This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056337, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

High-Performance Accurate and Approximate
Multipliers for FPGA-based Hardware Accelerators

Salim Ullah, Semeen Rehman, Muhammad Shafique and Akash Kumar

Abstract—Maultiplication is one of the widely used arithmetic
operations in a variety of applications, such as image/video
processing and machine learning. FPGA vendors provide high-
performance multipliers in the form of DSP blocks. These
multipliers are not only limited in number and have fixed
locations on FPGAs but can also create additional routing delays
and may prove inefficient for smaller bit-width multiplications.
Therefore, FPGA vendors additionally provide optimized soft IP
cores for multiplication. However, in this work, we advocate that
these soft multiplier IP cores for FPGAs still need better designs
to provide high-performance and resource efficiency. Towards
this, we present generic area-optimized, low-latency accurate
and approximate softcore multiplier architectures, which exploit
the underlying architectural features of FPGAs, i.e., look-up
table (LUT) structures and fast carry chains to reduce the
overall critical path delay and resource utilization of multipliers.
Compared to Xilinx multiplier LogiCORE IP, our proposed
unsigned and signed accurate architecture provides up to 25%
and 53% reduction in LUT utilization, respectively, for different
sizes of multipliers. Moreover, with our unsigned approximate
multiplier architectures, a reduction of up to 51% in the
critical path delay can be achieved with an insignificant loss
in output accuracy when compared with the LogiCORE IP.

For illustration, we have deployed the proposed multiplier
architecture in accelerators used in image and video applications,
and evaluated them for area and performance gains. OQur library
of accurate and approximate multipliers is open-source and
available online at https://cfaed.tu-dresden.de/pd-downloads to
fuel further research and development in this area, facilitate
reproducible research, and thereby enabling a new research
direction for the FPGA community.

Index Terms—Approximate Computing, Multipliers, High-
Performance, Reduced-Area, Accelerators, Neural Networks

I. INTRODUCTION

MULTIPLICATION is one of the basic arithmetic oper-
ations, used extensively in the domain of digital signal
and image processing. FPGA vendors, such as Xilinx and Intel,
provide DSP blocks to achieve fast multipliers [1]. Despite the
high performance offered by these DSP blocks, their usage
might not be efficient in terms of overall performance and
area requirements for some applications. Table I compares
the critical path delays (CPDs) and lookup tables (LUTs)
utilization of two different implementations of Reed-Solomon
and JPEG encoders® for Virtex-7 series FPGA using Xilinx
Vivado. The routing delay caused by the location of the
allocated DSP blocks has resulted in higher latency for DSP-
based implementation of Reed-Solomon encoder. For small ap-
plications, it may be possible to perform manual Floorplanning

S. Ullah and A. Kumar are with the Technische Universitidt Dresden,

Germany. E-mail: (salim.ullah, akash.kumar) @tu-dresden.de

S. Rehman is with the Technische Universitit Wien, Austria. E-mail:
semeen.rehman@tuwien.ac.at

M. Shafique is with the Division of Engineering, New York University Abu
Dhabi. E-mail: muhammad.shafique @nyu.edu

This work is supported by the German Research Foundation (DFG) funded
Project ReAp under Grant 380524764.

*Source codes from http://opencores.org/projects

to optimize an application’s overall performance. However, for
complex applications with contending requirements for FPGA
resources, it may not be possible to optimize the placement of
required FPGA resources manually to enhance performance
gains. Similarly, the implementation of the JPEG-encoder
shows a large number of DSP blocks (56% of the total avail-
able DSP blocks) utilization. Such applications can exhaust the
available DSP blocks, making them less available/unavailable
for performance-critical operations of other applications exe-
cuting concurrently on the same FPGA, and thereby neces-
sitating the LUT-based multipliers. Similar results about the
DSP blocks utilization and overall application performance are
also reported by [41]. Therefore, the orthogonal approach of
having logic-based soft multipliers along with DSP blocks is
important for obtaining overall performance gains in different
implementation scenarios. That is why Xilinx and Intel also
provide logic-based soft multipliers [2], [3].

Techniques like [4]-[7] present modular approach of de-
signing bigger FPGA-based multipliers using smaller blocks.
However, such techniques prove to be useful for relatively
smaller bit-width multipliers; and for the relatively higher
bit-width multipliers, they consume more FPGA resources.
For example, the logic-based implementation of an accurate
8x 8 multiplier on Virtex-7 FPGA using Vivado, with default
synthesis options, consumes 71 LUTs. Whereas, the modular
implementation of an accurate 8 x8 multiplier using accurate
4 x4 multipliers consumes 82 LUTs.

