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 A B S T R A C T

With the rapid evolution of programmable network devices and the urge for energy-efficient and sustain-
able computing, network infrastructures are mutating toward a computing pipeline, providing In-Network 
Computing (INC) capability. Despite the initial success in offloading single/small kernels to the network 
devices, deploying multi-kernel applications remains challenging due to limited memory, computing resources, 
and lack of support for Floating Point (FP) and complex operations. To tackle these challenges, we present 
a cross-layer approximation and distribution methodology (X-DINC) that exploits the error resilience of 
applications. X-DINC utilizes a chain of techniques to facilitate kernel deployment and distribution across 
heterogeneous devices in INC environments. First, we identify approximation and optimization opportunities in 
data acquisition and computation phases of multi-kernel applications. Second, we simplify complex arithmetic 
operations to cope with the computation limitations of the programmable network switches. Third, we perform 
application-level sensitivity analysis to measure the trade-off between performance gain and Quality of 
Results (QoR) loss when approximating individual kernels via various techniques. Finally, a greedy heuristic 
swiftly generates Pareto/near-Pareto mixed-precision configurations that maximize the performance gain while 
maintaining the user-defined QoR. X-DINC is prototyped on a Virtex-7 Field Programmable Gate Array (FPGA) 
and evaluated using the Blind Source Separation (BSS) application on industrial audio dataset. Results show 
that X-DINC performs separation up to 35% faster with up to 88% lower Area-Delay Product (ADP) compared 
to an Accurate-Centralized approach, when distributed across 2 to 7 network nodes, while maintaining audio 
quality within an acceptable range of 15–20 dB.
1. Introduction

In the era of 5G and forthcoming 6G, a staggering amount of 
data needs to be processed by computation-intensive and latency-
sensitive applications, e.g., video conferencing, speech recognition, and 
e-healthcare. However, real-time processing at such a high data rate 
faces substantial challenges, for which cloud computing will no longer 
be a promising and sustainable solution due to the following three main 
aspects. (1) Response Time: data transmission itself takes a significant 
portion of the total execution time in many cloud-based applications 
(e.g., more than 70% in some Facebook MapReduce jobs [1]). Clearly, 
the projected traffic explosion in the upcoming 6G can exacerbate 
the response time in such latency-sensitive applications. (2) Processing 
Speed: the general-purpose processors in cloud facilities (at most 50
Gbps in Amazon) operate at a much slower speed than programmable 
switches (12–50 Tbps) [2]. This processing speed might be inadequate 
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for offloading prompt critical decision-making actions in the cloud. (3)
Energy-Efficiency and Sustainability : a huge amount of energy, account-
ing for up to 50% in many cases [3], is consumed solely for transmitting 
data from endpoints to the cloud, significantly contributing to increased 
carbon emissions and environmental footprint. In fact, the electricity 
costs, solely to execute the applications in the cloud has already ex-
ceeded the cost of purchasing hardware for the whole data center [4]. 
These issues have raised the quest for processing data on-the-fly while 
being transmitted within the network, dubbed as INC [5].

Although INC is still in its infancy, early research works [2,6,7] have 
shown remarkable advantages by offloading single-kernel applications 
to the network. In particular, by bringing the processing to the proxim-
ity of data, INC has shown to reduce the network traffic up to 90% for 
specific tasks [5]. Moreover, application’s response time and/or energy
have been also reduced thanks to INC, compared to the centralized 
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Fig. 1. X-DINC framework, prototyped on an FPGA-based testbed: overall design, approximation, and distribution methodology for an INC environment.
solutions [8,9]. For example, processing a single Neural Network (NN) 
layer takes 1 ms in the network versus up to 12 ms, when processed 
by an end-host CPU [2,10]. In fact, since the intermediate switches are 
part of the network, most of such costs are already paid by the packet 
processing/forwarding.

However, while this momentum is inspiring, the adoption of INC 
is currently limited to a few single-kernel applications. Applying INC 
for multi-kernel applications is even less due to following reasons. The 
first reason is the limited memory and computing resources, especially 
in Application Specific Integrated Circuit (ASIC)-based programmable 
network devices [11]. The second reason is that ASIC switches are still 
incapable of performing FP and complex arithmetic operations [12,
13], which are often needed by complex applications. Although such 
shortcomings are less pronounced in FPGA-based network elements, the 
performance gap between ASIC- and FPGA-based implementations, for
some applications, may still limit the gains that can be achieved through 
in-network acceleration. Such challenges have therefore hindered the 
INC being applied to complex tasks, e.g., running Artificial Intelligence 
(AI)/Machine Learning (ML) inference tasks based on INC in 5G and the 
coming 6G networks [14,15]. Hence, to fully unleash the potential of 
INC, the computing approaches for executing multi-kernel applications 
should be rethought.

To address this challenge, alongside tackling energy and sustain-
ability concerns while enabling real-time processing, prior research 
has demonstrated promising outcomes by employing various approx-
imation techniques. These methods strategically trade off accuracy to 
achieve significant performance gains, offering a balanced solution 
for energy-efficient and sustainable computing. Those explored tech-
niques targeted to approximate data type (e.g., FP to fixed-point or 
integer [12,16]), basic primitives (multiplication [17], logarithm [18], 
and trigonometric functions [19]), or application kernels (matrix multi-
plication/division [7,14,20], edge-detection filter [21], and quantizing 
specific NN layers [10,22–25]). Despite the initial efforts of these 
works, their approaches have been limited to approximate single or
small-size kernels with one particular technique, rather than combining 
them. As a result, not only their achieved performance gains have 
been limited, but also the scalability of their approach is not as-
sessed on larger case studies. Although combining multiple techniques 
seems straightforward, figuring out a proper combination of multiple 
2 
techniques in consecutive kernels applications is not a trivial task 
(w.r.t. the error-propagation). These issues raise the quest for an error-
aware approximation methodology that utilize the synergistic effects of 
multiple techniques to effectively convert larger applications enjoying 
INC-acceleration.

To address this question, we present X-DINC (illustrated in Fig. 
1), a cross-layer approximation methodology that achieves significant 
performance gains by leveraging the error-resiliency of applications. 
Specifically, X-DINC first identifies a potential chain of approxima-
tion and optimization opportunities (when the application is executed 
within an INC environment). Afterwards, a sensitivity analysis reveals 
the error-resiliency of individual application kernels to various ap-
proximation techniques. Furthermore, by adopting a greedy heuristic 
algorithm, the approximation knobs in the consecutive kernels are 
adjusted in a way to maximize the performance-gain while maintaining 
the QoR at an admissible threshold. The heuristic is able to rapidly 
generate the optimal or near-optimal accelerator configurations, each 
of which enables a different trade-off between QoR and performance. 
At the end, w.r.t. a desired accuracy threshold and number of network 
nodes, X-DINC selects the optimal or near-optimal configuration of 
the approximated kernels, resulting in the minimum response time for 
the application. In short, this article makes the following technical 
contributions:

• X-DINC modifies the computational structure of application to tai-
lor it for an INC approach (by approximating the implementation 
of required, yet unsupported complex arithmetic operations in 
programmable network switches).

• X-DINC identifies a proper chain of cross-layer approximation and 
optimization opportunities in both data acquisition and computa-
tion phases of an application, when it is executed within an INC 
setup.

• By applying an error-sensitivity analysis and a greedy heuristic, 
X-DINC adjusts the degree of approximations in multiple tech-
niques, in a way to maximize performance-gain while maintaining 
an acceptable QoR. The Pareto/near-Pareto mixed-precision con-
figurations of application kernels, swiftly generated by X-DINC, 
are then distributed over (a chain of) network nodes in a way to 
minimize transmission costs.
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• As a proof-of-concept, X-DINC is evaluated on the widely-used 
BSS application through an end-to-end implementation, proto-
typed on an FPGA-based testbed. Compared to an accurate-
centralized approach, X-DINC performs the separation job signif-
icantly faster with less Area-Delay Product (ADP), when the task 
is distributed over various nodes.

• Open-source contribution: to fuel further research on the
in-network/distributed acceleration of multi-kernel applications, 
our implementations will be available at https://cfaed.tu-dresden.
de/pd-downloads.

To the best of our knowledge, this is the first work that attempts 
to enable the in-network acceleration of multi-kernel applications with 
the goal of minimizing response time (while guaranteeing an accept-
able QoR). The rest of this article is organized as follows: Section 2 
presents a brief survey of related works (the background knowledge 
for this manuscript is presented in Appendix). Section 3 presents the 
error-resiliency sensitivity analysis of X-DINC. Afterwards, Section 4 
elaborates the proposed cross-layer approximation and distribution 
methodology for an INC setting. Section 5 details the experimental 
setup and results and the remarks and challenges are discussed in 
Section 6. Finally, Section 7 concludes the paper with an outlook to 
the future tracks.

