
XMG-based Logic Synthesis for Emerging
Reconfigurable Nanotechnologies

Shubham Rai∗ Heinz Riener† Giovanni De Micheli† Akash Kumar∗
∗CfAED Technische Universität Dresden, Germany

†Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

Abstract—Emerging reconfigurable nanotechnologies allow the
implementation of self-dual functions with a fewer number of
transistors as compared to traditional CMOS technologies. Hence,
to achieve better area results for Reconfigurable Field-Effect
Transistors (RFET)-based circuits, it is imperative that a large
portion of a logic representation must be mapped to self-dual
logic gates. This, in turn, depends upon how self-duality is
preserved in the logic representation during logic optimization
and technology mapping. In the present work, we develop logic
optimization algorithms using Xor-Majority Graphs (XMGs) as a
logic representation. Firstly, XMGs are more compact for both
unate and binate logic functions as compared to conventional
logic representations such as And-Inverter Graphs (AIGs) or
Majority-Inverter Graphs (MIGs). Secondly, the logic primitives
used in XMGs, that are, Majority and Xor gates, can better
preserve self-duality as both, the majority-of-three and the odd-
input Xor function, are self-dual. Keeping in mind the above
two advantages of XMGs, we have implemented Boolean size-
optimization methods, a rewriting and a resubstitution algorithm,
aiming at better preserving self-duality during logic optimization.
We evaluate the proposed algorithms using crafted benchmarks
with various levels of self-duality, the EPFL benchmarks, and
cryptographic benchmarks. The experimental evaluation shows a
direct correlation between the relative numbers of self-dual nodes
in the XMGs and the area optimization results after technology
mapping for RFET-based circuits. For practical benchmarks with
a high self-duality ratio, the XMG-based logic optimisation flow
can achieve an area reduction of up to 12% when compared to
efficient optimization flows implemented in the academic logic
synthesis tool ABC.

I. INTRODUCTION

The recent development of a modern RISC-V processor made
with carbon nanotubes field-effect transistors has brought the
focus to efficient yet practical circuits based on emerging post-
silicon technologies [30]. The work done in [30] stands out as a
stepping stone to solve the ever-increasing problem with CMOS
dimension-scaling and the growing skew between cost and
performance for CMOS-based circuits [21]. Hence, exploring
emerging nano-devices is not just an academic exercise but
an imperative demand to meet the requirements of future
electronics [26].

Ambipolar nanotechnologies form a class of emerging
nanotechnologies which enable both n- and p-type func-
tionality from a single transistor. Various device geometries
based on materials like germanium [15], silicon [11, 12],
graphene [9] etc. offer ambipolarity. Logic gates based on
these emerging reconfigurable nanotechnologies allow more
functionality per unit transistor [18]. Recently, it has been
demonstrated, that Boolean functions which are self-dual, can

be implemented efficiently using Reconfigurable Field-Effect
Transistors (RFETs) [34]. However, in order to enable their
efficient integration into commercial electronics, contemporary
design automation techniques need to support and utilize their
requirements and feature-sets, respectively [17]. In the present
work, we explore logic synthesis methods which can specifically
take advantage of the self-duality of Boolean functions.

Within design automation, logic synthesis is an integral part
which optimizes a logic network in terms of a cost function, typ-
ically focusing on the reduction of area or delay. Recently, novel
multi-level logic representations such as Xor-And Graphs [24]
or Xor-Majoriy Graphs (XMGs) [23, 29] have been proposed,
which enrich conventional And-Inverter Graphs (AIGs) [8]
and Majority-Inverter Graphs (MIGs) [19] with an additional
Xor primitive. These new logic representations offer more
compactness and enable better runtimes for logic optimization
and minimization flows [23, 33].

In the present work, we explore the usage of XMGs in logic
optimization methods to achieve area reduction after technology
mapping for RFET-based circuits. The two contributions are
summarized as follows:

1) Conventional logic representations such as AIGs or
MIGs suppress self-duality during logic optimization. We
propose an XMG-based logic synthesis flow that allows
preserving the self-duality during logic optimization.
This flow enables better area reductions after technology
mapping for RFET-based circuits in comparison to state-
of-the-art logic optimization flows. In an experimental
evaluation over crafted benchmarks with varying levels
of self-duality, we achieve average area reductions of
2.46%, 1.75%, and 1.76% compared to state-of-the-
art logic optimization flows compress2rs, dc2 and dch,
respectively. Over cryptographic benchmarks, using the
proposed XMG-based flow, area reductions up to 12%
are achieved for benchmarks with high self-duality.

2) We propose state-of-the-art resubstitution and rewriting
algorithms for XMGs. Our resubstitution algorithm
uses a new filtering rule for 3-input Xor gates (Xor3).
This filtering rule reduces the average runtime for
resubstitution over the EPFL benchmarks by 52% while
preserving the quality. Our rewriting algorithm for XMGs,
called exact XMG rewriting, uses cut enumeration, NPN
canonization, and exact synthesis. In contrast to the
previous XMG rewriting approaches, the algorithm uses
structural hashing to utilize existing logic and as such

0

A
bs

. D
ra

in
 C

ur
re

nt
 I

D
(a

rb
.u

.)