Walters [8] and Kumm et al. [9] have used the modi-
fied Booth’s algorithm for area efficient radix-4 multiplier
implementations using 6-input LUTs and associated carry
chains of Xilinx FPGAs. Their implementations avoid partial
products compressor trees and have large critical path delays.
Parandeh-Afshar et al. have also used the Booth’s and Baugh-
Wooley’s multiplication algorithms for area-efficient multiplier
implementation using Altera FPGAs [10]. However, to reduce
the effective length of carry chains, their implementation limits
the length of the adaptive logic modules (ALM) to five,
which results in the underutilization of the FPGA resources.
Moreover, this feature of limiting the carry chain to five
ALMs cannot be achieved without wasting resources, with
current FPGAs from other vendors, such as those provided by
Xilinx [11]. Parandeh-Afshar et al. have also proposed a partial
products compressor tree using Altera FPGAs [12]. However,
their proposed implementation of generalized parallel counters

TABLE I: Comparison of logic vs DSP blocks based imple-
mentations for Reed-Solomon Decoder and JPEG Encoder

DSP Blocks Enabled DSP Blocks Disabled

Design
DSP DSP
CPD [ns] | LUTs Blocks CPD [ns] | LUTs Blocks
Reed-Solomon Dec. 4.68 2797 22 4.47 2839 0
JPEG Enc. 8.85 14780 631 9.88 71362 0

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 16:09:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056337, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

‘:,SI_ASIC -SZ_ASIC Sl_FPGA E S2_FPGA

0.5

Normalized Values

0

Area EDP

Fig. 1: Cross-platform comparison of area, latency and EDP.
Results are normalized to the corresponding results of ASIC-
and FPGA-based accurate multipliers.

(GPCs), underutilizes LUTSs in two consecutive ALMs.

Among other available multiplier design options, the con-
ventional shift-and-add [13], serial and serial/parallel multi-
pliers address the low area requirements but offer very high
critical path delays. The commonly used Wallace [14] and
Dadda [15] design-based parallel multipliers have high area
requirements for achieving low output latencies by parallel
addition of partial products. Considering the characteristics
of the Booth and Wallace/Dadda multiplier schemes, a fast
hybrid multiplier architecture using Radix-4 recoding has been
proposed in [16] for ASIC-based systems. In this paper, we
show that the performance of these logic-based soft multipliers
can be further improved by utilizing efficient techniques for
partial products encoding and their reduction. For example,
compared to the multiplier implementation proposed in [9], our
proposed accurate multiplier implementation offers a reduction
of up to 52% in the critical path delay.

As has been demonstrated by a large body of works like
[17], [38], [39], a wide range of applications do not require
accurate intermediate computations and their operations can
be approximated to further improve performance and en-
ergy efficiency. These applications have inherent resilience
to approximation induced errors and thereby demonstrate the
ability to produce viable outputs despite some of the input-
data/intermediate computation being incorrect or approximate.
Examples of such applications can be found in the domains
of image/signal processing, machine learning and various
other probabilistic algorithms. For the area-optimized and
performance-efficient hardware acceleration of such appli-
cations, both accurate and approximate multipliers can be
utilized. Using the principles of approximate computing, works
in [18]-[21], [22]-[28] and [32] suggest the use of functional
approximations for designing different types of approximate
adders and multipliers with different performance gains.

However, most of the state-of-the-art accurate and approx-
imate multiplier architectures consider only ASIC-based sys-
tems. Due to the inherent architectural differences between FP-
GAs and ASICs, these ASIC-based multiplier designs provide
limited or no performance gains when directly synthesized for
the FPGA-based systems. To further emphasize the need for
designing FPGA-based approximate modules, we present the
following motivational case study comparing the efficiency of
both ASIC-based and FPGA-based implementations of state-
of-the-art approximate multipliers that have been originally
designed for ASIC-based systems.