2. Related work

2.1. In-network (distributed) computing

INC: studies in this stream of research targeted the deployment of
individual kernels of applications to the network. The investigated do-
mains can be summarized in ML [7], data aggregation [26,27], network 
management [28,29], and edge detection for image processing [21]. In 
particular, the ML studies have shown promising results for tree-based 
classification models such as Decision Tree (DT) and Random Forest 
(RF) or less complicated models such as Support Vector Machine (SVM), 
and K-Means [30]. However, running resource-hungry models such as 
NNs on network switches is an arduous task and faced with practical de-
ployment challenges, especially in ASIC-based switches [10,12,22–25]. 
In fact, even a heavily-quantized binary NN (BNN) with two layers of 
64 and 32 neurons already exhausts the resources of an Intel Tofino 
switch [22].

Distributed INC: recently, some works have attempted to partition 
applications into multiple kernels and distribute them over a chain 
of heterogeneous nodes. In this article, a single kernel is defined as a 
combination of operations performing a specific task (e.g., filtering, 
transformations, feature extraction, encoding/decoding, matrix multi-
plications, convolutions). A multi-kernel application is built from mul-
tiple single kernels, which may execute sequentially or in parallel. 
ClickINC [31] attempts to reduce the search space for the task place-
ment problem by (i) grouping functions into blocks to be mapped 
together and (ii) grouping the heterogeneous platforms (switches, FP-
GAs, smart Network Inference Card (NIC)s, etc.) into fewer classes to 
reduce the complexity of distribution problem. Flightplan [32] dis-
aggregates P42 kernels into segments manually and then combines 
graph-based and formal methods to solve the distribution problem 
with exhaustive search, for finding a near-optimal solution. To reduce 
the search time, DINC [34] adopts a Multi-objective Integer Linear
Programming (ILP) optimization strategy, where the objective function 
is a weighted linear combination of the execution latency (which disre-
gards the transmission latency) and the resource consumption required 
for executing the task. Finally, Hermes [35] targets minimizing the 
communication overheads in such inter-switch coordination scenarios 
by considering the per-packet byte overhead along with the per-packet 

2 P4 [33] is the de-facto language for programming network data plane.
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transmission latency. For solving this multi-objective optimization, the 
authors formulate a Mixed-ILP problem and adopt a greedy-based 
heuristic. Nevertheless, they still neglect the error-resiliency potential 
of applications in their analysis.

2.2. Compatibility of INC approaches with commodity hardware

In FPGA-based network devices, computations are performed via
Look-up Table (LUT)s. In ASIC, computations are carried through 
applying a chain of match-actions, implemented via Match-Action 
Tables (M/A or MATs) and Arithmetic Logic Unit (ALU)s [36]. De-
spite the higher packet-processing speed and power-efficiency of ASIC 
switches compared to FPGA counterparts, ASICs still suffer from mul-
tiple shortcomings. For example, the lack of support for computing
operations (e.g., square root and multiplication/division of arbitrary 
operands [13], exhaustively used in e.g., ML and matrix-multiplication 
based applications). Moreover, the fixed number of pipeline stages 
along with the limited on-switch memory capacity in a typical ASIC 
switch (a few 10 s of MB of SRAM [11]) leads to a narrow range of 
custom functions that can be implemented via M/A tables [12]. These 
deficiencies along with the expensive hardware update in ASIC devices 
restrict to deploy complex algorithms to them [14,15].

In fact, major telecommunication enterprises and cloud service 
providers already rely on broad utilization of FPGA in the edge-to-
cloud continuum, including switches, routers, base stations, NICs, and
Network Processing Unit (NPU)s [37–39]. In particular, FPGA is used 
as a co-processor to accelerate various tasks, from control/traffic man-
agement and load balancing to co-processing statistics, and cryptogra-
phy/security analysis [40,41]. The vast deployment of FPGA is actually 
endowed to their multiple advantages over ASICs: (1) FPGAs are not 
only well suited for packet processing with different protocols [42], but 
also enjoy a post-fabrication hardware data-path versatility along with 
a faster prototyping and lower Non-Recurring Engineering (NRE) cost. 
(2) Through enabling high parallelism, FPGAs are suitable hardware 
platforms for the implementation of e.g., matrix-multiplication based 
applications. Such a feature enabled up to an order-of-magnitude (or 
more) improvement in throughput and/or latency for a variety of in-
network accelerated tasks. (3) Although integrating an FPGA as the 
co-processor for the switches may increase the power consumption of 
a single switch, the overall energy or performance per Watt will be en-
hanced for certain application kernels [8,41,43–46], when compared to 
network-deployed CPUs, GPUs, and General Purpose Processor (GPP)s. 
These reasons encouraged the in-network acceleration with FPGA for 
many tasks [40,47].

2.3. Approximation for INC

To cope with the limitations in ASIC switches and in general, 
P4 language, some works have adopted approximation techniques to 
reduce the complexity of computations. These works are classified and 
discussed below.

Approximation of data type: the lack of support for FP operations 
in ASIC switches and P4 forced the designers to use integer or fixed-
point precision [12,16]. However, (in contrast to the proposed X-DINC) 
none of existing works have yet explored the effect of a mixed-precision 
strategy for the in-network acceleration of multi-kennel applications.

Approximation of primitives/individual kernels: the widely-used primi-
tives (e.g., multiplication [7,14,20], logarithm [18], and trigonometric 
functions [19]) were simplified either using shift/addition operations 
or dedicated LUTs/MATs. However, such approximations are applied 
arbitrarily to applications whenever possible without performing a 
systematic error-sensitivity analysis (in contrast to X-DINC method-
ology). Therefore, the applications’ ultimate QoR was sacrificed up 
to 10%, only by adopting a single technique [17]. Also, storing the 
approximate values in dedicated memories is not feasible for more 
complex functions.

https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
https://cfaed.tu-dresden.de/pd-downloads
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Approximation of multi-kernel applications: in the context of INC, 
cutting-edge works have applied binary quantization (as a precision 
scaling technique) on NNs, by substituting the multiplication operation 
with XNOR. Beside noticeable accuracy drop, a practical deployment 
was possible only for a BNN having 3 layers and on modern SmartNICs 
such as N3IC (which benefit from more resources compared to ASIC 
switches) [48]. Moreover, such devices are physically deployed, only 
at specific locations within the network.

Approximate sampling : studies in this track have adopted either a 
random or stratified sampling approach (which divides the signal to 
segments and picks multiple samples from each group). For example, 
StreamApprox [49] proposed an adaptive sampling algorithm that per-
forms the computation over disjoint sub-streams coming from various 
sources. However, no study explored the effect of reducing samples on 
the accuracy-performance trade-off of an INC accelerated program. In 
X-DINC, we investigate this by pursuing a uniform stratified approach 
to keep a homogeneous proportionality of samples, from the whole 
dataset.

2.4. INC -accelerated BSS

Aside from ML, most of INC works targeted the in-network ac-
celeration of BSS problem3 [50–57], due to two reasons. (1) BSS is 
a common task in various signal processing domains from audio to 
image, and bio-signals [58]. Specifically, acoustic BSS is a crucial step 
for speech recognition, natural language processing, voice assistants, 
etc. Moreover, with the emergence of smart factory within the era of 
5G, acoustic BSS also plays a pivotal role in quality control and the 
automated supervision of production line (to detect the malfunction 
in faulty products at early stages, prevent the product failure, and 
decrease the downtime and maintenance costs, dubbed as predictive 
maintenance). (2) Performing controlling tasks such as BSS at real-
time is paramount in latency-critical applications (especially anomaly 
detection and decision-making) so that the necessary responses can 
be triggered prior to deterioration. However, it has been shown that 
the performance of centralized cloud-deployed BSS is bounded by data 
collection and transmission time. The long data transfer time may 
delay the prompt actions in mission-critical services in the upcoming 
6G era [51]. Hence, performing BSS at real-time is highly desired. 
Tackling these issues, recent studies have attempted to accelerate this 
application by offloading it to the network, to reduce its Mean Ttime
To Respond (MTTR).

Solving BSS problem in those studies is either via a NN-based [52–
54] or an algorithmic-based approach [55–57]. For NN-based approach, 
their key drawbacks hindering practical deployment in an INC setup 
are: (1) the adopted models such as ResNet and MobileNet are resource-
intensive and hence, cannot be easily accelerated on the resource-
constrained network nodes; and there exists many complex operations 
in the structure of BSS application that are not directly supported in 
P4 (see Section 3.1). These issues have been neglected in all previous 
studies. (2) It is hard to obtain sufficient labeled audio data for model 
training [55,59]. (3) Updating and re-training the NN models is costly, 
especially after being deployed on network nodes.