Control Gate Voltage V (V)

A P

S D

A

S D

P = 1

n

A

S D

P = 0

p

n-programp-program

B

A A

(a)

(b)

200 nm

Source Drain

CG

PGS PGD

(b)

S D

EFs

V = LowCG

V = HighCG

EFd

EFs EFd

S

EFs

V = LowV = LowV = LowCGV = LowCGV = Low
V = HighV = HighV = HighV = HighV = HighCGV = HighV = HighCGV = High

EFs

Fs

D

EFd

V = HighPG

EFd

Fd

V = LowPG

(c)

PGS CG PGD

(a)

PGS
CG

PGD15nm

8nm

HfO2
6.9nmD

ra
in

 C
ur

re
nt

 [A
]

(d) 0 0.2 0.4 0.6 0.8
10-12

10-10

10-8

10-6
VDS=0.9V

VPGS=VPGD=0.9V
VPGS=VPGD=0V

10-5

 VCG [V]

n-type

p-type

(c)

Fig. 1: Various emerging reconfigurable Nanotechnologies. (a)
A generic RFET showing two gate terminals: The program
(signal P) and the control gate (signal A) [31]. The Program
gate controls the direction of the flow of charge carriers where
as the control gate controls the flow of the charge carriers.
The adjacent curve shows the V-shaped curve representing
electrical symmetry for n- and p-type functionality. (b) It shows
a graphene pn junctions where the back gates, (S and U) works
as a control knob to control the ambipolarity. (c) It shows
an all-around RFET called as Three-Independent Gate FETs
(TIGFETs). The band diagrams are also shown here [26].

can achieve size reduction even if a smaller subnetwork
is replaced with a larger one.

The remainder of the paper is organized as follows: In
Section II, we introduce reconfigurable nanotechnologies, self-
duality and previous works on XMGs. In Section III, we give
the main motivation behind this work. This is followed by
Section IV, which deals with details about the algorithm to
generate benchmarks with varying degree of self-duality. In
Section V, we discuss Boolean methods such as resubstitution
as well as rewriting for XMGs. Section VI gives details about
our experiments and analysis over various benchmark suites.
Closing remarks are given in Section VII.

II. BACKGROUND

In this section, we introduce reconfigurable nanotechnologies
and terminologies used throughout the paper.

A. Reconfigurable nanotechnologies

Ambipolarity, as a phenomenon is observed at lower technol-
ogy nodes, but often suppressed using process techniques [12].
The class of emerging nanotechnologies which aims to exploit
this ambipolarity is often termed as emerging reconfigurable

OUT

A

B

¬P

A B

P P

¬P¬P

P

2-NAND (P=0)
2-NOR (P=1)
3-MIN (P=input)

(a)

2-XOR (P=1)
2-XNOR (P=0)
3-XOR (P=input)

P P

¬P ¬P

A

¬B

¬A

B

¬A

¬BB

A

¬P

P

¬P

P

OUT

(b)

Pull-Up
Network

Pull-Down
Network

Vdd

Vss

Output

Input1

Input2

(c)

Pull-Up
Network

Pull-Down
Network

reconf_input

Output

Input1

Input2

reconf_input

reconf_input

reconf_input

(d)

Fig. 2: Reconfigurable logic gate Minority and XOR3 demon-
strated in [11, 31]. It shows how functionality changes with
value of P. (c) Fixed Pull-up and pull-down network in case of
Complimentary MOS logic gates. (d) Interchangeable Pull-up
and pull-down network in case of RFET-based logic gates [34].

nanotechnology and the devices are called reconfigurable field-
effect transistors (RFETs). These devices demonstrate both n-
and p-type functionality from a single device on application of
an external bias. Multiple device geometries based on various
materials like silicon [11, 12], germanium [15], carbon [3]
etc. have been proposed which exhibit near to full electrical
symmetry in both n- and p-type functionality. This electrical
symmetry is shown as V-shaped curve in Fig. 1a. Both 1-
D devices (such as silicon or germanium nanowires [12]
etc.) and 2-D devices (such as graphene p-n junctions [9],
WSe2 TIGFET [20] etc.) have been demonstrated to exhibit
ambipolarity. Logic gates based on these devices are able to
exhibit more than one functionalities as shown in Fig. 2.

B. Self-dual functions

A logic function f(x1, . . . , xn) is said to be self-dual [13]
if

f(x1, . . . , xn) = f̄(x̄1, . . . , x̄n) (1)

By complementing the function, an equivalent self-dual
formulation is f̄(x1, . . . , xn) = f(x̄1, . . . , x̄n). For a particular
instance of x1, . . . , xn, f(x1, . . . , xn) and f̄(x̄1, . . . , x̄n) are
dual to each other.

Theorem 1. There are 22
n−1

different self-dual functions of n
variables.

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

x1 x2 x3 f

1

0

0

1

0

1

1

0

}= 1001

= 0110
}

Splitted truth
table are bitwise
complementary. This
implies reconfigurable
pull-up and
pull-down networks

Fig. 3: Truth-Table for Xor3 logic gate. The truth-table is split
over the value of x1 which is the reconfigurable input.

Proof. For a self-dual function, since f(x1, . . . , xn) =
f̄(x̄1, . . . , x̄n), only half of the inputs are sufficient to com-
pletely specify the function. From this, only 2n−1 combinations
exist. Hence, total number of self-dual function for n inputs
considering both polarities (0 and 1) is equal to 22

n−1

.

Fig. 3 shows a 3-input Xor function which is a self-dual
function. Here, when the truth-table is divided over the value
of x1 (or any other arbitrary literal), the two half of the Xor3
truth-table (Xor2 and XNor2 functions) are dual to each other.

In [34], the authors showed that self-dual functions are
the logical abstraction for reconfigurable nanotechnology. The
multiple functionality exhibited by RFET-based logic gates are
due to the interchangeable pull-up and pull-down networks as
shown in Fig. 2d. The switching of polarities of individual
transistors in their respective pull-up and pull-down networks is
caused by changing the potential at the program gate as shown
in Fig. 2a and 2b. This change in potential at the program
gate causes the PFET to become NFET and vice-versa causing
the pull-up and pull-down networks to flip as shown in Fig. 2d.
This corresponding switch in electrical behavior is abstracted
conveniently in a self-dual function.

