible.
13
Whitening is applied through the five steps. First, covariance matrix cal-
culation captures the statistical relationships, i.e., deriving a covariance
𝐶 between different features of the data. After transforming the covari-
ance matrix to the Hessenberg form (which reduces the computation
complexity of the next phase), the QR eigenvalue and eigenvector decom-
position steps break down the covariance matrix 𝐶 into its constituent
eigenvectors and eigenvalues (𝐶 = 𝐸 ×𝐷 × 𝐸𝑇 , where 𝐸 is the matrix
of eigenvectors and 𝐷 is the diagonal matrix of eigenvalues). The set
of eigenvectors represent the directions along which the data varies
the most, while the corresponding eigenvalues determine the variance
along each of those eigenvector directions. Finally, Back Substitution
Solver derives the whitening matrix 𝑊 as (𝑊 = 𝐷− 1

2 × 𝐸𝑇) and apply
it to the zero-centered input data to decorrelate the data and removes
the dependencies between different data dimensions.

After whitening, the Independent Component Analysis process should
be applied. FastICA is the most widely used approach for solving this
extraction problem. FastICA algorithm iteratively enhances a randomly-
initiated matrix, until convergence happens. Each iteration has three
sub-steps, as follows. Tanh Analysis is an optimization step which
improves the convergence of the algorithm through maximizing the
statistical independence (or non-Gaussianity) of the data and reduces
the sensitivity of separation matrix to outliers. Afterwards, Evolving
Separation refines the estimation of the independent components by
updating the separating matrix (i.e, applying a contrast function on the
current separation matrix). After performing the update process, the
estimated independent components may still be correlated. Therefore,
the Gram–Schmidt decorrelation algorithm [88] is applied to ensure that
the components are decorrelated, i.e., orthogonal to each other. Finally,
the independent components are normalized, the weight vectors in
the separation-matrix are updated, and the convergence condition is
assessed (by comparing the Euclidean distance of two consecutive
separation matrix).

A.2. Mitchell-based approximation of multiplication, division, and square
root

As the accurate implementations of multiplication, division, and
square root are not supported in P4/ASIC switches, we have utilized
the approximation of SIMDive [82] due to two main reasons. First,
Mitchell’s algorithm translates multiplication (division) to addition
(subtraction) in the logarithmic representation, as shown in Eqs. (4)
and (5). Such a conversion not only facilitates a resource-efficient
implementation of complex multiplication and division operations but
also only utilizes simple operations (if-else, addition/subtraction, and
shift), all of which are supported in P4 language. Hence, such Mitchell-
based approximate variants can be easily adopted for implementation
in a variety of P4-based network nodes. Second, the SoA SIMDive
hybrid multiplier and divider unit has significantly improved the ac-
curacy of Mitchell’s algorithms to 99.2% and bound the average of
absolute relative error Average of Absolute Relative Error (ARE) to
<0.8%. Moreover, SIMDive enjoys a negligible error bias of less than
0.05%, a metric that is reported to play a pivotal role in minimizing the
accumulated error in consecutive kernels of multi-kernel applications.

Mitchell’s multiplication and division algorithms [89]: The binary rep-
resentation of 𝑁-bit input 𝐴 can be written as Eq. (6), wherein 𝑘 shows
the position of the leading one. The rest of the bits (starting from
position 𝑘 − 1 to 0) are considered as the fractional part and are in
the range of 0 ≤ 𝑥 < 1.

𝑃 =𝐴×𝐵
𝐴𝑝𝑝𝑟𝑜𝑥.
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

log
l̃og𝑃 =l̃og𝐴+l̃og𝐵

𝐴𝑝𝑝𝑟𝑜𝑥.
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝐴𝑛𝑡𝑖−𝑙𝑜𝑔

𝑃 = 2l̃og𝑃 (4)

𝐷= 𝐴 ÷ 𝐵
𝐴𝑝𝑝𝑟𝑜𝑥.
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

𝑙𝑜𝑔
l̃og𝐷=l̃og𝐴−l̃og𝐵

𝐴𝑝𝑝𝑟𝑜𝑥.
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝐴𝑛𝑡𝑖−𝑙𝑜𝑔

𝐷̃=2l̃og𝐷 (5)

=2𝑘+
𝑘−1
∑

2𝑖𝑏𝑖=2𝑘(1 + 𝑥)
𝑒.𝑔.
←←←←←←←←←←←←←←→58 = 25(1 + 0.11010)2, 18=24(1 + 0.001)2 (6)
𝑖=0

https://cfaed.tu-dresden.de/pd-research/X-DNet
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://softwarecampus.de/teilnehmer/zarah-ebrahimi-mamaghani/
https://gepris.dfg.de/gepris/projekt/380524764?context=projekt&task=showDetail&id=380524764&
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/how-to-participate/org-details/999999999/project/101139120/program/43108390/details

Z. Ebrahimi et al. Future Generation Computer Systems 172 (2025) 107864
Fig. 10. The kernel structure of Blind Source Separation application (whitening and FastICA) and the detailed instruction flow in each kernel. The approximation knobs are
highlighted in the figure.
In the linear approximation of log function, log2(1 + 𝑥) is approxi-
mated to 𝑥, when 0 ≤ 𝑥 < 1. Hence, the approximate log of 𝐴 is achieved
by concatenating the integer part (exponent 𝑘) and fractional part (rest
of the bits, starting from position 𝑘 − 1 to 0), as shown in Eq. (7):

log2(𝐴)≃𝑘+𝑥→ log2(58)≃(101.11010)2, log2(18)≃(100.001)2 (7)