Algorithmic-based approaches (e.g., Fast Independent Component
Analysis (ICA) [60] implemented based on the ICA algorithm) provide 
an early separation result and then progressively optimize its accuracy 
by iteratively increasing samples over a chain of hops along the net-
work forwarding path. Although these works realized the drawbacks of 
the NN-based approaches and looked for alternative decentralized/INC-
oriented strategy, they still suffer from four shortcomings: (1) if the 
threshold for the gradient of improvement over consecutive hops is 
too loose, the construction of the separation matrix may terminate 

3 BSS separates a set of signals from their mixed combination without prior 
knowledge about the sources or mixing process (see Appendix).
4 
prematurely; if it is too tight, it may never terminate [61]. (2) The 
complexity of the algorithmic solutions is still high. For example, those 
algorithms adopted FP precision for their computations, which not only 
is unsupported in P4, but also is costly in terms of resource-footprint 
(see Section 3.1). (3) The computation time for such high-precision 
solutions is still several orders of magnitude larger than the usual 
packet-size processing time [55]. (4) Finally, the computation itself is 
delayed, due to caching of the new data at each intermediate network 
node, the latency of which is not considered in such measurements. 
Overall, these issues increased the application response time and lim-
ited the performance gains from network acceleration. In fact, as also 
admitted by the authors in [56,61], in some extreme cases (large num-
ber of hops), the processing time would be worse than the centralized 
approach.

In X-DINC, we target the algorithmic approach and address afore-
mentioned issues, through (1) tailoring the computational structure of 
such multi-kernel applications for an INC setup; and (2) aiming an 
end-to-end performance gain in a distributed implementation approach, 
by capitalizing on the error-resiliency of these applications and other 
optimization opportunities, in a network hierarchy.

3. X-DINC error-resiliency sensitivity analysis

As discussed in Sections 2.2 and 2.3, cramming multi-kernel appli-
cations into the network devices is neither straightforward nor a trivial 
task. In fact, an accurate and high-precision implementation may not 
be even possible, due to both resource-constraints and the limitation 
of P4 language. For example, as shown in Fig.  2, not only the area, 
latency, and energy of accurate multiplication, division, and square root 
operations are significantly larger than those of addition of the same 
size, but also these performance metrics grow exponentially when the 
operand size is increased. Therefore, to address aforementioned issues, 
we propose to investigate and capitalize on error-resiliency opportuni-
ties across the layers of abstraction. To this end, as also shown in Fig.  1, 
we identify several approximation/optimization knobs in Section 3.1, 
and then in Section 3.2 we present a generic methodology to measure 
the error-sensitivity of application kernels to various approximation 
techniques.

The sensitivity analysis results are then imported to the proposed 
approximation heuristic of X-DINC (presented in Section 4), where the 
goal of the algorithm is to maximize the performance gain (i.e., im-
provements in resource footprint, energy, or response time of applica-
tion) while maintaining an acceptable QoR via operating the possible 
knobs. Finally, as our ultimate goal, we distribute the approximated 
configurations of kernels over a chain of network elements in a way to 
minimize the transmission latency (with which the application response 
time will also be minimized). This is particularly important because 
the existing INC approaches (cited in Section 2.4) may be impractical 
for a single-node deployment due to limited resource capacity, or in a 
distributed setting due to the transmission overheads.

In this context, BSS problem is a symbolic case study among other 
multi-kernel applications to showcase the efficacy of X-DINC method-
ology, since it inherits all the challenges discussed before and cited as 
a desirable target for in-network acceleration (recalling Section 2.4). In 
the following, we will see that a high-precision and accurate implemen-
tation of BSS is not feasible in the network nodes, due to both limited 
resource footprint of network nodes and inability of P4 in supporting 
complex arithmetic operations.

3.1. Cross-layer approximation Knobs

As listed in Table  1, we have identified various approximation/opt
imization opportunities in data acquisition and computation phases 
of the applications, executed in an INC environment. In this article, 
these knobs – adopted from different layers of abstraction in the 
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Fig. 2. Comparing area, delay, and energy of arithmetic operations in integer and FP precision (in Virtex-7 AMD/Xilix FPGA). The performance metrics of each operation is 
normalized to the same-size adder (only FP is normalized to 32-bit integer).
Fig. 3. Cumulative percentage and energy of each operation in the kernels of BSS application, 32-bit fixed-point implementation.
Table 1
The leveraged cross-layer approximation knobs in the sensing and computing phases 
of applications, for a distributed and INC-setting.
 Data acquisition (Sensing) Computation

 Architecture-level Application-level 
 Sampling period Multiplication Precision scaling 
 Sampling frequency Division Loop perforation 
 Square root  

computing stack – target the optimization of both the pre-processing 
and processing kernels of the BSS application.4

Sampling period and frequency : analog signals around us, such as 
audio and bio-signals, are sampled and converted to the digital domain 
using an Analog to Digital Converter (ADC). These signals often contain 
substantial correlated or redundant data, partly due to their periodic 
structures. Thus, reducing the number of samples can significantly 
improve the processing requirement and response time of these appli-
cations [62]. In previous studies [54,55,63,64], the adopted sampling 
period and frequency for the implementation of audio-based BSS range 
from ∼1–10 s and 4–16 kHz, respectively. Therefore, as the first knob, 
we propose to analyze the consequences on the QoR and performance 
metrics of changing sampling frequency (2–16 kHz) and period (4–10
s). The result of this trade-off is presented in Section 5.2.

Architecture-level: for the second set of knobs, some basic but
ubiquitously-used arithmetic operations (i.e., multiplication, division, 
and square root) are approximated based on techniques with low 
error-bias.5 Choosing these operations targets to overcome the in-
ability of P4 for implementing them in ASIC switches; in addition, 

4 These knobs are not exclusive to the BSS; they exist and can be leveraged 
in a wide range of applications.

5 Low error-bias plays a pivotal role in minimizing the accumulated error 
in consecutive kernels with an aggregation-based structure [65–69].
5 
these operations require significantly higher area, delay, and energy 
compared to simpler ones such as addition and multiplication (the 
comparison results can be found in Fig.  2). Note that we did not 
approximate the addition and subtraction operations because: (1) the 
accurate implementation of addition/subtraction is already supported 
in ASIC switches, (2) the cumulative energy of the operations are 
negligible (e.g., in BSS application), compared to the cumulative energy 
for aforementioned complex operations (see Fig.  3), and (3) both 
previous studies [67,70] and our sensitivity analysis showed that the 
approximation of addition in matrix-multiplication based kernels may 
result in high accuracy fluctuations, especially when the errors of the 
inexact adder are biased toward the same sign. Besides, these situations 
also hold true for other classification, bio-signal, and image-processing 
applications [66–68,71]. Sensitivity analysis of this type of knobs will 
be presented in Appendix.

Application-level: three techniques are considered here. First, preci-
sion scaling is adopted, as it is a widely-used approximation technique. 
It has been tested on a broad range of programs [10,12,22–24], where 
significant resources can be saved in both computing and memory 
aspects. In addition, processing at a lower precision can also reduce 
application’s end-to-end latency, because of the shortened propaga-
tion delay of the individual (precision-reduced) operations. Moreover, 
the loop perforation, i.e., skipping loop iterations is another effective 
method that we applied for example on the BSS application (in Gram 
Schmidt decorrelation, Back substitution solver, and tan Hyperbolic 
– tanh – analysis kernels). Last but not least, function approximations
applied to simplify the implementation of complex functions thus fur-
ther increase the resource efficiency. For example, to approximate the 
tanh function, the highly-accurate implementation of Python Piece-
wiseLinFit from pwlf library was approximated via a piecewise 
linear segmentation approach using 4, 8, and 16 segments. Finally, 
the 8 segments has been adopted because of its negligible accuracy 
difference compared to the Intellectual Property (IP)-based implemen-
tation of tanh function in AMD/Xilinx Vivado [72]. Another example 
is the Gram–Schmidt de-correlation, which is implemented based on 
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Scikit-learn open-source python library [73] and further modified for 
a resource-efficient implementation. Next, three types of optimization 
knobs are tested individually and jointly, to understand the (synthetic) 
effects to the performance of the BSS application.

3.2. End-to-end kernel-wise sensitivity analysis

A sensitivity analysis is needed to understand the consequence of 
adjusting multiple optimization knobs to the error resiliency of the 
approximated application. In fact, such an analysis is motivated by 
the observations in previous studies [66,67,74] which state that not 
only kernels contribute differently to each of the performance metrics 
(e.g., application latency, area, or memory footprint), but also after 
approximation, their significance to the performance gains might dif-
fer from their importance influencing the error-resiliency. Therefore, 
revealing the relation (i.e., trade-off) between the gained-performance 
and QoR-loss for individual kernels is critical to guide us to design an 
approximation strategy, subject to different approximation techniques.

The sensitivity analysis performed in X-DINC is inspired from [67]. 
However, [67] only considered the approximation of multiplication 
and division operations and precision scaling. We further expand it 
in this work in the following aspects. First, analyzing the sampling 
frequency and period needs to be considered in a distributed INC-
setup. This is because the data is usually gathered from multiple 
sources (e.g., sensors) and changing data size can significantly affect 
the required time and/or resources for processing. Second, our analysis 
assessed the memory footprint, which is another constraint in a variety 
of network nodes but missed out in [67]. Third, additional approxi-
mation techniques were evaluated in our analysis. For example, loop 
perforation will significantly affect the response time of an application; 
and simplifying the square root operation and more complex functions 
are also necessary, as they are not supported in ASIC switches. Fourth, 
the error metrics considered in this article are expanded to Signal-
to-Noise Ratio (SNR) and Signal-to-Distortion Ratio (SDR) (originally 
was Peak Signal-to-Noise Ratio (PSNR) in [67]). In fact, SNR and SDR 
not only consider the background noise, but also reflect the effects of 
distortion and unwanted artifacts due to both compression and various 
approximation [56]. Finally, the integer to integer precision scaling 
approach of [67] is changed to a FP to fixed-point scaling, to also 
consider the effect of data type approximation.