C. Terminologies

We introduce some terminologies here, which will be used
through the rest of the paper.

1) Density of self-duality: We define the term density of
self-duality for a circuit or logic network as the ratio of total
number of self-dual nodes to the total number of nodes.

2) Trivial and non-trivial self-dual functions: As shown in
Theorem 1, self-dual functions are fewer (square root of total
number of functions) as compared to non-self-dual functions.
Moreover, among two-input functions, self-duality exists in
those functions which are equivalent to either of the inputs
or to their complements (for example, f(a, b) = f(a)). Such
functions are implemented in circuits as wires and hence their
implementation does not require any transistors. Thus two-input
self-dual functions are termed here as trivial functions as they
have no impact on the overall area of the circuit.

For functions with more than two inputs, their implemen-
tation with RFETs require fewer number of transistors as
compared to their CMOS counterpart. These functions will
have a direct impact on the area of the circuit. Hence, 3 or more

input functions which are self-dual are termed as non-trivial
functions.

D. Earlier works on XMG

Xor-Majority Graphs in their current format, were first intro-
duced in [23] as a means for underlying logic representation
for exact synthesis. As exact synthesis uses SAT solving or
enumeration, its runtime directly depends upon the size of the
logic representation. Since XMGs have both binate (Xor) as
well as unate (Maj) nodes, it gives a size-proportional logic
representation for both n-input unate and binate functions
as compared to the poor representation of binate logic (Xor-
based logic) by MIGs or AIGs [29]. Algebraic optimizations
for XMGs based logic synthesis was proposed in [29]. They
explored Boolean algebraic optimizations for Xor and Xor-Maj
logic and were able to achieve depth optimizations.

In the present work, we explore logic synthesis in order to
maximize the self-duality within a circuit so that they can be
efficiently mapped to RFETs. Since our objective is primarily
post-mapping area, we are focusing on size optimization and
hence, have not considered algebraic optimizations in the
present work.

E. NPN-Classification

Two functions f(x) and g(x) belong to the same NPN
class if there exist a permutation σ ∈ Sn and polarities
p1, . . . , pn ∈ B such that

f(x1, . . . , xn) = gp(xp1σ(1), . . . , x
pn
σ(n)). (2)

This implies that functions g can be made NPN equivalent to
f by either complementing the inputs, permuting the inputs
or complementing the outputs or a combination of these. For
example, functions f1 = x1x̄2 + x1x3 and f2 = x1x2 + x̄1x3
are NPN equivalent because the permutation of unate variables
x2 and x3 lead to the same function. NPN classification is
an effective method to represent Boolean functions as for a
particular number of inputs, as NPN classes is a smaller subset
of the overall Boolean functions possible.

III. MOTIVATION

Due to their device-level reconfigurability, RFETs allow
efficient implementation of self-dual logic functions in terms
of number of transistors [34]. For example, a Minority logic
gate (shown in Fig. 2) needs 3 transistors in case of RFETs
as compared to 10 transistors in CMOS technology [31].
This implies that circuit implementations with RFETs gain
in area, if they have a higher density of non-trivial (3 or more
input functions) self-dual gates. Hence, it is imperative that
self-duality in a logic representation is preserved after logic
optimizations.

From logic representation perspective, if we consider AIGs
(the logic primitive is AND, which is a two-input primitive), a
self-dual function will be broken into multiple AIG nodes
and hence during logic optimization (which can use cut
enumeration techniques), self-duality can be lost. Similarly, for
MIG nodes, parity-based self-dual functions are not represented

Algorithm 1: Populating benchmarks with varying level
of self-duality

Data: num pis, levels, nodes per level, sdIndex
Result: XMG network N

1 Set signalList ← [];
2 Set sd or normal← 0;
3 for k ← 0 to num pis do
4 signalList.add(N .create pi());
5 for i← 0 to levels do
6 for j ← 0 to nodes per levels do
7 fanins← signalList.randSubSet();
8 if sd or normal < sdIndex then
9 node ← N .create selfdual gate(fanins);

10 else
11 node ← N .create normal gate(fanins);
12 signalList.add(node);
13 sd or normal ← (sd or normal + 1)

mod 10 ;
14 for o ∈ signalList.not used() do
15 N .create po(o);
16 return N

TABLE I: Distribution of self-dual functions in NPN

No of vars. Functions NPN Classes

Self-dual + norm. Total Self-dual + norm. Total

1 1 + 3 4 1 + 1 2
2 4 + 12 16 1 + 3 4
3 16 + 240 256 3 + 11 14
4 256 + 65280 65536 7 + 215 222

in a compact manner which can again result in loss of self-
duality during logic optimization [29].

In contrast, XMGs consists of both Xor and Maj nodes as
logic primitives. Out of these, every majority and odd-inputs
XOR functions are self-dual. Hence, using XMGs can better
preserve self-duality during logic optimization as compared to
other logic representatives.

IV. SELF-DUALITY

A. Self-duality in NPN classes

As stated in Theorem 1, self-dual functions are rare. We com-
pute the distribution of the self-dual functions over all Boolean
functions up to 4 variables and their NPN representatives. This
is shown in TABLE I. NPN canonization preserves the self-
duality of a Boolean function, i.e., if a Boolean function is
self-dual, so are all Boolean functions obtained by applying the
NPN transformations to it. The numbers in the table illustrate
that self-dual functions are not only rare when compared to
the total number of Boolean functions, but also show that
they reduce with increasing number of variables. Whereas 25%
of the NPN representatives in 2 variables are self-dual, this
percentage drops to 21.43% and 3.15% for 3 and 4 variables,
respectively.