A. Motivational Case Study

Fig. 1 compares the ASIC-based area, critical path delay
(CPD), and Energy-Delay-Product (EDP) of two state-of-the-
art approximate multipliers, “SI”, presented in [25], and “S2”,
described in [23], with their FPGA-based implementations.
The ASIC-based implementation results have been obtained
from the corresponding papers ([25] and [23]), whereas for
the FPGA-based implementations, the Xilinx Vivado tool for
the Virtex-7 family has been used. Further, to evaluate the
efficacy of the approximate designs, we have normalized these
results to the implementation results of corresponding ASIC-
based and FPGA-based accurate multipliers, respectively. As
shown by the analysis results, the gains offered by the ASIC-
based implementation are not proportionally translated to the
corresponding FPGA-based implementation. For example, the
area and EDP gains offered by S1 and S2 are reduced for
the corresponding FPGA-based implementations — in fact,
approximate implementation of S1 consumes more FPGA
resources than the corresponding accurate design. However,
the CPD is further reduced for both FPGA-based implemen-
tations. This lack of similar performance gains for the FPGA-
based systems is the result of the architectural differences
between ASICs and FPGAs. In ASIC-based designs, logic
gates are deployed for the implementations of different logic
circuits; thus, a full control over resource utilization at a fine
granularity is possible. However, FPGA-based computational
blocks are composed of entirely different entities, i.e., look-up
tables (LUTs), where configuration bits are used to implement
an individual circuit. This poses a research challenge of
defining LUTs-based optimizations to implement accurate and
approximate multipliers with significant performance gains,
which can help in the realization of efficient FPGA-based
hardware accelerators for error-resilient applications.

B. Our Novel Contributions

To address the above research challenge, we extend our prior
work in [33] and present our methodology of defining LUT-
level optimization for implementing accurate and approximate
multipliers for FPGA-based systems. The overall contributions
of this article are as follows:

o An Accurate Unsigned Multiplier Design: Utilizing the 6-
input LUTs and associated fast carry chains of the state-
of-the-art FPGAs, we present a scalable, area-optimized
and reduced latency architecture of accurate multiplier.

o Single Step Partial Products Generation and their Ad-
dition: The proposed implementation of accurate mul-
tiplier fuses the generation and mutual addition of two
consecutive partial product rows into one stage. For an
Nwuttiplicand X Mmuttiplier multiplier, it results in the concur-

rent generation of (N+2)-bits long [%—‘ processed partial

products (PPP).
o Efficient Partial Product Reduction Tree: For an NxM

multiplier, our automated tool flow organizes the PPPs

%—‘ groups. Each group can contain a maximum of

three PPPs. Using 6-input LUTs and the associated carry
chains, our methodology then deploys either ternary or
binary adders for the mutual addition of PPPs in each
group. The total number of stages required to find final
accurate product is defined by Eq. 1.

in

No. of stages = [logg(%)-‘ +1 (1)

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 16:09:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056337, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

o Accurate Signed Multiplier: Utilizing the Baugh Wooley
multiplication algorithm [37], we extend the “Single
Step Partial Products Generation and their Addition”

technique to compute [%W PPPs for an NxM signed

multiplier. Our methodology adds the generated PPPs to
compute the final product by employing our proposed
partial product reduction method.

o An Approximate 4x2 Unsigned Multiplier as a building
block to implement higher-order approximate multipliers.
The proposed approximate 4x2 multiplier completely
utilizes the six inputs of a LUT of the state-of-the-art
FPGAs.

o An Approximate 4x4 Unsigned Multiplier: To reduce the
number of output errors, we perform different FPGA-
specific optimizations on the approximate 4 x2 multiplier
and generate an approximate and asymmetric 4x4 mul-
tiplier.

o An Approximate Ternary Adder for Summation of the
Generated Approximate Partial Products

Fig. 2 presents an overview of our proposed method-
ology in achieving these contributions. Using the primary
logic resources of FPGAs (related preliminaries discussed
in Section II), we present the accurate multiplier design in
Section III. To reduce the multiplier critical path delay, we then
analyze the utilized 3:1 compressors (ternary adders) and use
various LUT-level optimization techniques to design different
approximate multipliers in Sections V and VI. Finally, a
thorough analysis of the output accuracy and performance
gains of the proposed multipliers compared to the state-of-the-
art multipliers is presented in Section VII. Our accurate and
approximate architectures provide up to a 25% reduction in the
total utilized LUTs when compared with the area-optimized
Xilinx LogiCORE IP [2] for different sizes of multipliers.
Moreover, the proposed approximate architecture achieves a
reduction of up to 51% in the multiplier critical path delay
when compared with the area-optimized LogiCORE IP. For
the error characterization of our proposed multipliers, we
have used the following quality metrics: (a) the number of
error occurrences, (b) maximum error magnitude, (c) average
relative error, and (d) number of maximum error occurrences.