By applying the same process on the second input and obtaining
its approximate log, the summation (subtraction) of two parts can is
calculated by Eq. (8) (Eq. (9)).

l̃og2(𝑃)=(𝑘1 + 𝑘2)+(𝑥1 + 𝑥2) →𝐾𝑠=(1001)2, 𝑋𝑠=(0.1111)2 (8)

l̃og2(𝐷̃) = (𝑘1 − 𝑘2) + (𝑥1 − 𝑥2) → 𝐾𝑠 = (1)2, 𝑋𝑠 = (0.1011)2 (9)

Lastly, the anti-log (which mathematically a shift operation) is
applied to derive the binary representation of the approximate product
(quotient), as shown in Eq. (10) (Eq. (11)):

𝑃=
{

2𝑘1+𝑘2 (1 + 𝑥1 + 𝑥2), 𝑥1 + 𝑥2 < 1
2𝑘1+𝑘2+1(𝑥1 + 𝑥2), 𝑥1 + 𝑥2 ≥ 1

→ 𝑃 = 992, 𝑃𝑎𝑐𝑐 = 1044 (10)

𝐷̃=
{

2𝑘1−𝑘2−1(2 + 𝑥1 − 𝑥2), 𝑥1 − 𝑥2 < 0
2𝑘1−𝑘2 (1 + 𝑥1 − 𝑥2), 𝑥1 − 𝑥2 ≥ 0

→𝐷̃=(11)2=𝐷𝑎𝑐𝑐 =3 (11)

Square root : this operation is implemented via non-restoring al-
gorithm [90] (due to being resource-friendly), wherein the accurate
multiplication is replaced with the SIMDive version.

Data availability

We will open-source the work (codes and data), when the article is
accepted.
14
References

[1] M. Chowdhury, M. Zaharia, J. Ma, M.I. Jordan, I. Stoica, Managing data
transfers in computer clusters with orchestra, in: ACM Conference for Special
Interest Group on Data Communications, Which Specializes in the Field of
Communication and Computer Networks, SIGCOMM, Association for Computing
Machinery, New York, NY, USA, 2011, pp. 98–109, URL https://doi.org/10.
1145/2018436.2018448.

[2] S. Kianpisheh, T. Taleb, A survey on in-network computing: Programmable data
plane and technology specific applications, IEEE Commun. Surv. Tutor. 25 (1)
(2023) 701–761.

[3] Cisco, Cisco annual internet report (2018–2023) white paper, 2020,
[4] N. Hu, Z. Tian, X. Du, M. Guizani, An energy-efficient in-network computing

paradigm for 6G, IEEE Trans. Green Commun. Netw. (TGCN) 5 (4) (2021)
1722–1733.

[5] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, P. Kalnis, In-network computation
is a dumb idea whose time has come, in: Proceedings of the 16th ACM Workshop
on Hot Topics in Networks, HotNets ’17, Association for Computing Machinery,
New York, NY, USA, 2017, pp. 150–156, URL https://doi.org/10.1145/3152434.
3152461.

[6] Microsoft, Unlocking the potential of in-network computing for telecommuni-
cation workloads, 2023, https://azure.microsoft.com/en-us/blog/unlocking-the-
potential-of-in-network-computing-for-telecommunication-workloads/.

[7] C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, N. Zilberman, In-network
machine learning using programmable network devices: A survey, IEEE Commun.
Surv. Tutor. (2023) 1–1.

[8] Y. Tokusashi, H.T. Dang, F. Pedone, R. Soulé, N. Zilberman, The case for
in-network computing on demand, in: Proceedings of the Fourteenth EuroSys
Conference, EuroSys ’19, Association for Computing Machinery, New York, NY,
USA, 2019, URL https://doi.org/10.1145/3302424.3303979.

[9] W. Jiang, H. Jiang, J. Wu, Q. Chen, Accelerating distributed cloud storage
systems with in-network computing, IEEE Netw. 37 (4) (2023) 64–70.

[10] D. Sanvito, G. Siracusano, R. Bifulco, Can the network be the AI accelerator? in:
Morning Workshop on in-Network Computing, NetCompute, Association for
Computing Machinery, New York, NY, USA, 2018, pp. 20–25, URL https://doi.
org/10.1145/3229591.3229594.

[11] Intel, Intel tofino 2 specification, 2022, https://www.intel.de/content/
www/de/de/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-
pipelines/specifications.html.