B. Self-dual benchmarks
In order to evaluate the efficacy of our approach as compared

to the state-of-the-art logic synthesis approaches, for RFET-
based standard cell mapping, we generate benchmarks with
varying density of self-dual logic gates within the circuit. We
propose a metric called a self-duality index to vary the density
of self-duality within a circuit. The rationale behind this is
that if we have a larger number of self-dual components in
the circuit, then more self-dual logic gates can be utilized
during mapping. This leads to an improved area results for
RFET-based circuit.

We generate multiple benchmarks using Algorithm 1. We
start with an empty logic network and take four parameters as
inputs– number of Primary Inputs (PIs) (num pis), number of
levels (levels), number of nodes per level (nodes per level)
and self-duality index (sdIndex, whose value has to be between
1 and 10). Depending upon the value of self-duality index, for
every 10 nodes added in the logic network, number of self-dual
nodes added, is equal to self-duality index (line 9) and the
remaining (10− self-duality index) (line 11) nodes are normal
nodes. By normal nodes, we mean adding logic nodes using
AND, OR, XOR or constants while self-dual nodes implies
adding Majority or 3-input XOR logic nodes. We maintain a
signal list SL where we keep adding all the newly created
nodes (line 12). We then randomly select nodes from the signal
list SL to add to the circuit (line 7).

V. ADVANCED LOGIC SYNTHESIS TECHNIQUES

While the earlier works [23, 29] introduced the basic logic
optimizations using XMGs, we extend the support of XMGs
with advanced Boolean methods such as resubstitution as well
as NPN-based cut-rewriting techniques.

A. Boolean XMG resubstitution and filtering
Boolean resubstitution is a logic optimization method that

re-expresses the function of a node n in a logic network N
using nodes, called divisors, already present in N . Nodes that
are exclusively used by n and are not required by any other
logic in the logic network become free and can be removed.
A resubstitution leads to a size reduction if the number k of
newly added nodes to re-express a node’s function is less than
the number l of removed nodes in its maximum fanout-free
cone (MFFC, [5]).

Resubstitution algorithms are available for different multi-
level logic representations including AIGs [4, 5], MIGs [27,
33], and logic networks [2, 10, 25] focusing on two-input And
operations, three-input Majority operations, and combinations
of two-input gates such as Xor-Ands, And-Xors, or three and
two-input gates such as Multiplexor-Xors, respectively.

Computing three-input Xor (Xor3 is a self-dual logic gate)
resubstitutions is particularly time-consuming because divisor
filtering techniques developed for And and Or operations cannot
be applied. To substitute a node n in a network with logic
function fn(x) by a three-input Xor operation, three divisor
nodes d1, d2, and d3 have to be found, such that

fn(x) = fd1(x)⊕ fd2(x)⊕ fd3(x) (3)

Algorithm 2: Boolean filtering and resubstitution
Data: Window W in a logic network with root node n
Result: Node resubstitute for n or ⊥ if not resubstitution has

been found
1 Set M ←W.computeMFFC(n);
2 Set D ←W.collectDivisors(n)\M ;
3 Set TT ←W.simulate();
4 sortByDBP(D,TT, n);
5 for i← 0 to |D| do
6 if 3 ·DBP(D[i]) < DBP(n) then
7 return ⊥;
8 for j ← i+ 1 to |D| do
9 if DBP(D[i]) + 2 ·DBP(D[j]) < DBP(n) then

10 break;
11 for k ← j + 1 to |D| do
12 if f = TT [i]⊕ TT [j]⊕ TT [k] then
13 return W.xor3 resub(n,D[i], D[j], D[k]);
14 if f = ¬TT [i]⊕ TT [j]⊕ TT [k] then
15 return W.xor3 resub(n,D[i], D[j], D[k]);

16 return ⊥;

for all assignments to the primary inputs x, where fd1 , fd2 ,
fd3 are the divisor functions, respectively.

State-of-the-art Boolean resubstitution algorithms over-
approximate the node functions using windowing to apply
scalable truth-table computations. The algorithms have to
iterate over all triples of nodes in a window of a root node n
(excluding the root node’s MFFC) to test if Eq. 3 holds. The
first substitution possible that reduces the network’s size is
accepted. In the worst case, if no resubstitution can be accepted,
O(w3) tests are required for a window with w nodes.

Filtering techniques help to reduce the number of tests
required and significantly speed-up the performance of re-
substitution algorithms in practice. We develop a new filtering
rule for three-input Xors guiding the search for divisors using
distinguishing bit-pairs [7]: a resubstitution of a target node n
with function f(x) and divisors nodes d1, d2, d3 with functions
fd1(x), fd2(x), fd3(x) over common window inputs x exists
if and only if for any pair x̂i 6= x̂j of input assignments

f(x̂i) 6= f(x̂j) =⇒
∨

1≤a,b≤3,a 6=b

da(x̂i) 6= db(x̂j). (4)

Utilizing Eq. 4, we sort all divisor nodes in a window by the
number of bit-pairs distinguished by the divisor with respect
to the root node’s target function. We define the absolute
distinguish bit power DBP(n) of the root node n as the number
of pairs (x̂i, x̂j) of input assignments for which fn(xi) 6=
fn(xj), and we define the relative distinguishing bit power
DBPn(d) of a divisor d as the number of pairs (x̂i, x̂j) of
inputs assignments for which fn(x̂i) 6= fn(x̂j) and fd(x̂i) 6=
fd(x̂j).