FPGA Slice Structure

(Section I1)
| Partial Products Generation |_ Acc. Multiplier
and Accumulation '~ (Section I11)
v .
__.| Analysis for Delay |_ Basic Approx.
Reduction Mults. (Section 1V)

v
| Modular Design of
Multipliers

Higher-order
Multipliers (Section V

—-| Approximate Adder Design

| Accuracy and Performance

Analysis
¥ Results
(Section V1)
| Applications Kernels | I
!

Fig. 2: Summary of the proposed methodology

3

06 OS/PX 06 OS/(IZX 06 05/.BX 06 05/.AX

LUT5S

S2 S.
(b) Virtex 7 carry chain

(a) LUT6 structure

Fig. 3: Xilinx FPGA slice structure [11]

These metrics are commonly used by the literature for the
quality analysis of approximate arithmetic circuits [22], [23],
[29].

The RTL and behavioral models of these accurate and
approximate multipliers are open-source and available on-
line at https:// cfaed.tu-dresden.de/pd-downloads. This will not
only facilitate reproducing the results, but will also enable
further research and development at higher abstraction layers.

II. PRELIMINARIES
A. Xilinx FPGA Slice Structure

State-of-the-art FPGAs, such as those provided by Xilinx
and Intel, utilize 6-input LUTs to implement combinational
and sequential circuits. In this manuscript, we have used Xilinx
FPGAs for the implementation of all designs. However, our
proposed methodology is generic and can be implemented on
FPGAs from other vendors, such as Intel, which also uses
fracturable 6-input LUTSs and carry chains.

A slice in the configurable logic block (CLB) of Xilinx’s
7-series FPGAs have four 6-input LUTs (commonly referred
as LUT6_2) along with eight flip-flops for registering LUTSs
outputs and a single 4-bit long carry chain [11]. A LUT6_2 can
be used to implement either a single 6-bit combinational func-
tion, using O6 output bit, or two 5-bit combinational functions,
using O5 and O6 output bits, by defining an INIT value which
describes all the possible input combinations for which a logic
value “1” is required at the output. For example, an INIT value
of 0000000000000002(hex) for LUT6_2 defines to produce
outputs 05 = I & 06 = 0 for input combination 700001.
Besides the implementation of combinational functions, these
6-input LUTSs are also used for controlling the associated carry
chain, as shown in Fig. 3(b). The carry chain implements a
carry-lookahead adder using OS5 as the carry-generate signal
and O6 as the carry-propagate signal as described by Eq. 2
and Eq. 3. The carry-generate signals for the carry chain can
also be provided by the external bypass signals AX — DX.

Si = P C;)
Cit1 = Gi+P-C; 3)

B. Baugh-Wooley’s Multiplication Algorithm

Compared to unsigned multiplication, all the partial prod-
ucts in a signed multiplication must be properly sign-extended
to compute the accurate product. Baugh-Wooley’s multiplica-
tion algorithm [37] eliminates the need for computing and
communicating sign-extension bits by encoding the sign in-
formation in the generated partial products. For an N x M
signed multiplier, Eq. 4 describes the respective operands in
2’s complement representation. Eq. 5 illustrates the generation

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 16:09:10 UTC from IEEE Xplore. Restrictions apply.

https://cfaed.tu-dresden.de/pd-downloads

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056337, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Multiplicand: Ay Ay....4,AA, AnaBo| oeeeee ABy | ABy | AB,
.!\./!'.J.I.t.i.’.).l.ifrf.?.N.':}.BM'Z"'BzBlBO AniBy]| ..eee. AB; | ABy | ABy
AusBy | e AB, | AB, | AB,

AZBM-l AlBM-l AOBM-l

Fig. 4: N x M Basic multiplier design

of the signed partial products to compute the final product ‘P’.
Baugh-Wooley’s multiplication algorithm rewrites the negative
partial product terms, as described in Eq. 6, to eliminate the
need for explicit sign-extension bits. The a,b, term in the
equation, for z € [0.. N—1] andy € [0.. M —1], de-
notes the 1’s complement of the corresponding partial product
term. For example, for an 8 x 8 signed multiplier, Eq. 7
represents the signed partial products according to Baugh-
Wooely’s algorithm.