[12] Z. Xiong, N. Zilberman, Do switches dream of machine learning? Toward in-
network classification, in: ACM Workshop on Hot Topics in Networks, HotNets,

https://doi.org/10.1145/2018436.2018448
https://doi.org/10.1145/2018436.2018448
https://doi.org/10.1145/2018436.2018448
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb2
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb2
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb2
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb2
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb2
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb3
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb4
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb4
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb4
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb4
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb4
https://doi.org/10.1145/3152434.3152461
https://doi.org/10.1145/3152434.3152461
https://doi.org/10.1145/3152434.3152461
https://azure.microsoft.com/en-us/blog/unlocking-the-potential-of-in-network-computing-for-telecommunication-workloads/
https://azure.microsoft.com/en-us/blog/unlocking-the-potential-of-in-network-computing-for-telecommunication-workloads/
https://azure.microsoft.com/en-us/blog/unlocking-the-potential-of-in-network-computing-for-telecommunication-workloads/
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb7
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb7
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb7
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb7
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb7
https://doi.org/10.1145/3302424.3303979
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb9
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb9
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb9
https://doi.org/10.1145/3229591.3229594
https://doi.org/10.1145/3229591.3229594
https://doi.org/10.1145/3229591.3229594
https://www.intel.de/content/www/de/de/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://www.intel.de/content/www/de/de/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://www.intel.de/content/www/de/de/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://www.intel.de/content/www/de/de/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html
https://www.intel.de/content/www/de/de/products/sku/218648/intel-tofino-2-12-8-tbps-20-stage-4-pipelines/specifications.html

Z. Ebrahimi et al. Future Generation Computer Systems 172 (2025) 107864
Association for Computing Machinery, New York, NY, USA, 2019, pp. 25–33,
URL https://doi.org/10.1145/3365609.3365864.

[13] M. Malekpourshahraki, B.E. Stephens, B. Vamanan, ADA: Arithmetic operations
with adaptive TCAM population in programmable switches, in: IEEE 42nd
International Conference on Distributed Computing Systems, ICDCS, 2022, pp.
1–11.

[14] C. Zheng, M. Zang, X. Hong, R. Bensoussane, S. Vargaftik, Y. Ben-Itzhak, N.
Zilberman, Automating in-network machine learning, 2022, arXiv Preprint arXiv:
2205.08824.

[15] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, M. Mitzenmacher,
PINT: Probabilistic in-band network telemetry, in: Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer Commu-
nication, SIGCOMM ’20, Association for Computing Machinery, New York, NY,
USA, 2020, pp. 662–680, URL https://doi.org/10.1145/3387514.3405894.

[16] S. Patel, R. Atsatsang, K.M. Tichauer, M.H.L.S. Wang, J.B. Kowalkowski, N.
Sultana, In-network fractional calculations using P4 for scientific computing
workloads, in: Proceedings of the 5th International Workshop on P4 in Europe,
in: EuroP4 ’22, Association for Computing Machinery, New York, NY, USA, 2022,
pp. 33–38, URL https://doi.org/10.1145/3565475.3569083.

[17] N.K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson, S. Peter,
Evaluating the power of flexible packet processing for network resource alloca-
tion, in: USENIX Symposium on Networked Systems Design and Implementation,
NSDI, USENIX Association, Boston, MA, 2017, pp. 67–82, URL https://www.
usenix.org/conference/nsdi17/technical-sessions/presentation/sharma.

[18] D. Ding, M. Savi, D. Siracusa, Estimating logarithmic and exponential functions
to track network traffic entropy in P4, in: IEEE/IFIP Network Operations and
Management Symposium, NOMS, 2020, pp. 1–9.

[19] I. Kunze, R. Glebke, J. Scheiper, M. Bodenbenner, R.H. Schmitt, K. Wehrle,
Investigating the applicability of in-network computing to industrial scenarios,
in: 4th IEEE International Conference on Industrial Cyber-Physical Systems, ICPS,
2021, pp. 334–340.

[20] C. Zheng, Z. Xiong, T.T. Bui, S. Kaupmees, R. Bensoussane, A. Bernabeu, S.
Vargaftik, Y. Ben-Itzhak, N. Zilberman, Iisy: Practical in-network classification,
2022, arXiv Preprint arXiv:2205.08243.

[21] R. Glebke, J. Krude, I. Kunze, J. Rüth, F. Senger, K. Wehrle, Towards ex-
ecuting computer vision functionality on programmable network devices, in:
ACM CoNEXT Workshop on Emerging in-Network Computing Paradigms, ENCP,
Association for Computing Machinery, New York, NY, USA, 2019, pp. 15–20,
URL https://doi.org/10.1145/3359993.3366646.

[22] G. Siracusano, R. Bifulco, In-network neural networks, 2018, arXiv Preprint
arXiv:1801.05731.

[23] J. Luo, W. Liu, M. Tan, H. Chen, Binary neural network with P4 on pro-
grammable data plane, in: IEEE International Conference on Mobility, Sensing
and Networking, MSN, 2022, pp. 960–965.

[24] M.C. Luizelli, R. Canofre, A.F. Lorenzon, F.D. Rossi, W. Cordeiro, O.M. Caicedo,
In-network neural networks: Challenges and opportunities for innovation, IEEE
Netw. 35 (6) (2021) 68–74.

[25] M. Saquetti, R. Canofre, A.F. Lorenzon, F.D. Rossi, J.R. Azambuja, W. Cordeiro,
M.C. Luizelli, Toward in-network intelligence: Running distributed artificial
neural networks in the data plane, IEEE Commun. Lett. 25 (11) (2021)
3551–3555.

[26] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krishnamurthy,
M. Moshref, D. Ports, P. Richtarik, Scaling distributed machine learning with
In-Network aggregation, in: 18th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 21, USENIX Association, 2021, pp. 785–808,
URL https://www.usenix.org/conference/nsdi21/presentation/sapio.