Algorithm 2 shows our Boolean filtering and resubstitution al-
gorithm as pseudo code. The divisors are sorted (line 4) by their
relative distinguishing bit power—higher relative distinguishing
bit power will more likely lead to a possible resubstitution. We
further leverage the relative distinguishing bit power to filter
insufficient divisor triples. Given a sorted list D = d1, ..., dw

of divisors such that DBPn(di) ≥ DBPn(dj) for all i < j,
a single divisor d can never be completed to divisor triple
that passes the test in Eq. 3 if 3 · DBPn(d) < DBP(n)
(line 6). Since the list is sorted, no remaining divisor will
pass this test either such that the algorithm can terminate
(line 7). For a similar reason, no divisor pair di, dj , i < j,
can be completed to a divisor triple that passes the test in
Eq. 3 if DBPn(di)+2 ·DBPn(dj) < DBP(n) (line 9). In this
case, the algorithm can proceed by selecting another candidate
divisor di (line 10).

B. Exact XMG rewriting

Boolean rewriting is a logic optimization method that
selects small parts of a logic network and replaces them
with more compact implementations to reduce its number
of nodes. State-of-the-art rewriting algorithms either rely on
a database of precomputed size-optimum subnetworks for
all Boolean functions up to 5 inputs [5] or compute size-
optimum subnetworks on-the-fly using exact synthesis [32, 35].
DAG-aware rewriting [5], fast cut enumeration techniques [1],
NPN canonization [14] of Boolean functions, and efficient
caching [35] enable scalability.

Rewriting XMGs has been first proposed in [23] using a two-
step approach: (1) A logic network is mapped into a network
of k-feasible lookup-tables (LUTs); (2) the k-feasible LUTs
are resynthesized into size-optimum XMGs. By repeating the
two steps until convergence, substantial size reduction can be
achieved.

We propose an improved XMG rewriting approach, called
exact XMG rewriting, that integrates both steps into one
algorithm. For each node, in the logic network, the set of all
k-feasible cuts is enumerated, each cut is simulated to obtain
its Boolean functions, and the functions are resynthesized
using exact synthesis. In contrast to the previous approach,
our algorithm takes advantage of structural hashing to utilize
the existing logic within the network, such that a global size
reduction can be achieved even if a locally smaller subnetwork
is replaced with a larger subnetwork.

The algorithm can be parameterized with a set of gate
primitives and supports synthesis of multiple candidates per
cut function. A conflict limit in exact synthesis allows to limit
the maximum synthesis effort per function. We consider exact
XMG rewriting for three different sets of gate primitives:

1) Three-input Majority gates with two-input Xor gates as
originally proposed by [23];

2) Three-input Majority gates and three-input Xor gates
to enable a more compact representation of Boolean
functions. Note that with constants the three-input Xor
gate can simulate the function of two-input Xor gates
and, thus, is a generalization of two-input Xor; and

3) Three-input Majority gates without constants and three-
input Xor gates to improve the internal self-duality of a
logic network during rewriting.

TABLE II: Runtime improvement in resubstitution using our
filtering rule

Benchmark Size
Before

runtime
with filter

runtime
without filter

Improvement
(%)

adder 1020 0.21 0.31 32.26
bar 3336 0.9 2.34 61.54
div 57247 35.58 58.85 39.54
hyp 214335 321.19 391.29 17.92
log2 32060 16.26 28.38 42.71
max 2865 0.89 1.39 35.97
multiplier 27062 13.44 33.53 59.92
sin 5416 3.34 7.49 55.41
sqrt 24618 13.64 29.77 54.18
square 18484 6.78 17.77 61.85
arbiter 11839 4.11 6.08 32.40
cavlc 693 7.28 55.09 86.79
ctrl 174 0.64 5.97 89.28
dec 304 0.02 0.02 0.00
i2c 1342 0.34 1.38 75.36
int2float 260 0.19 1.32 85.61
mem ctrl 46836 23.24 47.18 50.74
priority 978 0.34 1.15 70.43
router 257 0.09 0.2 55.00
voter 13758 5.46 10.81 49.49

Average 52.82

VI. EXPERIMENTS AND DISCUSSION

In the present section, we evaluate our approach with various
experiments. All the above implementations are carried out in
mockturtle from EPFL logic synthesis libraries [28].

A. Methodology

We extended the XMG network and implemented Boolean
methods such as resubstitution and exact XMG rewriting
techniques within mockturtle. We first evaluate the speedup
in runtime due to the filtering rule implemented with XMG
resubstitution algorithm. We then apply our XMG-based flow
over the generated benchmarks, the cryptography benchmarks
and the EPFL benchmarks. To produce area results, we use
the standard mapper with ABC logic synthesis framework
with the logic gates as proposed in [31]. Further, we compare
our flow with the state-of-the-art scripts within ABC such as
compress2rs, dc2 and dch.

B. Runtime improvement with filtering rule in resubstitution

In order to measure the improvement in runtime using the
Xor3-based filtering rule, we carry out one iteration of resub-
stitution (with and without filtering) over EPFL benchmarks
using XMGs. The third and the forth column in TABLE II
shows the runtime for our resubsitution algorithm for both the
flows. We can see that on average we get 52% improvement
in the runtime across all benchmarks.

C. Analysis on crafted self-dual benchmarks

Within this experiment we use Algorithm 1 to populate
multiple benchmarks with varying numbers of PIs, numbers of
levels and numbers of nodes per levels. The self-duality index
is taken care by the variable sdIndex whose value is iterated
from 1 to 10 to populate 10 benchmarks for a single set of

parameters. We apply resubstitution as well as NPN-based
cut-writing over XMG till convergence and then carry out
standard-cell mapping using RFET-centric generic library and
compare the results across various ABC scripts. In all these
experiments, we converge after one iteration. Hence, it is fair
enough to compare with scripts from ABC.