=

-2

A= —CLN,12N_1 + an2"

Y

“4)

S
8

B=—by_12M~-t 4 by 2™

m=0
-2

N-2M
P= aNflb]\/[712N+]w_2 4 Z anbm2n+m
n=0 m=0 (5)

M—2 N-2
_ 2N—1 Z aNflmem _ 2M—1 Z b]wf1an2n

m=0 n=0
N—2M—2
P=an_1bpy—2VTM 2 4 Z Z anbpn 2"
n=0 m=0
M—2 N-2 (6)
+ 2V a1 2 4 2MTN Y by ya,2”
m=0

+2N—1 +2]W—1 +2N+M—1

n=0

6 6 6
Py =arbr2" +> Y " anbp, 2" 427 Y " azh, 2
m=0

; n=0m=0 (7)
+ 27 Z bra, 2" + 28 + 217

n=0

III. GENERIC AREA-OPTIMIZED LOW-LATENCY
UNSIGNED ACCURATE MULTIPLIER ARCHITECTURE

The proposed implementation of accurate multiplier is based
on the basic method of multiplying two multi-bit numbers
Anbitsy and Bvibiis), as shown in Fig. 4. The multiplication
results in the generation of M, N-bit partial products with
required shifting. Fig. 5 exhibits the elemental steps of our
proposed implementation to realize an accurate multiplier. It
includes the following operations:

1) Organization of Partial Products (PPs). We have used
the 6-input LUTs for computing the required partial
products by performing AND operation between every
bit of multiplier and multiplicand. However, to enhance
the utilization of LUTSs, our automated methodology
groups every two consecutive partial products. Each

2)

3)

Arrange 1-bit relatively shifted N
Step-l partial products into groups. /

Assign LUTs and Carry Chains
Step-2 to each group. 4

Step-3 Arrange PPPs into groups of a Reduce each group in a single step
p max. of 3 PPPs in each group. using either binary or ternary adder.

Output of
reduction trees

group contains the second partial product shifted left by
a single bit position relative to the first partial product.
Further, the partial products in every group are computed
and mutually added in one single step. However, in
every group, there are two partial product terms, for
example, AgBy and Ax_1B; in the first group, which
are not added with any other partial product term in their
respective group. Moreover, due to the limited number
of input/output pins of LUTs in modern FPGAs, it is not
possible to group more than two partial product terms.
For example, the generation and addition of partial
products A, By, A1 By and AgBs, as shown by the blue
box in Fig. 4, cannot be performed in a single step.
LUTs and Carry Chain Assignment: In this step, our
methodology assigns the 6-input LUTs and the associ-
ated carry chains to each group of partial products, as
shown by the computational blocks Type-A and Type-B
in Fig. 6. An instance of a block, either Type-A or Type-
B, denotes a 6-input LUT with an associated adder and
carry chain cell (CC). Fig. 7(a) shows the functionality
of the LUT of block Type-A. The output signals OS5
and O6 are passed to the corresponding carry chain
as carry generate (G;) and carry propagate (P;) signals
respectively. The LUT configuration for block Type-B,
in Fig. 7(b), uses O5 for the computation of the least
significant partial product term in each row. The generate
signal for the carry chain element corresponding to block
type-B is constant ‘0’ and provided by the external
bypass signal (AX-DX), as already described in Fig. 3.
The associated carry chain uses Eq. 2 and Eq. 3 for the
generation of sum bit (S;) and carry out (C; 1) bits. The
completion of this stage of our implementation results in
the generation of (N+2)-bits long Tﬂg
products (PPP).

Re-arrangement and reduction of PPPs: Our implemen-
tation utilizes ternary and binary adders for reducing
PPPs to a final product. Modern FPGAs provide the ca-
pability of implementing a ternary adder as a ripple carry
adder (a 3:1 compressor for the simultaneous reduction
of 3 partial products). Our automated methodology ar-
ranges the PPPs in multiple groups; with the intention

—‘ processed partial

N-bit Multiplicand M-bit Multiplier

L g |

[%] groups of partial
products (PPs)

)

[%] processed partial
products (PPPs)

'

N + M-bit Final Product

Fig. 5: Proposed design flow of accurate multipliers

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 16:09:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056337, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

B‘\ /‘\N 1 %(} ﬁ(b B‘[/‘\1 ?() ‘TA B‘\ TA() B‘H ‘?‘I
o] aypen | [tvper J[myper |
| [T
c E“w ‘?N—\%l ﬁ‘m 1}3 /‘\x.z'%z /‘\N-I B‘x '?‘n 1‘32 TA1 PPP, PPR,
4 -out
T ypes]| [mypea || WPF-A |
BlM IYAN 1 BM U BM IAI BM A’ B‘M—\ﬁk(! :§N1VZ YA!
Carry-out
— lm)lf 11 TvpleA 1 Creen]

Fig. 6: Partial products generation for an N x M proposed
accurate unsigned multiplier

By Ay Bu2A;

)