[27] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, M. Swift, ATP: In-network
aggregation for multi-tenant learning, in: 18th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 21, USENIX Association, 2021, pp.
741–761, URL https://www.usenix.org/conference/nsdi21/presentation/lao.

[28] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, I. Stoica, NetCache:
Balancing key-value stores with fast in-network caching, in: ACM Symposium
on Operating Systems Principles, SOSP, Association for Computing Machinery,
New York, NY, USA, 2017, pp. 121–136, URL https://doi.org/10.1145/3132747.
3132764.

[29] A. Lerner, R. Hussein, P. Cudré-Mauroux, The case for network accelerated query
processing, in: IEEE/ACM Conference on Innovative Data Systems Research,
CIDR, 2019, URL https://api.semanticscholar.org/CorpusID:58013750.

[30] B.M. Xavier, R. Silva Guimarães, G. Comarela, M. Martinello, MAP4: A pragmatic
framework for in-network machine learning traffic classification, IEEE Trans.
Netw. Serv. Manag. 19 (4) (2022) 4176–4188.

[31] W. Xu, Z. Zhang, Y. Feng, H. Song, Z. Chen, W. Wu, G. Liu, Y. Zhang, S. Liu,
Z. Tian, B. Liu, ClickINC: In-network computing as a service in heterogeneous
programmable data-center networks, in: Proceedings of the ACM SIGCOMM
2023 Conference, in: ACM SIGCOMM ’23, Association for Computing Machinery,
New York, NY, USA, 2023, pp. 798–815, URL https://doi.org/10.1145/3603269.
3604835.
15
[32] N. Sultana, J. Sonchack, H. Giesen, I. Pedisich, Z. Han, N. Shyamkumar, S.
Burad, A. DeHon, B.T. Loo, Flightplan: Dataplane disaggregation and placement
for P4 programs, in: 18th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 21, USENIX Association, 2021, pp. 571–592, URL
https://www.usenix.org/conference/nsdi21/presentation/sultana.

[33] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, D. Walker, P4: programming protocol-
independent packet processors, SIGCOMM Comput. Commun. Rev. 44 (3) (2014)
87–95, URL https://doi.org/10.1145/2656877.2656890.

[34] C. Zheng, H. Tang, M. Zang, X. Hong, A. Feng, L. Tassiulas, N. Zilberman, DINC:
Toward distributed in-network computing, Proc. ACM Netw. 1 (CoNEXT3) (2023)
URL https://doi.org/10.1145/3629136.

[35] X. Chen, H. Liu, Q. Xiao, K. Guo, T. Sun, X. Ling, X. Liu, Q. Huang, D.
Zhang, H. Zhou, F. Zhang, C. Wu, Toward low-overhead inter-switch coordination
in network-wide data plane program deployment, in: IEEE 42nd International
Conference on Distributed Computing Systems, ICDCS, 2022, pp. 370–380.

[36] N. Gebara, A. Lerner, M. Yang, M. Yu, P. Costa, M. Ghobadi, Challenging
the stateless quo of programmable switches, in: Proceedings of the 19th ACM
Workshop on Hot Topics in Networks, in: ACM Workshop on Hot Topics in
Networks (HotNets) ’20, Association for Computing Machinery, New York, NY,
USA, 2020, pp. 153–159, URL https://doi.org/10.1145/3422604.3425928.

[37] C. Bobda, J.M. Mbongue, P. Chow, M. Ewais, N. Tarafdar, J.C. Vega, K. Eguro, D.
Koch, S. Handagala, M. Leeser, M. Herbordt, H. Shahzad, P. Hofste, B. Ringlein,
J. Szefer, A. Sanaullah, R. Tessier, The future of FPGA acceleration in datacenters
and the cloud, ACM Trans. Reconfigurable Technol. Syst. 15 (3) (2022) URL
https://doi.org/10.1145/3506713.

[38] X. Wang, Y. Niu, F. Liu, Z. Xu, When FPGA meets cloud: A first look at
performance, IEEE Trans. Cloud Comput. 10 (2) (2022) 1344–1357.

[39] C. Jin, V. Gohil, R. Karri, J. Rajendran, Security of cloud FPGAs: A survey, 2020,
arXiv Preprint arXiv:2005.04867.

[40] S. Ibanez, G. Brebner, N. McKeown, N. Zilberman, The P4-netfpga workflow
for line-rate packet processing, in: Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’19, Association for
Computing Machinery, New York, NY, USA, 2019, pp. 1–9, URL https://doi.
org/10.1145/3289602.3293924.

[41] P. Bressana, N. Zilberman, D. Vucinic, R. Soulé, Trading latency for compute
in the network, in: Proceedings of the Workshop on Network Application
Integration/CoDesign, NAI ’20, Association for Computing Machinery, New York,
NY, USA, 2020, pp. 35–40, URL https://doi.org/10.1145/3405672.3405807.

[42] A. Fiessler, S. Hager, B. Scheuermann, A.W. Moore, HyPaFilter: A versatile
hybrid FPGA packet filter, in: Proceedings of the Symposium on Architectures for
Networking and Communications Systems, ANCS ’16, Association for Computing
Machinery, New York, NY, USA, 2016, pp. 25–36, URL https://doi.org/10.1145/
2881025.2881033.