Our sensitivity analysis has four steps (the results are detailed 
in Section 5.2): 1⃝ We report the performance-accuracy trade-off for 
executing the whole multi-kernel BSS application at different sampling 
periods and frequencies and show that processing at a high data rate 
requires significant amount of resources (numerical comparison can 
be observed in Fig.  4). This hinders or exacerbates the difficulty of 
executing multi-kernel applications on resource-constrained network 
nodes. 2⃝ We replace the accurate arithmetic multiplication, division, 
and square root operations and tanh functions with the INC-tailored 
(inexact) alternatives, in all application kernels, and demonstrate their 
marginal effect on the final accuracy (see Fig.  5). 3⃝ To apply the 
mixed-precision tuning on consecutive kernels, we performed a kernel-
wise precision scaling investigation (as multi-kernel applications usually 
show a more diverse error-resiliency spectrum to the precision scaling 
technique [66,67,74]). To this end, the precision scaling is applied 
– on top of the previous techniques – on each kernel individually, 
while the rest of the kernels are accurate (32-bit fixed point precision 
with exact operations). The result of precision scaling analysis is also 
depicted in Fig.  5. 4⃝ Finally, we analyze the effect of loop perforation 
(loops that are used to calculate and update the separation matrix in an 
iterative approach) on the accuracy of the application. Specifically, we 
analyze the effect of reducing the loop iteration from 200 for a highly-
accurate implementation [56] to 1. The loop perforation is applied on 
top of previous techniques and the result shows that the application 
successfully converges after 35 iterations, even when it is implemented 
with a reduced precision and with lower sampling frequency and period 
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(see Fig.  6). The output of this analysis is multiple lists, each belongs 
to a specific kernel and reports a pair of {𝛥ADP, 𝛥QoR} that reveals 
the end-to-end performance-accuracy trade-off, when only that kernel 
is approximated while the rest are accurate.

4. X-DINC cross-layer approximation and distribution methodol-
ogy

4.1. Greedy-based approximation heuristic

Targeting a high accuracy, computations can be carried out in 
FP precision. However, as discussed earlier, reducing the precision to 
e.g., 16-bit has also reported to be satisfactory for many applications 
including BSS [75]. The main goal of the cross-layer approximation 
methodology is to appropriately adjust the precision of each kernel (on 
top of other techniques applied on the kernels) in order to maximize 
the performance gain while minimizing the end-to-end quality loss 
(or maintaining a predefined accuracy threshold). The importance of 
such methodology becomes pronounced for preventing the need for 
an exhaustive Design Space Exploration (DSE) for multi-kernel appli-
cations. In this regard, to tune the precision of consecutive kernels in 
a multi-kernel application, we customized and further improved the 
greedy-based heuristic of [67], where the pseudo-code of the modified 
heuristic is depicted in Algorithm 1. Note, the greedy heuristics have 
a lower complexity than other conventional choices such as ILP and
Genetic Algorithm (GA) and faster convergence to the near-optimal 
solutions than simulated annealing approaches [67]. These are highly 
important factors for runtime decision-making actions in INC scenarios.

The inputs of the heuristic are the predefined QoR threshold and 
the information obtained from the sensitivity analysis, i.e., two lists 𝐿1
and 𝐿2 that detail the end-to-end performance-gain and QoR-loss for 
down-scaling the precision of the kernel to either 16- or 8-bit (while 
other approximations are already applied on that kernel). Each item of 
these lists reveals the end-to-end gain/loss only for one approximate 
kernel, while the rest of the kernels are 32-bit precision. The cus-
tomization of the heuristic applied in this article involves reducing the 
number of required lists, from one list of {performance-gain, QoR loss} 
(for each approximation technique [67]), to only two (which shows 
the performance-gain and accuracy trade-off for 16- or 8-bit kernels), 
overall. This means that in the baseline configuration (input of the 
heuristic), the loop perforation, operation/function approximations and 
reducing sampling period/frequency are already applied. Therefore, the 
heuristic itself only determines the precision of the kernels.

The reason behind is two-fold and is made based on the result of 
sensitivity analysis. First, the precision scaling technique has shown a 
more pronounced effect on the kernels than other techniques (see Figs. 
4 to 6). Second, pruning the dominated points in the final design space 
that needs to be explored is highly desirable, especially for runtime 
decision making in the 5G and upcoming 6G networks. In fact, in run-
time scenarios, heterogeneous nodes are dynamically added or removed 
from the network, necessitating a quick redistribution of application 
kernels to the updated network nodes. Therefore, compared to the 
original version of the heuristic [67], we combined the techniques 
(which have a lower impact on the ultimate application accuracy). This 
has significantly reduced the size of the design space and hence, the 
exploration time of the heuristic.

The heuristic runs as follows: first, all application kernels (already 
approximated by other techniques except the precision scaling), are 
uniformly set to 32-bit precision. Afterwards, the Salience List is con-
structed by adding the 𝛥ADP𝛥QoR  for each pair of {kernel, precision} (i.e., the 
precision of that kernel is reduced to 16- or 8-bit). Note that this value 
is obtained in the sensitivity analysis phase. The list is then sorted in 
a descending order to reveal the significance order of kernels for the
combined approximations: the kernels at the top of the list can enable 
a higher end-to-end performance gain while imposing less QoR loss 
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Fig. 4. The contribution of each kernel in the total performance metrics of the BSS application (left). The effect of changing sampling period and frequency on the accuracy and 
performance metrics of BSS application (right).
Fig. 5. Sensitivity analysis of BSS application to cross-layer approximation techniques, i.e., precision scaling on top of function approximation (multiplication, division, square 
root, tanh). The figures show the trade-off between the end-to-end 𝛥performance and 𝛥QoR after approximating each kernel, individually (while the rest are accurate FP precision).
Fig. 6. The effect of loop perforation technique on the convergence and accuracy of the BSS application.
to the ultimate application accuracy (when approximated by all the 
techniques). Based on this list, the greedy heuristic is applied in an 
iterative manner: in each iteration, the pair of {kernel, precision} which 
appears at top of the salience list, is chosen for precision scaling. After 
generating a new configuration of kernels at each step of the heuristic, 
the configuration is evaluated on diverse samples to assess whether 
the final desired QoR threshold is preserved. Whenever the accuracy 
of the generated configuration crosses the threshold (having up to 5% 
difference with the user-defined threshold), the heuristic backtracks to 
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the previous accuracy-satisfied configuration and continues the search 
by evaluating the next candidate at the top of the salience-list.

4.2. Distributing approximate kernels over heterogeneous network nodes

A distributed approach in INC setup entails decomposing the appli-
cation into multiple partitions, each of which is assigned to a network 
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Algorithm 1: Greedy-Based Precision-Tuning Heuristic 
for Multi-Kernel Applications (customized from [67])

Input: L1: {E2E ADP Gain PS, QoR-Loss}∀16-bit Prec. Kernel
Input: L2: {E2E ADP Gain PS, QoR-Loss}∀8-bit Prec. Kernel
Input: User-Defined-QoR-Threshold, Kernel-List
Output: Approximated-Kernels [Precision]

1 Salience-List = Array [];
// Calculate ADP-gain of precision scaling, on each kernel, individually

2 for i in Kernel-List do
// Precision of this kernel is reduced to 16-bit, others are 32-bit

3 Salience-List ←  L1 [i] ˃𝛥𝐴𝐷𝑃
𝛥𝑄𝑜𝑅

(16);

// Precision of this kernel is reduced to 8-bit, others are 32-bit
4 Salience-List ← L2 [i] ˃𝛥𝐴𝐷𝑃

𝛥𝑄𝑜𝑅
(8);

5 end 
6 Descending Sort (Salience-List);
7 while (!timeout) do
8 for i in Salience-List do

// Apply approximation in descending order of 𝛥𝐴𝐷𝑃
𝛥𝑄𝑜𝑅

9 Config {Approx, Prec. Reduced} = Kernels [Salience-List𝑖];
10 Output-QoR = Evaluate (Config {Approx, Prec. Reduced});

// Also explore temporary configurations
11 if Output-QoR ≥ 0.95 × User-QoR-Threshold then
12 if Output-QoR ≥ User-QoR-Threshold then

// Update candidate configuration
13 Config temp ← Config {Approx, Prec. Reduced};
14 end 
15 i++;
16 go to 10;
17 else
18 Break;
19 end
20 end 
21 end 

device,6 and the network devices are connected with a network topol-
ogy [32,34]. For such a distributed setting, X-DINC methodology needs 
to distribute the 𝑁 kernels across 𝑀 network nodes (𝑀 ∈ {2,… , 𝑁−1}) 
by finding an optimal or near-optimal grouping. The goal is to minimize 
the transmission latency by identifying the best partitioning points that 
minimizes the size of the transmitted data (such goal has neither been 
considered nor explored in any of the related works cited in Sections 2.3
and 2.4). In this context, our approximation approach helps finding 
an optimal or near-optimal distribution solution: we propose to focus 
only on Pareto or near-Pareto configurations (generated by Algorithm 
1) that not only render the highest ADP gain for a user-given QoR 
threshold, but also contain more kernels having the lowest precision 
(8-bit in this article).