B Ay Bmz A

TYPE-A
TYPE-B

VAW,

05| ' 0, Ole 0
(a) LUT of Type-A (b) LUT of Type-B

Fig. 7: LUTs Configuration for accurate unsigned multiplier

of placing three distinct PPPs in each group. Depending
on the value of M, in Fig. 4, a group may have one,
two or three PPPs. Our implementation then utilizes 3:1
and 2:1 compressors for reducing PPPs in each group.
The PPPs reduction phase may produce new partial
sums, which are again grouped and passed through 3:1
and 2:1 compressors. This process is repeated until the
final product is obtained. For example, for a 16 x 16
multiplier, 8 PPPs are generated. The grouping and
reduction of these PPPs to compute the final product
is described in Fig. 8

Fig. 9 shows the mapping of the proposed implementation
for a 6x6 accurate multiplier on Xilinx 7-series FPGAs.
However, the same implementation can also be ported to
the newer versions of FPGAs, such as Virtex UltraScale+.
As described previously, a computational block of Fig. 6 is
equivalent to a LUT and the one bit cell (CC) of associated
carry chain in Fig. 9. Table II defines the Type-A LUT con-
figuration for the generation and summation of partial product
bits Ay By and Ax Bx of Fig. 9. The LUT initially performs
the logical AND operation on (Ay, By) and (Ax, Bx) and
then produces the O5 (generate) and O6 (propagate) signals.
The values O5 = 0x8000 and O6 = 0x7888 accommodates
only four input values. As discussed in Section II, the INIT
value for LUT6 to produce O5 = 0x8000 and O6 = 0x7888
will be 0x7888788880008000. The INIT value for Type-B LUT
configuration is OxFFFFFFFF80008000 and its configuration
is shown in Table III.

As shown in Fig. 9, three 8-bit long processed partial prod-
ucts have been generated in the first stage of multiplication.
Our proposed automated methodology organizes these PPPs
in a single group and utilizes ternary addition for computing
the final product. The ternary adder in Fig. 10 shows the

Generated PPPs
PPP,
Group,y
PPP,
| Results
PPP, i
16 x 16 Loy Result,
AR > PPP; Group, Group "
Multiplier - Result, ~-* Final Product
PPP,
ey Result,
PPP; ;
PPP,
PPP7 Group,

Fig. 8: Grouping of PPPs to compute final product for a 16 x 16
multiplier

BiAsBoAy BoAsBiAs BoAiBiA; BnAz 1 A BoAz 1AL BoAIBL Ay
BiasBoo Pofedife Pofurpe fojufefe Pofefue fofupg

05: - |LUT||LUT||LUT||LUT||LUT||LUT|
06: —
PPy <] cc ksl cc J cc I cc J{ cc]| cc |.]°'
T T T
A A AsB: A > Ax B3 A AiBs A
BzAsiis li5 ? M ? ?3 3 ?2 3?3 2 lislz 3 AL ?zllla o PPPy PPPm
||_UT||LUT||LUT||LUT||LUT||LUT|
PPy <] cc el cc el Cc el cc Ral cc T cc |<l
i }
S AR B ?‘A“ii e ?A3?5A2 ?‘Az?SA‘ pegt ?5|“ PPy PP
||_UT||LUT||LUT||LUT||LUT||LUT
PPP; <] cc]« cc] cc] CIC] cc] cc |<i
l ‘ V
PPPzs PPst PPPza PPPzz PPPzz PPPy PPy

Fig. 9: Virtex 7 FPGA slice based representation of
processed partial products generation for a 6 x 6 accurate
unsigned multiplier

computation of final product bits P;—P, by adding three partial
products in one step. The carry out of the slice is forwarded
to the carry chain in next slice for computing other product
bits.

Since the proposed implementation relies on the efficient
utilization of the available LUTs and carry chain in a slice,
therefore, the LUTSs required by an N x M multiplier can be

TABLE II: Type-A LUT configuration

AXBX+AYBY
A, |By | A | By |AB,|AB, 06 (Hex)|O5 (Hex)
Sum (O6)|Carry (O5)
0/j0j0|0]| O 0 0 0
0/0(0|1| O 0 0 0
8 0
0|{0|1|0]| O 0 0 0
0|0 1|11 0 1 0
0|1]0|0] O 0 0 0
o101 0 0 0 0
8 0
01,110 0 0 0 0
0O|1|1]1 1 0 1 0
1/{0/0]0] O 0 0 0
1/{0/0]1] O 0 0 0
8 0
1/0(12]0] O 0 0 0
1011 1 0 1 0
171(0/0| 0 1 1 0
1{1/0(1] 0 1 1 0
7 8
1{1/1]0] 0 1 1 0
1111 1 1 0 1