[43] R.A. Cooke, S.A. Fahmy, Quantifying the latency benefits of near-edge and in-
network FPGA acceleration, in: Proceedings of the Third ACM International
Workshop on Edge Systems, Analytics and Networking, EdgeSys ’20, Association
for Computing Machinery, New York, NY, USA, 2020, pp. 7–12, URL https:
//doi.org/10.1145/3378679.3394534.

[44] Y. Tokusashi, H. Matsutani, N. Zilberman, Lake: The power of in-network
computing, in: International Conference on ReConFigurable Computing and
FPGAs, ReConFig, 2018, pp. 1–8.

[45] S.A. Fahmy, K. Vipin, S. Shreejith, Virtualized FPGA accelerators for efficient
cloud computing, in: IEEE 7th International Conference on Cloud Computing
Technology and Science, CloudCom, 2015, pp. 430–435.

[46] L.R. Gobatto, P. Rodrigues, M.S.P. de Carvalho Tirone, W.L. da Costa Cordeiro,
J.R.F. Azambuja, Programmable data planes meets in-network computing: A
review of the state of the art and prospective directions, J. Integr. Circuits Syst.
16 (2) (2021) 1–8.

[47] N. Zilberman, Y. Audzevich, G.A. Covington, A.W. Moore, NetFPGA SUME:
Toward 100 gbps as research commodity, IEEE Micro 34 (5) (2014) 32–41.

[48] A.T.-J. Akem, M. Gucciardo, M. Fiore, et al., Flowrest: Practical flow-level
inference in programmable switches with random forests, in: IEEE International
Conference on Computer Communications, INFOCOM, 2023.

[49] D.L. Quoc, R. Chen, P. Bhatotia, C. Fetzer, V. Hilt, T. Strufe, StreamApprox:
Approximate computing for stream analytics, in: Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference, Middleware ’17, Association for
Computing Machinery, New York, NY, USA, 2017, pp. 185–197, URL https:
//doi.org/10.1145/3135974.3135989.

[50] F.E.R. Cesen, L. Csikor, C. Recalde, C.E. Rothenberg, G. Pongrácz, Towards
low latency industrial robot control in programmable data planes, in: IEEE
Conference on Network Softwarization, NetSoft, 2020, pp. 165–169.

[51] J. Rüth, R. Glebke, K. Wehrle, V. Causevic, S. Hirche, Towards in-network
industrial feedback control, in: Morning Workshop on in-Network Computing,
NetCompute, Association for Computing Machinery, New York, NY, USA, 2018,
pp. 14–19, URL https://doi.org/10.1145/3229591.3229592.

[52] H. Wu, J. He, M. Tömösközi, J. Zhang, F.H.P. Fitzek, You only hear once:
Lightweight in-network AI design for multi-object anomaly detection, in:
IEEE 21st Mediterranean Electrotechnical Conference, MELECON, 2022, pp.
1217–1222.

https://doi.org/10.1145/3365609.3365864
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb13
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb13
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb13
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb13
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb13
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb13
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb13
http://arxiv.org/abs/2205.08824
http://arxiv.org/abs/2205.08824
http://arxiv.org/abs/2205.08824
https://doi.org/10.1145/3387514.3405894
https://doi.org/10.1145/3565475.3569083
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/sharma
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/sharma
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/sharma
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb18
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb18
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb18
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb18
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb18
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb19
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb19
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb19
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb19
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb19
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb19
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb19
http://arxiv.org/abs/2205.08243
https://doi.org/10.1145/3359993.3366646
http://arxiv.org/abs/1801.05731
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb23
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb23
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb23
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb23
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb23
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb24
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb24
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb24
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb24
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb24
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb25
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb25
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb25
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb25
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb25
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb25
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb25
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/lao
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/3132747.3132764
https://api.semanticscholar.org/CorpusID:58013750
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb30
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb30
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb30
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb30
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb30
https://doi.org/10.1145/3603269.3604835
https://doi.org/10.1145/3603269.3604835
https://doi.org/10.1145/3603269.3604835
https://www.usenix.org/conference/nsdi21/presentation/sultana
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3629136
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb35
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb35
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb35
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb35
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb35
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb35
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb35
https://doi.org/10.1145/3422604.3425928
https://doi.org/10.1145/3506713
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb38
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb38
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb38
http://arxiv.org/abs/2005.04867
https://doi.org/10.1145/3289602.3293924
https://doi.org/10.1145/3289602.3293924
https://doi.org/10.1145/3289602.3293924
https://doi.org/10.1145/3405672.3405807
https://doi.org/10.1145/2881025.2881033
https://doi.org/10.1145/2881025.2881033
https://doi.org/10.1145/2881025.2881033
https://doi.org/10.1145/3378679.3394534
https://doi.org/10.1145/3378679.3394534
https://doi.org/10.1145/3378679.3394534
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb44
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb44
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb44
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb44
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb44
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb45
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb45
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb45
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb45
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb45
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb46
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb46
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb46
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb46
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb46
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb46
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb46
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb47
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb47
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb47
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb48
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb48
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb48
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb48
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb48
https://doi.org/10.1145/3135974.3135989
https://doi.org/10.1145/3135974.3135989
https://doi.org/10.1145/3135974.3135989
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb50
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb50
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb50
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb50
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb50
https://doi.org/10.1145/3229591.3229592
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb52
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb52
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb52
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb52
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb52
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb52
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb52

Z. Ebrahimi et al. Future Generation Computer Systems 172 (2025) 107864
[53] H. Wu, J. He, M. Tömösközi, F.H. Fitzek, Y-Net: A dual path model for high
accuracy blind source separation, in: IEEE Globecom Workshops, 2020, pp. 1–6.