TABLE III shows the comparison of post-mapping area
carried out using different scripts for our crafted benchmarks.
The first column shows the value of sd-index which signifies
how many self-dual nodes have been added for every 10 nodes.
The next two columns (sd ratio and sd ratio’) are the density
of self-duality for the initial XMG after Algorithm 1 and final
XMG after optimization using Boolean methods respectively.
This is followed by the column of geometric mean of the initial
area for the variants of the benchmark generated. Finally, the
columns xmg-c2rs, xmg-dc2, and xmg-dch show how much the
final area using XMG-based optimization compares with the
ABC logic optimization flows. The numbers are in percentage
where a positive value means that XMG gives better numbers
as compared to the ABC scripts and vice-versa. For XMG-
based flow one can notice a direct correlation between the
improvements in area and the higher values for self-duality
ratios. Further, dch script shows a large variation across sd-
index from 1 to 10, as it gives much better numbers for smaller
values of sd-index, but gives worse numbers as the sd-ratio
gets more than 50%. Compress2rs script gives the closest result
across the sd-index. Hence, this experiment shows that with
increase in the sd-index, XMG based optimization gives better
numbers as compared to the state-of-the-art ABC scripts.

TABLE III: Comparison of final area with respect to ABC
scripts of compress2rs, dc2 and dch

Sd-index sd-ratio sd-ratio’ init area
(geomean)

xmg-c2rs
(%)

xmg-dc2
(%)

xmg-dch
(%)

1 28.62 36.14 662953.00 0.10 -1.72 -3.74
2 32.47 40.23 658231.50 1.83 0.16 -1.13
3 36.89 44.24 654716.00 2.50 0.78 0.15
4 41.76 48.82 651544.50 3.09 1.59 1.05
5 47.05 53.41 645854.00 3.20 2.01 1.73
6 53.09 58.52 640258.50 3.22 2.34 2.32
7 59.95 64.53 636013.50 3.24 2.68 3.17
8 68.00 71.37 631824.00 3.00 2.94 3.67
9 76.87 79.35 625668.00 2.78 3.18 4.48

10 100.00 100.00 614186.00 1.66 3.63 5.95

Average 2.46 1.75 1.76

D. Analysis on cryptography protocol benchmarks

While the previous experiment was conducted on crafted
benchmarks, it is imperative to evaluate our approach on
actual benchmark suites. For this, we conducted experiments
comparing our XMG-based approach with various optimization
scripts from ABC in order to establish our conjecture that an
increase in self-duality within a circuit can be better optimized
with XMGs. These benchmarks were taken from high-level
cryptography protocols such as Fully Homomorphic Encryption

TABLE IV: Comparison of mapped area for the cryptography benchmarks using XMG optimization as compared to ABC scripts

Benchmark sd-ratio sd-ratio’ init area c2rs area dc2 area dch area Best Area ABC XMG Area xmg-best(%)

AES-expanded 10.08 22.23 98145.50 87771.50 87791.50 87363.50 87363.50 87687.50 -0.37
AES-non-expanded 10.08 21.92 119367.50 105743.50 111298.00 110207.50 105743.50 110121.00 -4.14
DES-expanded 38.02 43.39 48138.00 40409.50 41843.50 41859.00 40409.50 46820.50 -15.87
DES-non-expanded 35.74 40.67 48382.50 40609.50 41712.50 41464.50 40609.50 45646.50 -12.40
adder 32bit 32.98 85.29 285.00 285.00 285.00 285.00 285.00 285.00 0.00
adder 64bit 33.16 81.42 573.00 573.00 573.00 573.00 573.00 573.00 0.00
adder 25.34 99.21 1690.50 1149.00 1149.00 1149.00 1149.00 1149.00 0.00
comparator 32bit signed 40.32 40.65 325.00 255.00 250.00 245.00 245.00 281.00 -14.69
md5 24.00 55.87 112702.50 114325.00 114805.00 114505.00 114325.00 99624.00 12.86
mult 32x32 29.34 41.77 11293.00 11011.00 9925.50 10344.50 9925.50 12341.50 -24.34
Sha-1 21.96 63.47 161993.50 161578.50 163646.50 164229.00 161578.50 141114.50 12.67
Sha-256 26.99 71.76 287858.50 281668.50 285691.00 276010.00 276010.00 248885.50 9.83

TABLE V: Comparison of mapped area for the EPFL benchmarks using XMG optimization as compared to ABC scripts

Benchmarks sd-ratio sd-ratio’ init area c2rs dc2 dch XMG xmg-best (%)

adder 98.84 99.22 1149.00 1149.00 1149.00 1149.00 1149.00 0.00
bar 48.32 49.38 4633.00 4147.00 5565.50 3858.00 6681.50 -73.19
div 28.74 36.57 110964.00 50550.50 48817.50 37992.50 88045.00 -131.74
hyp 56.15 56.86 327233.00 316630.50 305032.00 0.00 369719.00 -21.21
log2 43.99 44.44 47188.50 45714.50 46608.50 45861.00 50822.50 -11.17
max 50.58 50.57 4408.50 4558.00 4280.00 4358.50 5354.50 -25.11
multiplier 50.11 50.04 37268.00 37384.50 37207.50 37831.00 39937.00 -7.34
sin 43.07 44.17 9131.50 9450.50 9169.50 9072.00 9191.50 -1.32
sqrt 38.87 39.04 54239.50 28765.50 32655.50 42901.50 56764.00 -4.65
square 54.28 56.63 27180.00 24265.00 24708.00 23993.50 29478.50 -22.86
arbiter 63.35 63.35 18014.50 18014.50 18048.00 18049.50 26644.50 -47.91
cavlc 47.47 51.62 1118.50 1074.00 1071.00 1042.50 1504.00 -44.27
ctrl 43.80 50.54 236.50 182.50 175.00 172.00 237.00 -37.79
dec 9.36 10.03 464.00 464.00 464.00 464.00 554.00 -19.40
i2c 45.61 46.55 2116.00 1847.00 1936.00 1775.50 2796.00 -57.48
int2float 46.99 48.94 407.00 348.00 346.50 341.50 539.00 -57.83
mem ctrl 52.47 53.20 76604.00 72688.00 70491.50 67965.00 92565.50 -36.20
priority 44.74 45.55 1208.00 973.00 880.50 1311.50 1287.00 -46.17
router 38.94 39.60 449.00 364.50 466.50 457.50 566.00 -55.28
voter 54.40 71.44 19664.50 12209.50 14605.00 14961.00 11726.50 3.96