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 16:09:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056337, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE III: Type-B LUT configuration

W
g
=
>
z
=
W
2
S
pd
P
w
g
&

2|An-1B.1|Sum (O6)|Carry (O5)|06 (Hex)|O5 (Hex)

PRk, |lk|r|lojlojo|o|o|o|o|o
P kP |k |lolojlo|o|r|k|k|~|lojo|o|o
»|k|lo|lo|lr|kr|lo|lo|lr|k|o|o|r|k|o|o
m|lolk|o|lr|lolkr|lo|lr|ok|o|r|o|r|o
mrlololo|lr|lolo|lo|r|olo|o |~ |o|o|o
|||k OO0 |0O|0|0 |0 |0 |0 |0 |0 |o|o
Rk lololololo|lo|o|o|o|o|o|o
mlololo|lr|lolo|lo|r|olo|o |~ |o|o|o

estimated even without synthesizing the design using Eq. 8.

No. of required LUT's < {%J X (N+4)+ [%—‘ x N (8)

IV. GENERIC AREA-OPTIMIZED LOW-LATENCY SIGNED
ACCURATE MULTIPLIER ARCHITECTURE

Utilizing the proposed design flow, presented in Figure 5,
and Baugh-Wooley’s multiplication algorithm, described in
Eq. 6, we present our novel design of accurate signed multi-
plier. For an N x M signed multiplier, our methodology gener-

ates only [%—‘ signed PPPs. This feature of our proposed im-

plementation is similar to the commonly used radix-4 Booth’s
multiplication algorithm, which halves the total number of
generated partial products [42]. Further, Baugh-Wooley’s al-
gorithm eliminates the need for extra sign-extension bits,
which help realize a resource-efficient implementation of the
multiplier. Fig. 11 presents the graphical representation of
Baugh-Wooley’s algorithm. As shown, the last partial product
row and the most significant term in all other partial product
rows are complemented. To accommodate the generation of
these complemented terms, we update our proposed design
flow with three new LUTs configurations. Fig. 12 presents the
new configurations of LUTs. Utilizing these configurations,
Fig. 13 presents the ‘LUTs and Carry Chain Assignment’
step of our proposed methodology for an N x M signed
multiplier. After generating all signed PPPs, we utilize the

1I } PPP3, PPP,; PPPs 11I PPP;, PPP,, PPP, I1 } 0 PPP,; PPPy, Il}} (l) PPll)z(, PII)POZ

[wre ||| wre]| wre ||[wurme |
&] Jos , 10506 _ﬁﬂ% _ﬁﬂ% L AX0
{0 0 0 0 0
Lo VAL v
T p, T p, T [

computation of final product bits P;—P4 for a 6 x 6 accurate
multiplier

6
;Multiplicand:AN,,,.,A,A0§ AviBo |AnaBo| - AwaBol - | ABy | ABy
{Multiplier: By, ;... B;By 1A B, | Ay,B; | . |AyiBy| - | AB; | AB,
‘ANV‘IBZ ANVZBZ AMV‘IBZ A‘IBZ AOBZ
1 ‘ANJBMJ‘ANJBM” ‘AM—lBM—l‘ ‘ATBMJ‘AOBMrl‘
1 1

Fig. 11: Baugh-Wooley’s N x M signed multiplier design

‘Re-arrangement and reduction of PPPs’ step of our proposed
methodology to compute the final product. Further, the 1’s at
bit locations 2N =1, 2M—1 and 2N+M—1 a5 shown in Fig. 11,
are also added during the final step of PPPs reduction.

B VI-1 AO BM-Z'Tl

||

E

1
& &

06‘ HoX o|6 0, 06‘ o)
(a) LUT of Type-C (b) LUT of Type-D (c) LUT of Type-E

BM»3 AN-lBM-4 AO BM-l'AI‘N-Z BM-Z AI‘N-l

J

TYPE-C
TYPE-D
TYPE-E

Fig. 12: LUTs Configuration for accurate signed multiplier

V. APPROXIMATE MULTIPLIERS ARCHITECTURE

The proposed accurate multiplier design utilizes ternary and
binary adders for the addition of generated partial products,
as shown in the previous section. The utilization of ternary
adders enables resource-efficient implementations. However,
the dependency of every element of the carry chain on the
carry-generate signal from its preceding cell, as shown in
Fig. 10, diminishes the performance of a ternary adder. For
example, the implementation of an 8-bit ternary adder (three
operands) on Virtex-7 FPGA using Vivado has a 37% higher
critical path delay compared to an 8-bit binary adder (two
operands). Kumm et al. have also reported similar observations
about the reduced performance of ternary adders with different
bit-widths [40]. Towards this end, we apply various approxi-
mation techniques to realize high-performance and resource-
efficient approximate multipliers. In the following sections,
we first present designs of elementary approximate multipliers
followed by the architecture of an approximate adder for
implementing higher-order approximate multipliers using sub-
multipliers.