[54] H. Wu, J. He, M. Tömösközi, Z. Xiang, F.H. Fitzek, In-network processing for
low-latency industrial anomaly detection in softwarized networks, in: IEEE Global
Communications Conference, GLOBECOM, 2021, pp. 01–07.

[55] H. Wu, Y. Shen, X. Xiao, G.T. Nguyen, A. Hecker, F.H.P. Fitzek, Accelerating
industrial IoT acoustic data separation with in-network computing, IEEE Internet
Things J. 10 (5) (2023) 3901–3916.

[56] H. Wu, Y. Shen, X. Xiao, A. Hecker, F.H. Fitzek, In-network processing acoustic
data for anomaly detection in smart factory, in: IEEE Global Communications
Conference, GLOBECOM, 2021, pp. 1–6.

[57] H. Wu, Z. Xiang, G.T. Nguyen, Y. Shen, F.H. Fitzek, Computing meets network:
COIN-aware offloading for data-intensive blind source separation, IEEE Netw. 35
(5) (2021) 21–27.

[58] P. Comon, C. Jutten, Handbook of Blind Source Separation: Independent
Component Analysis and Applications, first ed., Academic Press, Inc., USA, 2010.

[59] H. Wu, M. Tömösközi, R. Bassoli, J. Zhang, F.H. P. Fitzek, Experimental proof of
the energy advantage of in-network intelligence, in: International Conference on
Electrical, Computer, Communications and Mechatronics Engineering, ICECCME,
2022, pp. 1–6.

[60] A. Hyvarinen, Fast and robust fixed-point algorithms for independent component
analysis, IEEE Trans. Neural Netw. 10 (3) (1999) 626–634.

[61] H. Wu, Y. Shen, J. Zhang, H. Salah, I.A. Tsokalo, F.H. Fitzek, Adaptive extraction-
based independent component analysis for time-sensitive applications, in: IEEE
Global Communications Conference, 2020, pp. 1–6.

[62] M.A. Razzaque, C. Bleakley, S. Dobson, Compression in wireless sensor networks:
A survey and comparative evaluation, ACM Trans. Sen. Netw. 10 (1) (2013) URL
https://doi.org/10.1145/2528948.

[63] C. Charoensak, F. Sattar, A single-chip FPGA design for real-time ICA-based blind
source separation algorithm, in: IEEE International Symposium on Circuits and
Systems, 2005, pp. 5822–5825 Vol. 6.

[64] J. He, H. Wu, X. Xiao, R. Bassoli, F.H.P. Fitzek, Functional split of in-network
deep learning for 6G: A feasibility study, IEEE Wirel. Commun. 29 (5) (2022)
36–42.

[65] G. Zervakis, H. Saadat, H. Amrouch, A. Gerstlauer, S. Parameswaran, J. Henkel,
Approximate computing for ML: State-of-the-art, challenges and visions, in:
Asia & South Pacific Design Automation Conference, ASP-DAC, Association for
Computing Machinery, New York, NY, USA, 2021, pp. 189–196, URL https:
//doi.org/10.1145/3394885.3431632.

[66] Z. Ebrahimi, A. Kumar, GREEN: An approximate SIMD/MIMD CGRA for energy-
efficient processing at the edge, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. (2024) 1–1.

[67] Z. Ebrahimi, D. Klar, M.A. Ekhtiyar, A. Kumar, Plasticine: A Cross-Layer
Approximation Methodology for Multi-Kernel Applications through Minimally
Biased, High-Throughput, and Energy-Efficient SIMD Soft Multiplier-Divider,
ACM Trans. Des. Autom. Electron. Systems (TODAES) 27 (2) (2021) URL https:
//doi.org/10.1145/3486616.

[68] Z. Ebrahimi, M. Zaid, M. Wijtvliet, A. Kumar, RAPID: AppRoximAte Pipelined
Soft MultIpliers and Dividers for High-Throughput and Energy-Efficiency, IEEE
Trans. Comput.- Aided Des. Integr. Circuits Syst. (TCAD) (2022) 1–1.

[69] Z. Ebrahimi, S. Ullah, A. Kumar, LeAp: Leading-one detection-based softcore
approximate multipliers with tunable accuracy, in: Asia and South Pacific Design
Automation Conference, ASP-DAC, 2020, pp. 605–610.

[70] H. Jiang, F.J.H. Santiago, H. Mo, L. Liu, J. Han, Approximate Arithmetic Circuits:
A Survey, Characterization, and Recent Applications, Proc. IEEE 108 (12) (2020)
2108–2135.

[71] Z. Ebrahimi, A. Kumar, BioCare: An Energy-Efficient CGRA for Bio-Signal
Processing at the Edge, in: IEEE International Symposium on Circuits and
Systems, ISCAS, 2021, pp. 1–5.