Recall that Algorithm 1 tunes the precision of kernels in a way to 
minimize the {𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 × 𝑙𝑎𝑡𝑒𝑛𝑐𝑦} of the application (while satisfying 
the user-given QoR-level). Therefore, multiple Pareto or near-Pareto 
configurations are already generated, which have the minimum or near-
minimum latency for a given accuracy threshold (see Fig.  7). It is worth 
highlighting the unique features enabled by the X-DINC, that are not 
supported by the existing works: through reducing the size (bit-width) 
of intermediate data that need to be communicated, our methodology 
minimizes the transmission latency (which could be the dominant 
portion in the end-to-end latency of the application, as discussed in 

6 Finding the optimal re-partitioning and re-distributing application kernels 
w.r.t. network dynamic changes (e.g., in distributed training or inference of 
NNs) is an interesting track, out of the scope of this paper.
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Section 1). Moreover, X-DINC enables the flexibility to choose among
multiple kernel configurations having an admissible accuracy. In fact, 
each of these (mixed-precision) configurations might be suited for a 
specific distribution scenario in an INC-setup, in which network nodes 
have heterogeneous resource footprints. To show the efficacy of the 
proposed distribution approach over the centralized counterpart, we 
assess various scenarios having different number of network nodes and 
QoR thresholds in Section 5.4.

5. Results and discussion

5.1. Experimental setup

5.1.1. Application partitioning and mapping
We developed the C++ implementation of BSS application based 

on  [56,76] and afterwards, it was synthesized with Vitis High-Level
Synthesis (HLS) 2020 on a commodity FPGA (AMD/Xilinx Virtex-7 
VC709). For the exact performance analysis, the Hardware Description
Language (HDL)-generated design from HLS was further passed to 
the downstream implementation phase, placed and routed on Virtex-
7 through AMD/Xilinx Vivado. In the experiments, the Digital Signal
Processing (DSP) units are disabled and only the 6-LUTs are used for 
the synthesis. The reason behind is two-fold. First, utilizing only 6-
LUTs eases the comparison of different approaches in terms of area 
(as estimating the required number of LUTs to be replaced with a DSP 
varies for each function and hence, is not a straightforward task). Sec-
ond, adopting an LUT-based implementation is also recommended by 
many FPGA vendors, for low bit-widths operations (e.g., at 8-bit) [77]. 
It should be mentioned that the kernels include all the computational 
segments of the application and only the non-computational and critical 
parts (e.g., memory or loop index calculation) are exempted from the 
approximations. Finally, as shown in Appendix (Fig.  10), the applica-
tion is partitioned into eight computational kernels and analyzed by the 
sensitivity analysis process.

5.1.2. Benchmark
Similar to State of the Art (SoA) works [52,54–56], we have utilized 

the widely-used acoustic data-set of Malfunctioning Industrial Machine 
Investigation and Inspection (MIMII) [78] that collects real-world data 
from industry machines. MIMII contains 26 092 normal and abnormal 
operating acoustic data from four types of machines: valves, pumps, 
fans, and slide rails. Every segment has a duration of 10-s audio, 
sampled at the frequency of 16 kHz.

5.1.3. QoR metrics
The accuracy of an approximation configuration is assessed w.r.t. 

different metrics with simulations. We measured SDR and SNR as the 
indicators for the separation quality of the audio-based BSS application. 
These metrics are the most widely used audio accuracy metrics in the 
BSS studies, comprehensively covering different types of errors [56]. 
SDR and SNR are defined in Eqs. (1) and (2) respectively, wherein 𝑆
and 𝑆̂ denote the original and estimated source. 𝑒𝑖𝑛𝑡𝑒𝑟𝑓 , 𝑒𝑛𝑜𝑖𝑠𝑒, and 𝑒𝑎𝑟𝑡𝑖𝑓
represent the errors attributed from interference, noise, and artifacts, 
respectively.

𝑆𝑁𝑅 = 20
𝑛
∑

𝑖=1
log10

|𝑆𝑖|

|𝑆̂𝑖 − 𝑆𝑖|
, 𝑖 = 1, 2,… , 𝑚 (1)

𝑆𝐷𝑅 = 10 log10
‖𝑆2

‖

‖𝑒 + 𝑒 + 𝑒 ‖

2
(2)
𝑖𝑛𝑡𝑒𝑟𝑓 𝑛𝑜𝑖𝑠𝑒 𝑎𝑟𝑡𝑖𝑓
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Fig. 7. Different performance-QoR trade-offs are enabled by the approximate, mixed-precision configurations which also achieve similar/higher gains compared to uniform configs. 
The heuristic also finds many Pareto/near-Pareto points in the 10%, 20%, and 30% time of the exhaustive search.
5.2. Cross-layer error-sensitivity analysis results

In the left-hand side of Fig.  4, we first detail the contribution of each 
kernel, when the BSS application is implemented in accurate mode. 
The evaluated metrics are the end-to-end latency (the summation of 
kernels’ delays), 6-LUT count, and ADP as a representative of energy.7 
This figure shows that the kernels contribute differently to each of the 
performance metrics (e.g., application latency or energy). This infor-
mation is important to be considered by the designer, when targeting 
a high-performance or energy-efficient design.

In the following, we present the results of sensitivity analysis. As 
discussed in 3.2, this process is applied in four steps. The right side 
of Fig.  4 demonstrates the result of the first step, i.e., the sensitivity 
(i.e., separation accuracy) of BSS to various sampling periods and 
frequencies. Afterwards, Fig.  5 reveals the low sensitivity of individual 
kernels to replacing the complex operations/functions in all kernels 
with the approximated alternatives. Moreover, this figure also shows 
the sensitivity of individual kernels to precision scaling, by applying 
this technique with a one-kernel-at-a-time strategy discussed earlier. 
Finally, Fig.  6 shows the effect of loop perforation (on top of other 
approximation techniques) on the accuracy of the application and 
proves the convergence of separation matrix, for all the scenarios. The 
key observations from the sensitivity analysis are pin-pointed herein.

• Changing the sampling period and frequency : as can be observed in the 
right-side of Fig.  4, implementing the BSS application at the high 

7 A comprehensive and detailed energy calculation for such a large 
multi-kernel application is arduous and considered for the follow-up track.
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accuracy of FP precision with high sampling frequency and period 
(similar to [52,54–56]) is significantly resource-hungry. For example, 
the right-most Green bar and Red bar in this sub-figure represent the 
requirement of 50860 LUTs and 84 MB memory, respectively, for im-
plementing the BSS configuration that can support processing a 10 s 
audio, sampled at the frequency of 16 kHz. Such a resource-hungry 
implementation hinders the practical deployment of this multi-kernel 
application in most of FPGA- or ASIC-based network switches. In 
fact, only few FPGAs from Xilinx/AMD Versal, UltraScale, or Virtex 
have the memory capacity of higher than 30 MB. However, as can be 
observed in this figure, reducing the sampling frequency and period 
to 4-s and 4 kHz (Green and Red bars on the left side), not only 
reduces the required resources significantly (up to 93% reduction 
in memory and 42% reduction in 6-LUTs), but also maintains the 
accuracy at an acceptable level (>16 dB) and satisfies the Nyquist-
rate sampling criteria [79]. It is worth noting that the SDR/SNR value 
above 15 dB is considered as an acceptable separation quality for BSS 
application [53,80,81]. Therefore, based on this observation we have 
chosen the audio period of 4 s, sampled at the frequency of 4 kHz, 
for the rest of the experiments.