(FHE) and secure Multy-Party Communication (MPC) [16, 22]1.
These benchmark suite contains circuits ranging from block
ciphers (AES and DES) and hash functions such as (MDA-5
and SHA) to arithmetic functions (adders and comparators).

The results are shown in TABLE IV. As in the case of
crafted benchmarks, here also we compare the post-mapping
area. We compare our XMG-based approach to various ABC
based optimization scripts. The first two columns show the sd-
ratio (before and after optimization) which implies the density
of self-duality in the circuit. One can notice that most of the
benchmarks from the cryptography domain have high density
of self-dual gates (>50%), particularly parity functions as it
is an integral logic function in any cryptographic applications.
For benchmarks, md5, SHA-1 and SHA-256, our XMG-based

1The benchmarks were obtained from
https://homes.esat.kuleuven.be/nsmart/MPC/

approach outshines other ABC-based scripts. This is also
coherent with their sd-ratio values which are high. Our XMG-
based approach gives up to 12% smaller area as compared to
the other flows. For smaller benchmarks, such as adder, all the
flows reach the optimal area numbers.

For AES-non-expanded, compress2rs gives the best result,
which is 4% better than our XMG-based approach. In this case
as well our XMG-based approach fares well in comparison
to dc2 and dch scripts. However, there are cases in which
the initial area is less than after calling optimization scripts
(compress2rs, dch or dc2). This is due to the fact that mapping
can lead to different results for different subject graphs [6].
In case of benchmarks, where sd-ratio is lesser, the XMG-
based approach gives poor results. This is due to the fact, that
XMG representation are bigger as compared to other 2-input
primitives. An important consideration here is that since we
use ABC as the standard-cell mapper, it converts all three-input

Majority primitives and Xor primitives to multiple two-input
And primitives. During technology mapping, it carries out cut-
enumeration which can suppress self-duality within the circuit.
Hence, the technology mapping of the XMG-based networks
can get stuck in local minimum and can lead to poor mapping
results. A mapper with self-duality as target metric can lead
to better numbers but is beyond the scope of this work.

E. Analysis on EPFL Benchmarks

Finally, we evaluate our approach over the EPFL bench-
marks. The results are shown in TABLE V. However, unlike
cryptography protocol benchmarks, the area results for XMG-
based approach are worse as compared to ABC-based scripts
due to low self-duality density as shown by the sd-ratio values.
An exception here is the arbiter benchmark. While technology
mapping of arbiter using ABC-based scripts reports three gates–
Nand, Nor and Inv, technology mapping on XMG-based flow
reports use of an additional Minority gate. This clearly implies
that the technology mapper is stuck in some local minimum
and reports worse area numbers for XMG-based flow due to
reasons stated before. However, for voter benchmark, which
shows a higher percentage of self-duality, the post-mapping
area using XMG-based approach is the best of all other flows
which is coherent to our conjecture. Hence, our approach holds
true for benchmarks with higher self-duality.

VII. CONCLUSION

The present work explores logic synthesis from an emerging
nanotechnology perspective. Keeping a particular goal in mind
that the self-dual logic functions are implemented efficiently
with RFETs, we explore XMGs as logic representation so as to
exploit self-duality in circuit. We have considered XMGs due
to two reasons: (i) they provide a compact logic representation
and (ii) both majority and odd input parity function are self-dual
which can be efficiently represented by XMGs. We develop
advance Boolean methods such as resubstitution and rewriting
techniques for XMGs to get powerful optimizations. We show
that circuits which have high density of self-duality show better
area results for XMG-based approach as compared to the state-
of-the-art ABC optimization flows. We further evaluate the
XMG-based approach using circuits from cryptography and
EPFL benchmarks. An XMG based technology mapper with a
target metric for self-duality is a promising area as a future
research direction for the commercial development of emerging
reconfigurable nanotechnologies.

REFERENCES

[1] Jason Cong, Chang Wu, and Yuzheng Ding. “Cut Ranking and
Pruning: Enabling a General and Efficient FPGA Mapping Solution”.
In: ISFPGA. 1999. DOI: 10.1145/296399.296425.

[2] Victor N. Kravets and Prabhakar Kudva. “Implicit enumeration of
structural changes in circuit optimization”. In: DAC. 2004. DOI: 10.
1145/996566.996691.

[3] Yu-Ming Lin et al. “High-performance Carbon Nanotube Field-effect
Transistor with Tunable Polarities”. In: IEEE Trans. Nanotechnol.
(2005). DOI: 10.1109/TNANO.2005.851427.

[4] Alan Mishchenko and Robert K. Brayton. “Scalable logic synthesis
using a simple circuit structure”. In: IWLS. 2006.