[72] Xilinx, Vitis high-level synthesis user guide (UG1399), 2024, https:
//docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Math-Library?tocId=
evTCuuTJjRDKk3~TAmqNmw.

[73] P. Lafaye de Micheaux, S. van der Walt, G. Varoquaux, B. Thirion, A. Gramfort,
D. A. Engemann, Scikit-learn github repository, 2024, https://github.com/scikit-
learn/scikit-learn/blob/main/sklearn/decomposition/_fastica.py.

[74] Z.-G. Tasoulas, G. Zervakis, I. Anagnostopoulos, H. Amrouch, J. Henkel,
Weight-Oriented Approximation for Energy-Efficient Neural Network Inference
Accelerators, IEEE Trans. Circuits Syst. I (TCAS- I): Regul. Pap. 67 (12) (2020)
4670–4683.

[75] U. Meyer-Baese, C. Odom, G. Botella, A. Meyer-Baese, Independent component
analysis algorithm FPGA design to perform real-time blind source separation, in:
Proceeding of the SPIE, Vol. 9496, 2015, pp. 180–191.

[76] PULP-Team, FastICA algorithm for PULP platform – GitHub, 2022, https://
github.com/nihil21/fast-ica-pulp/tree/main.

[77] AMD, Divider generator v5.1, logicore IP product guide, 2021, https://docs.amd.
com/v/u/en-US/pg151-div-gen.

[78] H. Purohit, R. Tanabe, K. Ichige, T. Endo, Y. Nikaido, K. Suefusa, Y. Kawaguchi,
MIMII dataset: Sound dataset for malfunctioning industrial machine investigation
and inspection, 2019, arXiv:1909.09347.
16
[79] H. Nyquist, Certain topics in telegraph transmission theory, Trans. Am. Inst.
Electr. Eng. 47 (2) (1928) 617–644.

[80] Y. Zhang, Y. Zhao, Modulation domain blind speech separation in noisy en-
vironments, Speech Commun. 55 (10) (2013) 1081–1099, URL https://www.
sciencedirect.com/science/article/pii/S0167639313000873.

[81] S.M. Kim, H.K. Kim, Direction-of-arrival based SNR estimation for dual-
microphone speech enhancement, IEEE/ ACM Trans. Audio Speech Lang. Process.
22 (12) (2014) 2207–2217.

[82] Z. Ebrahimi, S. Ullah, A. Kumar, SIMDive: Approximate SIMD soft multiplier-
divider for FPGAs with tunable accuracy, in: ACM/IEEE Great Lakes Symposium
on VLSI, GLSVLSI ’20, Association for Computing Machinery, New York, NY,
USA, 2020, pp. 151–156, URL https://doi.org/10.1145/3386263.3406907.

[83] E. Zitzler, D. Brockhoff, L. Thiele, The hypervolume indicator revisited: On the
design of Pareto-compliant indicators via weighted integration, in: S. Obayashi,
K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Eds.), Evolutionary Multi-Criterion
Optimization, 2007.

[84] P. Judd, J. Albericio, T. Hetherington, T. Aamodt, N.E. Jerger, R. Urtasun, A.
Moshovos, Reduced-precision strategies for bounded memory in deep neural nets,
2015, arXiv Preprint.

[85] E. Mohyeldin, Minimum technical performance requirements for IMT-2020 radio
interface (s), in: ITU-R Workshop on IMT-2020 Terrestrial Radio Interfaces, 2016,
pp. 1–12.

[86] J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J.J. Ramos-Munoz,
J.M. Lopez-Soler, A survey on 5G usage scenarios and traffic models, IEEE
Commun. Surv. Tutor. 22 (2) (2020) 905–929.

[87] I. Kunze, K. Wehrle, D. Trossen, Transport protocol issues of in-network
computing systems, Internet Eng. Task Force (2020).

[88] Å. Björck, Numerics of gram-Schmidt orthogonalization, Linear Algebra Appl.
197–198 (1994) 297–316, URL https://www.sciencedirect.com/science/article/
pii/0024379594904936.

[89] J.N. Mitchell, Computer Multiplication and Division using Binary Logarithms,
IRE Trans. Electron. Comput. (IRETEC) 11 (4) (1962).

[90] Advanced Micro Devices - GitHub, Introductory examples for vitis HLS,
2024, https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/
Modeling/fixed_point_sqrt/fxp_sqrt.h.

Zahra Ebrahimi is a PhD student at Technische Univer-
sität Dresden and a research associate at Ruhr University
Bochum. She is also the manager of the BMBF project (X-
DNet), from which this article is funded from. Her research
interests include approximate computing, reconfigurable ac-
celerator design, in-network and edge computing. Zahra has
no financial and personal relationships with other people or
organizations that could inappropriately influence or bias
this work.

Maryam Eslami is a research associate at Ruhr Univer-
sity Bochum. Her research interests include approximate
computing and fault-tolerance design. Maryam has no fi-
nancial and personal relationships with other people or
organizations that could inappropriately influence or bias
this work.

Xun Xiao is a principal researcher in Munich Research
Center, Huawei Technologies, Germany. Currently, he is a
standard delegate in ISG permissioned distributed ledger
(PDL) in European Telecommunication Standardization In-
stitute (ETSI) since 2022. His research interests mainly focus
on distributed algorithms, networking, and computing in
distributed systems. He has no other financial and personal
relationships with other people or organizations that could
inappropriately influence or bias this work.