• Approximation of operations (multiplication, division, square root) and 
functions (tanh): as can be seen in Fig.  5, replacing the exact opera-
tions with the SIMDive-based version [82] (which is P4-compatible8) 
not only can significantly improve the ADP of the kernel, but also 
marginally affects the accuracy in most kernels, when the preci-
sion is 32- or 16-bit (all bars with 32- or 16-bit label have a high 

8 Further reasons for using SIMDive MUL/DIV is discussed inAppendix.
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SDR/SNR accuracy of more than 16 dB). In fact, even when these 
operations/functions are approximated in all application kernels, the 
SDR (SNR) metrics are higher than 18 (14) dB (see the black hexagon 
markers in Fig.  7). Our analysis has shown that this negligible quality 
drop is endowed to the near-zero biased errors of SIMDive multi-
plication/division, which can cancel out each other in consecutive 
kernels. Moreover, as mentioned earlier, cutting-edge studies have 
also shown that a low error-bias error plays a pivotal role in mini-
mizing the error accumulation in applications having multiple kernels 
with an aggregation-based structure (i.e., mostly addition/multiplica-
tion operations) [65–69]. Based on this observation, SIMDive-based 
operations have been deployed in all pre-processing and processing 
kernels of the BSS application. The replacement of accurate mul-
tiplication/division with SIMDive, in all kernels, has pruned the 
dominated points and efficiently reduced the size of design space 
that needs to be explored, in which only the precision of kernels is 
required to be changed (see Section 5.3).
In contrast to the approximation of multiplication and division, our 
analysis shows that truncating the output of the addition/subtrac-
tion operations (more than few bits) can significantly affect the 
accuracy, especially when applied in kernels such as Covariance. 
The high-sensitivity of addition to approximation for other matrix
multiplication-based applications is also endorsed by [70]. Therefore, 
addition and subtraction operations are maintained accurate in our 
implementations. Moreover, the small contribution of these opera-
tions in the total energy of application kernels, (Fig.  2) justifies our 
decision that it is better to preserve the accurate structure of the these 
operations.

• Kernels contribute differently to the QoR fluctuations and the gained 
performance: as discussed earlier, the kernels contribute differently, 
to each of the performance metrics (Fig.  4 left side). Therefore, the 
importance order of kernels (for approximation) would be different, 
w.r.t. the ultimate design goal. For example, Fig.  5 shows that when 
a high-performance design with a shorter separation time is the goal, 
approximation of the covariance kernel results in higher latency re-
duction (due to its division, acting as the speed bottleneck operation). 
However, when resource (LUT) saving is the goal, the approximation 
of Hessenberg and QR Decomposition kernels is more beneficial. More-
over, this figure also reveals that the significance order of kernels in 
their QoR loss can vary from their order in the gained performance
(after applying the same approximation technique). For example, 
as can be seen in Fig.  5, the most error-resilient kernel is Evolving 
Separation, while, in general, the approximation of Covariance can 
result in higher performance gain.
Overall, aforementioned insights further corroborate our initial state-
ment, i.e., that the relation between 𝛥Performance and 𝛥QoR should 
be considered for adjusting the approximation knobs in a multi-kernel 
application, and not based on the primary appearance order of kernels 
(or their contributions), in the accurate configuration.

• Effect of loop perforation on accuracy and convergence of separation 
matrix: Fig.  6 shows that the accuracy fluctuations and convergence 
of the separation matrix after applying the loop perforation (on top 
of other techniques) on the last three kernel of BSS (which consist 
of loops and can be tuned to 8−, 16−, or 32−bit precision). As 
can be seen in this figure, reducing the number of iterations in the 
convergence checking to ∼25–35 not only maintains an acceptable 
QoR-level for many of the kernel configurations (i.e., the configu-
rations which maintain the SDR above 15 dB), but the separation 
matrix also successfully converges. Skipping further and unnecessary 
iterations can greatly reduce the response time of the application. 
Therefore, we have opted to update the separation matrix until 35
times in our experiments.

The outputs of the sensitivity analysis (the lists of end-to-end {𝛥per-
formance gain, 𝛥QoR}) are given to the precision-tuning heuristic in the 
next step.
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5.3. Performance gains of approximate configurations obtained by the 
cross-layer approximation methodology

Herein, the overall efficacy of the cross-layer approximation
methodology is evaluated. Fig.  7 illustrates the accuracy and perfor-
mance gain of approximate configurations over the baseline double-
precision FP configuration having the accurate operations (each of the 
eight kernels can have the precision of 8-, 16-, or 32-bit, resulting in 38 =
6561 approximate configurations). Moreover, Fig.  7 also demonstrates 
the efficiency of the greedy heuristic in finding the Pareto- or near-
Pareto points by distinguishing the ones that are found by the heuristic, 
in different exploration time-limits. The results show that not only 
new ADP-QoR trade-off levels (mixed-precision configurations) are 
generated by the X-DINC methodology, but also these approximate 
configurations reach a higher performance gain than the uniform-
precision ones. Please note that not only one unique, but a set of 
configurations reach permissible ADP-QoR trade-offs, which can be 
utilized for network nodes having different resource-footprint. For 
example, it is worth highlighting that the proposed X-DINC method-
ology has been able to generate the Pareto-optimal configuration of 
the BSS application which can be fit into one single FPGA (in terms 
of both memory and LUT) while maintaining an acceptable accuracy 
of >16 dB (see overlapping pink circles and green stars in e.g., sub-
figures at the right side of Fig.  7). X-DINC can also support dynamic 
scenarios in multi-hop networks and energy management routines for 
heterogeneous resources: arbitrary heuristic-generated configurations 
can be stored in FPGA SPI/BPI flash memory and loaded at runtime, 
enabling X-DINC to adapt to e.g., network congestion, node failures, 
or bandwidth changes, by switching configurations and redistributing 
approximated kernels.

Table  2 also details two commonly utilized metrics, i.e., the fraction 
of Pareto points (which are found in 5% to 50% of the exhaustive 
search time) and the coverage ratio for the total number of non-
dominated design points and the significance of these points, known 
as the hypervolume indicator [83]. Although a heuristic algorithm may 
not always find all globally optimal solutions, the results show that our 
heuristic has been able to find more than 80% of the Pareto points, 
within the first 5% of the exhaustive DSE time (as shown in Table  2). 
This Table also asserts the efficiency of X-DINC methodology in saving 
the exploration time, which would be highly desired for the larger 
design spaces, where a brute-force search is not time-wise tractable. For 
example, simulating the accuracy of 6561 possible kernel configurations 
in C++ for BSS takes 312 h (on a Rack Server equipped with Intel 
Xeon E5-2667 CPU @ 3.20 GHz and 512 GB RAM), when analyzed 
on 25 set of 4-s audio samples from the MIMII database. Please note, 
many near-Pareto points (that are found by the heuristic) also render 
admissible resource-accuracy trade-off but are not reported in this 
Table.

We have also compared the greedy strategy of [74,84] against ours. 
Such approaches only considered the 𝛥QoR as the deciding metric in 
navigating the heuristic (i.e. the precision of which kernel should be 
reduced at each step). In contrast, our approach considers the 𝛥ADP𝛥QoR  as 
the salience metric. We have compared these heuristics by analyzing 
various accuracy levels for the BSS QoR threshold. Fig.  8 compares 
the ADP and memory requirement of the configurations generated by 
the heuristics (normalized to the respective values for the FP-based 
configuration). As can be seen in this figure, for most of accuracy-
thresholds, our heuristic can achieve higher performance gain in terms 
of both ADP and memory (and also in a shorter searching time). The 
effectiveness of our heuristic is also even more pronounced, when the 
accuracy threshold is higher: as can be seen in Fig.  8, the proportional 
gap between the heuristics (in terms of resource savings) is higher for 
the higher accuracy levels. Such an efficient heuristic can therefore 
obviate the need of an exhaustive search (the size of the design space 
increases exponentially w.r.t. the number of application kernels or 
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Fig. 8. Comparing the proposed 𝛥ADP
𝛥QoR  based versus the 𝛥QoR based greedy heuristic [74,84] in various QoR levels: the former (X-DINC) finds configurations with higher performance 

gain and lower memory requirement.
Table 2
Percentage of 35 Pareto points, found in different exploration time of the heuristic.
 Heuristic iteration (% of exhaustive search) 5 15 25 35 50  
 Coverage ratio of Pareto points (%) 80 85.7 85.7 85.7 88.6 
 Coverage ratio of Hypervolume (%) 61.8 69.8 69.8 69.8 72.5 

nodes within the network) and expedite the selection of a Pareto or 
near-Pareto configuration at run-time and speed up decision-making 
actions.