[5] Alan Mishchenko, Satrajit Chatterjee, and Robert K. Brayton. “DAG-
aware AIG rewriting a fresh look at combinational logic synthesis”.
In: DAC. 2006. DOI: 10.1145/1146909.1147048.

[6] Satrajit Chatterjee. On algorithms for technology mapping. University
of California, Berkeley, 2007.

[7] Kai-Hui Chang, Igor L. Markov, and Valeria Bertacco. “Fixing Design
Errors With Counterexamples and Resynthesis”. In: IEEE TCAD
(2008). DOI: 10.1109/TCAD.2007.907257.

[8] Robert Brayton and Alan Mishchenko. “ABC: An Academic Industrial-
Strength Verification Tool”. In: Berlin, Heidelberg, 2010. ISBN: 978-
3-642-14295-6. DOI: 10.1007/978-3-642-14295-6 5.

[9] S. Tanachutiwat et al. “Reconfigurable multi-function logic based on
graphene p-n junctions”. In: DAC. 2010. DOI: 10 .1145 /1837274 .
1837496.

[10] Alan Mishchenko et al. “Scalable don’t-care-based logic optimization
and resynthesis”. In: ACM TRECTS. (2011). DOI: 10.1145/2068716.
2068720.

[11] André Heinzig et al. “Reconfigurable silicon nanowire transistors”. In:
Nano Letters (2012). DOI: 10.1021/nl203094h.

[12] M. De Marchi et al. “Polarity control in double-gate, gate-all-around
vertically stacked silicon nanowire FETs”. In: IEDM. 2012. DOI:
10.1109/IEDM.2012.6479004.

[13] Tsutomu Sasao. Switching theory for logic synthesis. Springer Science
& Business Media, 2012.

[14] Zheng Huang et al. “Fast Boolean matching based on NPN classifica-
tion”. In: FPT. 2013. DOI: 10.1109/FPT.2013.6718374.

[15] Jens Trommer et al. “Material Prospects of Reconfigurable Transistor
(RFETs)–From Silicon to Germanium Nanowires”. In: MRS (2014).

[16] Martin R Albrecht et al. “Ciphers for MPC and FHE”. In: Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2015.

[17] L. Amarú et al. “New Logic Synthesis as Nanotechnology Enabler”. In:
Proceedings of the IEEE (2015). DOI: 10.1109/JPROC.2015.2460377.

[18] Jens Trommer et al. “Functionality-Enhanced Logic Gate Design
Enabled by Symmetrical Reconfigurable Silicon Nanowire Transistors”.
In: IEEE Trans. Nanotech. (2015). DOI: 10 . 1109 / TNANO . 2015 .
2429893.

[19] L. Amarú, P. E. Gaillardon, and G. De Micheli. “Majority-Inverter
Graph: A New Paradigm for Logic Optimization”. In: TCAD (2016).
ISSN: 0278-0070. DOI: 10.1109/TCAD.2015.2488484.

[20] Giovanni V. Resta et al. “Polarity control in WSe2 double-gate
transistors”. In: Scientific Reports (2016).

[21] M. T. Bohr and I. A. Young. “CMOS Scaling Trends and Beyond”.
In: IEEE Micro (2017). DOI: 10.1109/MM.2017.4241347.

[22] Melissa Chase et al. “Post-quantum zero-knowledge and signatures
from symmetric-key primitives”. In: ASCCCS. 2017.

[23] W. Haaswijk et al. “A novel basis for logic rewriting”. In: ASP-DAC.
2017. DOI: 10.1109/ASPDAC.2017.7858312.

[24] I. Háleček, P. Fišer, and J. Schmidt. “Are XORs in logic synthesis really
necessary?” In: DDECS. 2017. DOI: 10.1109/DDECS.2017.7934583.

[25] Luca Gaetano Amarù et al. “Improvements to Boolean resynthesis”.
In: DATE. 2018. DOI: 10.23919/DATE.2018.8342108.

[26] Shubham Rai et al. “Emerging Reconfigurable Nanotechnologies: Can
They Support Future Electronics?” In: ICCAD. 2018. DOI: 10.1145/
3240765.3243472.

[27] Heinz Riener et al. “Size Optimization of MIGs with an Application
to QCA and STMG Technologies”. In: NANOARCH. 2018. DOI: 10.
1145/3232195.3232202.

[28] Mathias Soeken et al. The EPFL Logic Synthesis Libraries. 2018.
arXiv: 1805.05121 [cs.LO].

[29] Zhufei Chu et al. “Structural Rewriting in XOR-Majority Graphs”. In:
ASPDAC. New York, NY, USA, 2019. DOI: 10.1145/3287624.3287671.

[30] Gage Hills et al. “Modern microprocessor built from complementary
carbon nanotube transistors”. In: Nature (2019).

[31] S. Rai et al. “Designing Efficient Circuits Based on Runtime-
Reconfigurable Field-Effect Transistors”. In: TVLSI (2019). ISSN:
1063-8210. DOI: 10.1109/TVLSI.2018.2884646.

[32] Heinz Riener et al. “On-the-fly and DAG-aware: Rewriting Boolean
Networks with Exact Synthesis”. In: DATE. 2019. DOI: 10.23919/
DATE.2019.8715185.

[33] Heinz Riener et al. “Scalable Generic Logic Synthesis: One Approach
to Rule Them All”. In: DAC. 2019. DOI: 10.1145/3316781.3317905.

[34] S. Rai, M. Raitza, and A. Kumar S.S. Sahoo. “DiSCERN: Distilling
Standard-Cells for Emerging Reconfigurable Nanotechnologies”. In:
DATE. 2020.

[35] Heinz Riener, Alan Mishchenko, and Mathias Soeken. “Exact DAG-
aware Rewriting”. In: DATE. 2020.