Akash Kumar was a Professor with Technische Universität
Dresden, Germany. Since April 2024, he is directing the
chair of Embedded Systems at Ruhr University Bochum,
Germany. His research interests include the design and anal-
ysis of low-power embedded multiprocessor systems, and
designing secure systems with emerging nano-technologies.
He has no other financial and personal relationships with
other people or organizations that could inappropriately
influence or bias this work.

http://refhub.elsevier.com/S0167-739X(25)00159-1/sb53
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb53
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb53
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb54
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb54
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb54
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb54
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb54
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb55
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb55
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb55
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb55
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb55
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb56
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb56
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb56
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb56
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb56
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb57
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb57
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb57
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb57
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb57
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb58
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb58
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb58
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb59
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb59
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb59
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb59
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb59
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb59
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb59
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb60
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb60
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb60
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb61
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb61
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb61
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb61
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb61
https://doi.org/10.1145/2528948
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb63
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb63
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb63
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb63
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb63
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb64
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb64
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb64
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb64
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb64
https://doi.org/10.1145/3394885.3431632
https://doi.org/10.1145/3394885.3431632
https://doi.org/10.1145/3394885.3431632
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb66
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb66
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb66
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb66
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb66
https://doi.org/10.1145/3486616
https://doi.org/10.1145/3486616
https://doi.org/10.1145/3486616
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb68
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb68
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb68
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb68
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb68
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb69
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb69
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb69
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb69
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb69
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb70
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb70
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb70
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb70
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb70
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb71
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb71
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb71
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb71
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb71
https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Math-Library?tocId=evTCuuTJjRDKk3~TAmqNmw
https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Math-Library?tocId=evTCuuTJjRDKk3~TAmqNmw
https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Math-Library?tocId=evTCuuTJjRDKk3~TAmqNmw
https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Math-Library?tocId=evTCuuTJjRDKk3~TAmqNmw
https://docs.amd.com/r/en-US/ug1399-vitis-hls/HLS-Math-Library?tocId=evTCuuTJjRDKk3~TAmqNmw
https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/decomposition/_fastica.py
https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/decomposition/_fastica.py
https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/decomposition/_fastica.py
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb74
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb74
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb74
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb74
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb74
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb74
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb74
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb75
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb75
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb75
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb75
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb75
https://github.com/nihil21/fast-ica-pulp/tree/main
https://github.com/nihil21/fast-ica-pulp/tree/main
https://github.com/nihil21/fast-ica-pulp/tree/main
https://docs.amd.com/v/u/en-US/pg151-div-gen
https://docs.amd.com/v/u/en-US/pg151-div-gen
https://docs.amd.com/v/u/en-US/pg151-div-gen
http://arxiv.org/abs/1909.09347
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb79
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb79
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb79
https://www.sciencedirect.com/science/article/pii/S0167639313000873
https://www.sciencedirect.com/science/article/pii/S0167639313000873
https://www.sciencedirect.com/science/article/pii/S0167639313000873
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb81
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb81
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb81
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb81
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb81
https://doi.org/10.1145/3386263.3406907
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb83
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb83
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb83
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb83
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb83
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb83
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb83
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb84
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb84
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb84
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb84
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb84
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb85
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb85
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb85
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb85
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb85
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb86
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb86
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb86
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb86
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb86
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb87
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb87
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb87
https://www.sciencedirect.com/science/article/pii/0024379594904936
https://www.sciencedirect.com/science/article/pii/0024379594904936
https://www.sciencedirect.com/science/article/pii/0024379594904936
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb89
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb89
http://refhub.elsevier.com/S0167-739X(25)00159-1/sb89
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Modeling/fixed_point_sqrt/fxp_sqrt.h
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Modeling/fixed_point_sqrt/fxp_sqrt.h
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/blob/master/Modeling/fixed_point_sqrt/fxp_sqrt.h

	X-DINC:TowardCross-LayerApproXimationfortheDistributed and In-Network ACceleration of Multi-Kernel Applications
	Introduction
	Related Work
	In-Network (Distributed) Computing
	Compatibility of *inc approaches with commodity hardware
	Approximation for *inc
	*inc -accelerated *bss

	X-DINC Error-Resiliency Sensitivity Analysis
	Cross-Layer Approximation Knobs
	End-to-End Kernel-Wise Sensitivity Analysis

	X-DINC Cross-Layer Approximation and Distribution Methodology
	Greedy-Based Approximation Heuristic
	Distributing Approximate Kernels over Heterogeneous Network Nodes

	Results and Discussion
	Experimental Setup
	Application partitioning and mapping
	Benchmark
	*qor metrics

	Cross-LayerError-SensitivityAnalysisResults
	Performance Gains of Approximate Configurations Obtained by the Cross-Layer Approximation Methodology
	End-to-end Performance Gains of Distributed (*inc) Over Centralized Approach

	Remarks and Challenges
	Remarks
	Challenges

	Conclusions and Future Work
	CRediT authorship contribution statement
	Acknowledgment
	Declaration of competing interest
	Appendix. Background and Preliminaries
	Blind Source Separation Problem
	Mitchell-based Approximation of Multiplication, Division, and Square Root

	Data availability
	References