5.4. End-to-end performance gains of distributed (INC ) over centralized 
approach

For the final evaluation of proposed INC-tailored approximation 
methodology, we have considered various scenarios from Accurate-
Centralized, Accurate-Distributed (INC), Approximate-Centralized, and
Approximate-Distributed (INC). The experimental testbed for the dis-
tributed scenarios is established by connecting one to six hops, each 
is equipped with a network-connected Virtex-7 FPGA. For each dis-
tribution scenario, we have also measured the end-to-end latency of 
the application for six levels of QoR (i.e., SDR accuracy-levels of 
14, 16, 18, 20, 21, and the FP precision as the highest accurate one). The 
definition of the end-to-end latency denoted as 𝑙e2e of INC-accelerated 
scenarios for the 𝑚 number of network nodes is given in Eq. (3). In 
this equation, 𝑡𝑐 , 𝑡𝑝, 𝑡𝑢, and 𝑡𝑑 represent the delays for computation, 
propagation, upload, and download, respectively.9

𝑙e2e = 𝑚 ⋅ 𝑡𝑐 + (𝑚 − 1) ⋅ (𝑡𝑢 + 𝑡𝑝 + 𝑡𝑑 ) (3)

The representative values of network’s communication parameters 
are adopted from the 5G International Mobile Telecommunications 
(IMT)-2020 Key Performance Indicator (KPI) standards [85] for a con-
nected network in an industrial automation setting [86]. In this setting, 
the nodes are connected by links having a propagation delay of 1 ms
which shows the transmission latency (𝑡𝑝) between two consecutive 
hops. The user experienced data rates for downlink and uplink are also 
100 and 50 mbps, respectively. Note, while 𝑡𝑝 is constant, the other 
variables are computed based on the size of the data that is transmitted 

9 Although packing/unpacking data is also a communication overhead, 
evaluation of [34] shows it is a minor cost (<2%) in the overall traffic.
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Table 3
Grouping 8 kernels of BSS application into 2–7 nodes for distributing on network nodes 
in an INC scenario.
 Distribution 
scenario

Grouping Distribution 
scenario

Grouping  

 2-Node {1,2},{3,4,5,6,7,8} 5-Node {1},{2},{3},{4,5},{6,7,8}  
 3-Node {1},{2},{3,4,5,6,7,8} 6-Node {1},{2},{3},{4},{5},{6,7,8}  
 4-Node {1},{2},{3,4,5},{6,7,8} 7-Node {1},{2},{3},{4},{5},{6,7},{8} 

between consecutive hops. Fig.  9 compares the end-to-end latency 
of the centralized versus distributed (INC-accelerated) scenarios, for 
different QoR-levels. Table  3 also shows the grouping of 8 kernels into 
2−7 nodes (for SDR = 20 dB). The following deductions can be inferred 
based on this figure: 
• First, the left part of Fig.  9 compares the end-to-end latency of central-
ized implementations for accurate versus approximate configurations 
(i.e., 14 dB ≤ SDR ≤ 21 dB). Results show that the proposed approx-
imation methodology significantly improves application’s response 
time, compared to the accurate approach (having 76 ms latency), 
while QoR is also kept at an admissible threshold.

• Second, as shown in the right part of this figure, the associated 
costs of download, upload, and propagation, altogether are growing 
linearly w.r.t. the number of network links and are much less than of 
the computation latency. In fact, the transmission cost for 2-nodes 
is 2% of the total latency and it becomes at most 12% for the 7-
node scenario.10 This is attributed to the proposed approximation 
methodology which (1) efficiently reduces the required number of 
samples and (2) reduces the bit-width of the data that needs to be 
transmitted between the hops by applying precision scaling. This 
means that the data separation job can be performed faster via 
the in-network acceleration, through the network hops. The results 
also pronounce the efficacy of the proposed in-network acceleration 
methodology, especially when the resource footprint of one single 
node may not be sufficient for implementing the whole application 
kernels at a high precision: in contrast to the Accurate-Centralized 
FP-based implementation (which require 84 MB of memory and in-
feasible to be implemented in one single FPGA), all the proposed 
Approximate-Distributed scenarios can be practically implemented in 

10 Communication overhead will be >50% for the 8-node scenario, as all 
input samples must be transferred again to the 𝑇 𝑎𝑛ℎ kernel, if separated.
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Fig. 9. The end-to-end latency (response time) of BSS application in the centralized 
(left) versus INC-accelerated and distributed approach (right).

one single FPGA, with the memory requirement of less than 30 MB 
per node.

• Note that the performance gains reported here, compared to the cen-
tralized approach, are based on distributing the kernels over a chain 
of FPGA-based nodes. The gains in the computation time become 
even more significant when the kernels are offloaded to other types 
of hardware, especially (ASIC) switches having orders of magnitude 
higher processing speed than a general purpose processor, embedded 
in a stand-alone host (i.e., in a centralized approach). In fact, as 
discussed before, besides the computation time, the proposed approx-
imation and distribution methodology also reduces the transmission 
time. Therefore, such a methodology is highly desirable, especially in 
distributed scenarios with a higher number of network nodes, where 
the transmission latency might become the dominant portion of the 
end-to-end latency.

• The optimal number of distributed nodes depends on application 
structure (e.g., kernel/operation parallelizability), required end-to-
end response time, computational/memory size and node resources, 
and kernel output data size. X-DINC can speed up such optimization 
by leveraging the error-resiliency of kernels, reducing the required 
resources and, consequently, the number of network nodes needed to 
implement the target application.

6. Remarks and challenges

6.1. Remarks

Scope of X-DINC: the focus of this article is narrowed to analyze the 
in-network acceleration of multi-kernel applications from the approxi-
mation perspective. We shown that by capitalizing on error-resiliency 
potentials across the abstraction layers within a network hierarchy, 
properly approximating and distributing application kernels over the 
network hops can result in a shorter (application) response time and 
resource requirement, when compared to the accurate-centralized ap-
proach. A further analysis on a packet-processing basis is an interesting 
future track, different from the scope of this article and its claimed 
contributions.

Applicability to heterogeneous devices and other applications: X-DINC
attempts to cope with the limitations of switches and P4 by introducing 
and adjusting various approximation/optimization knobs, which are 
agnostic from the underlying architecture. For instance, our impre-
cise MUL/DIV/SQRT algorithms use only shift and ADD/SUB oper-
ations. Additionally, reducing processed samples and skipping loop 
iterations remain hardware-agnostic. Precision scaling (4, 8, 16-bit) is 
supported in SoA SmartNICs from vendors like NVIDIA (BlueField), 
Intel (Infrastructure Processing Unit (IPU)), and Netronome. While 
programmable ASIC switches do not natively support this, P4 enables 
bit-masking and shifting to emulate lower-precision operations for both 
storage and computation. Similarly, loop perforation is also applicable 
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to such devices through skipping the iterations in the so-called recircu-
lation process. Thus, while we prototyped our methodology on the BSS 
case study and on an FPGA-based testbed, the proposed approximation 
techniques and methodology are applicable to other multi-kernel ap-
plications and heterogeneous network devices as well. For example, 
many ML algorithms, especially NNs, can significantly benefit from 
the proposed kernel-wise sensitivity analysis and the mixed-precision 
strategy (for a layer-wise quantization in the scope of NNs), considering 
that the multiplication, division, and square root operations are also 
abundantly used in such algorithms.

Task scheduling and placement : While multiple configurations with 
different resource-accuracy trade-offs, generated by X-DINC, can aid 
addressing dynamic scenarios in multi-hop networks and energy man-
agement techniques for heterogeneous resources, a Software-Defined
Networking (SDN) controller is responsible for such coordination and 
dynamic resource allocation tasks, adapting the workloads w.r.t. the 
network conditions, and orchestrating distributed tasks across network 
infrastructures [7]. Such task management strategies (briefly discussed 
in the studies cited in Section 2.1) are not within the scope of this paper.

6.2. Challenges

Compatibility of INC-based approach with current network setup and 
infrastructures: although the preliminary results in this paper and those 
cited in Section 2 have shown the advantages of INC, the question that 
how INC should be efficiently integrated in the current network setting 
(to minimize the additional overheads) is an ongoing research field 
for the 6G network providers. In fact, to the best of our knowledge, 
there is no existing work or simulation tool that models and compares 
the performance of applications when implemented in an INC setup. 
Going into details, utilizing the existing forwarding layer to support INC 
is a non-trivial job11 that is partly investigated in [55,87]. Moreover, 
although there is currently no hardware platform that is specifically 
designed for in-network based approaches, Intel has announced that its 
IPU carries great potential to facilitate the INC solutions [9].

Traffic management in a heterogeneous co-design approach: coupling an 
FPGA to an ASIC switch in a co-design approach necessitates further 
implementation efforts. First, the computations should be efficiently 
divided to two different architectures. Second, matching and merging 
the traffic rates (without leading to congestion) requires meticulous 
attention. In fact, transferring packets between an ASIC switch and 
its co-processor FPGA is not straightforward, since the interconnect 
between them may act as a performance bottleneck. Such packet rates 
can be fixed or workload dependent, therefore, the switch should adapt 
to such dynamic scenarios. Addressing this, either all switch pipelines 
can connect to the FPGA via a single egress port or each pipeline can 
connect independently, via a dedicated port [36]. Moreover, the switch 
also needs to differentiate between new incoming traffic and returning 
packets from the FPGA [41]. Few potential solutions for such concerns 
are already proposed in [41] which includes bus adaptation and traffic 
encapsulation.

7. Conclusions and future work

This paper presented X-DINC, a cross-layer approximation and dis-
tribution methodology to enable or facilitate the in-network accelera-
tion of multi-kernel applications, by capitalizing on the error-resiliency 
of the applications. X-DINC introduces various approximation and op-
timization knobs across the abstraction layers (within a network hi-
erarchy) and efficiently adjust them to generate multiple optimal or 
near-optimal configurations with acceptable performance-QoR trade-
offs. Finally, X-DINC distributes the (mixed-precision) approximate 

11 The application computation problem is always decoupled from the 
data-forwarding, in literature studies.
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kernel configurations over a set of network nodes in a way to mini-
mize the transmission overhead and end-to-end response time of the 
application (which are significantly shorter compared to the tradi-
tional accurate-centralized approach). We believe these contributions 
make steps towards the in-network acceleration of multi-kernel applica-
tions, as both intermediate network nodes and Internet of Things (IoT) 
edge devices have heterogeneous resource footprint and processing 
speed. Another potential use-case the X-DINC methodology could be 
an approximate-aware partitioning of the NN models, especially for 
an edge-cloud collaborative setting, which is a cutting-edge topic in 
the literature. In this context, utilizing the proposed approximation 
methodology can help to adjust the load of computation w.r.t the such 
requirements.

In the envisioned follow-up work, we will expand the X-DINC ap-
proximation and distribution methodology for the in-network acceler-
ation of NNs in various distribution scenarios. Furthermore, we will 
present a co-design approach through which the application kernels 
will be efficiently grouped to be offloaded to an ASIC-switch and 
its co-processing FPGA. Another interesting track could be to imple-
ment a runtime coordination/management process which finds the best 
re-distribution scenario, that can address the dynamic changes with 
minimum reconfiguration overhead.
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Appendix. Background and preliminaries

A.1. Blind source separation problem

Consider 𝑛 sources of signals that are sampled in 𝑚 time slots, 
the size of the data matrix is 𝑆𝑛×𝑚. Due to the mutual interference 
of original signal(s) and possible noises emitted by other sources, the 
sensed data, is inevitably a mixture of multiple sources (mixed-data 
matrix 𝑋). The relation between 𝑆 and 𝑋 can be formulated as 𝑋 =
𝐴 × 𝑆, wherein 𝐴 is the interference matrix that distorted the original 
signal. In reality, the coefficients of the original signal 𝑆 and the 
interference matrix 𝐴 are unknown, making the receiver blind to the 
source signal. BSS attempts to invert the mixing process and recover a 
near-optimal estimation of original signal 𝑆. Mathematically this can 
be formulated as 𝑆 = 𝐴−1 × 𝑋. This is obtained by calculating the so-
called separation-matrix 𝑊  and then applying it on the mixed-signal 𝑋
through 𝑆 = 𝑊 × 𝑋. BSS consists eight kernels, which are discussed 
herein (also depicted in Fig.  10).

First, whitening process is performed which decorrelates the sampled 
data and makes the sources as statistically-independent as possible. 
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Whitening is applied through the five steps. First, covariance matrix cal-
culation captures the statistical relationships, i.e., deriving a covariance 
𝐶 between different features of the data. After transforming the covari-
ance matrix to the Hessenberg form (which reduces the computation 
complexity of the next phase), the QR eigenvalue and eigenvector decom-
position steps break down the covariance matrix 𝐶 into its constituent 
eigenvectors and eigenvalues (𝐶 = 𝐸 ×𝐷 × 𝐸𝑇 , where 𝐸 is the matrix 
of eigenvectors and 𝐷 is the diagonal matrix of eigenvalues). The set 
of eigenvectors represent the directions along which the data varies 
the most, while the corresponding eigenvalues determine the variance 
along each of those eigenvector directions. Finally, Back Substitution 
Solver derives the whitening matrix 𝑊  as (𝑊 = 𝐷− 1

2 × 𝐸𝑇 ) and apply 
it to the zero-centered input data to decorrelate the data and removes 
the dependencies between different data dimensions.

After whitening, the Independent Component Analysis process should 
be applied. FastICA is the most widely used approach for solving this 
extraction problem. FastICA algorithm iteratively enhances a randomly-
initiated matrix, until convergence happens. Each iteration has three 
sub-steps, as follows. Tanh Analysis is an optimization step which 
improves the convergence of the algorithm through maximizing the 
statistical independence (or non-Gaussianity) of the data and reduces 
the sensitivity of separation matrix to outliers. Afterwards, Evolving 
Separation refines the estimation of the independent components by 
updating the separating matrix (i.e, applying a contrast function on the 
current separation matrix). After performing the update process, the 
estimated independent components may still be correlated. Therefore, 
the Gram–Schmidt decorrelation algorithm [88] is applied to ensure that 
the components are decorrelated, i.e., orthogonal to each other. Finally, 
the independent components are normalized, the weight vectors in 
the separation-matrix are updated, and the convergence condition is 
assessed (by comparing the Euclidean distance of two consecutive 
separation matrix).

A.2. Mitchell-based approximation of multiplication, division, and square 
root

As the accurate implementations of multiplication, division, and 
square root are not supported in P4/ASIC switches, we have utilized 
the approximation of SIMDive [82] due to two main reasons. First, 
Mitchell’s algorithm translates multiplication (division) to addition 
(subtraction) in the logarithmic representation, as shown in Eqs. (4) 
and (5). Such a conversion not only facilitates a resource-efficient 
implementation of complex multiplication and division operations but 
also only utilizes simple operations (if-else, addition/subtraction, and
shift), all of which are supported in P4 language. Hence, such Mitchell-
based approximate variants can be easily adopted for implementation 
in a variety of P4-based network nodes. Second, the SoA SIMDive 
hybrid multiplier and divider unit has significantly improved the ac-
curacy of Mitchell’s algorithms to 99.2% and bound the average of 
absolute relative error Average of Absolute Relative Error (ARE) to 
<0.8%. Moreover, SIMDive enjoys a negligible error bias of less than 
0.05%, a metric that is reported to play a pivotal role in minimizing the 
accumulated error in consecutive kernels of multi-kernel applications.

Mitchell’s multiplication and division algorithms [89]: The binary rep-
resentation of 𝑁-bit input 𝐴 can be written as Eq. (6), wherein 𝑘 shows 
the position of the leading one. The rest of the bits (starting from 
position 𝑘 − 1 to 0) are considered as the fractional part and are in 
the range of 0 ≤ 𝑥 < 1.

𝑃 =𝐴×𝐵
𝐴𝑝𝑝𝑟𝑜𝑥.
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

log
l̃og𝑃 =l̃og𝐴+l̃og𝐵

𝐴𝑝𝑝𝑟𝑜𝑥.
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝐴𝑛𝑡𝑖−𝑙𝑜𝑔

𝑃 = 2l̃og𝑃 (4)

𝐷= 𝐴 ÷ 𝐵
𝐴𝑝𝑝𝑟𝑜𝑥.
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

𝑙𝑜𝑔
l̃og𝐷=l̃og𝐴−l̃og𝐵

𝐴𝑝𝑝𝑟𝑜𝑥.
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝐴𝑛𝑡𝑖−𝑙𝑜𝑔

𝐷̃=2l̃og𝐷 (5)

=2𝑘+
𝑘−1
∑

2𝑖𝑏𝑖=2𝑘(1 + 𝑥)
𝑒.𝑔.
←←←←←←←←←←←←←←→58 = 25(1 + 0.11010)2, 18=24(1 + 0.001)2 (6)
𝑖=0
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Fig. 10. The kernel structure of Blind Source Separation application (whitening and FastICA) and the detailed instruction flow in each kernel. The approximation knobs are 
highlighted in the figure.
In the linear approximation of log function,  log2(1 + 𝑥) is approxi-
mated to 𝑥, when 0 ≤ 𝑥 < 1. Hence, the approximate log of 𝐴 is achieved 
by concatenating the integer part (exponent 𝑘) and fractional part (rest 
of the bits, starting from position 𝑘 − 1 to 0), as shown in Eq. (7): 

log2(𝐴)≃𝑘+𝑥→ log2(58)≃(101.11010)2, log2(18)≃(100.001)2 (7)

By applying the same process on the second input and obtaining 
its approximate log, the summation (subtraction) of two parts can is 
calculated by Eq. (8) (Eq. (9)). 

l̃og2(𝑃 )=(𝑘1 + 𝑘2)+(𝑥1 + 𝑥2) →𝐾𝑠=(1001)2, 𝑋𝑠=(0.1111)2 (8)

l̃og2(𝐷̃) = (𝑘1 − 𝑘2) + (𝑥1 − 𝑥2) → 𝐾𝑠 = (1)2, 𝑋𝑠 = (0.1011)2 (9)

Lastly, the anti-log (which mathematically a shift operation) is 
applied to derive the binary representation of the approximate product 
(quotient), as shown in Eq. (10) (Eq. (11)):

𝑃=
{

2𝑘1+𝑘2 (1 + 𝑥1 + 𝑥2), 𝑥1 + 𝑥2 < 1
2𝑘1+𝑘2+1(𝑥1 + 𝑥2), 𝑥1 + 𝑥2 ≥ 1

→ 𝑃 = 992, 𝑃𝑎𝑐𝑐 = 1044 (10)

𝐷̃=
{

2𝑘1−𝑘2−1(2 + 𝑥1 − 𝑥2), 𝑥1 − 𝑥2 < 0
2𝑘1−𝑘2 (1 + 𝑥1 − 𝑥2), 𝑥1 − 𝑥2 ≥ 0

→𝐷̃=(11)2=𝐷𝑎𝑐𝑐 =3 (11)

Square root : this operation is implemented via non-restoring al-
gorithm [90] (due to being resource-friendly), wherein the accurate 
multiplication is replaced with the SIMDive version.

Data availability

We will open-source the work (codes and data), when the article is 
accepted.
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