A Performance/Area Optimized Elementary Multiplier
Module, targeted for FPGAs, should efficiently utilize the
available LUT6_2 structure and the associated carry chains in
a given FPGA. The 2 x 2 multipliers, as used by [23] and [25],
under-utilize LUT6_2 and therefore has been excluded from
the list of potential design options for the elementary multi-
pliers. The only two potential multiplier designs, which utilize
all the inputs of a LUT6_2, are 3 x 3 and 4 x 2 multipliers.
However, a 3 x 3 multiplier is not a feasible option for the
implementation of higher order multipliers, e.g. 4 x4 and 8 x 8

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 16:09:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056337, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

7
Cany-out%i Anifo foBo Ava Bi Avz Bi fu Bo AeBi Ao Bo Ay - - PPy<X>: Result of first 4 x 2 multiplier
I—‘ TypeD || Typle-C | Typ‘e-A I Typle-A l Aipproximate Summation PP,<X>: Result of second 4 x 2 multiplier
¥ ¥ VU .
By AuiBr MAB AuiBi Ave By AL B, AB A B A PPP, PPP, Accurate Summation
carry-tlvlq Type-D [TypeC |- [TypeA |[TypeA | PP,<5> PP,<4> PP <3>|PP<2>| PP<1> PP <0>
PP,<5>| PP <4> PP,<3> PP,<2> PP <1>|PP,<0>

E‘smr1ﬁmr1ﬁ‘mzf*n?m-l‘fw‘-zﬁ’m-zﬁm BuiAr Buz A2 Buafo Buo A P, Pg Ps P, Py P, Py Po

Carry-out|
,_‘ Type-B H Type-E l | Type-C H Type-C l
Fig. 13: Partial products generation for an N x M proposed Fig. 14: 4x4 multiplier using 4x2 multipliers
accurate signed multiplier
Bl — Bl a—

.. .- . Bo — By +—
multipliers. A Z%><.4 multlpher requires one 3>< 3., one 1x4and A; - e 06: Gen; 23 1 wr 06: Prop3
one 3 x 1 multipliers [4]. This limited applicability of a 3 x 3 ﬁz - W Inouts to

. — 1 T arry ain
multiplier results in filtering it out from our selection of an] Ay [Gem forPq and
elementary multiplier module. The only feasible elementary _ Dx Py
design is a 4 x 2 multiplier, which thoroughly utilizes lookup A LLI/,Tfr)‘(’m Bxternalinput to LUT; A LLI},Tfr)‘/’m

slice slice

tables of state-of-the-art FPGAs. A 4 x 4 multiplier can be
implemented using two instances of a 4 x 2 multiplier and an
adder. This paper uses 4 x 2 multiplier as the elementary block
for designing higher order approximate multipliers.

A. Approximate Design of 4 X 2 Multiplier
An accurate 4 x 2 multiplier generates a 6-bit output with
the following optimized logic equations for A(A3AsA;Ag)
and B(B1By) as multiplicand and multiplier, respectively:
Py = BoAy)
Py = B)'BoA; + B1By' Ay + B1A\"Ag + BoA Ay’ (10)
P, = BllBoAz + BlBo/A1 + B()AzAl/ (11D
+ B1Ay A Ay + B1AA A
P = BllB0A3 + BlBo/Az + BlA3/A2A1/
+ BoA3 Ay A’ + B1BoAy' Ay’ A1 Ay
+ BoA3AA; + BoAs A1 Ay
Py = B1By' A3 + B1 A3 Ay’ A" + B1As Ay Ay’
+ B1ByAs A3 Ay
Ps = B1ByA3sAs + B1BgAs A1 Ay

12)

13)

(14)

As Py, P;, and P, each depends on less than six shared
variables, i.e., Ay, Ay, Az, By, and Bj, any two of these
three least significant product bits can be generated using a
single LUT6_2. The remaining four product bits will require
four separate LUTs for implementation. An area and energy
efficient approximation is to accommodate the six product bits
in four LUTs i.e. a single slice. Truncation of F, limits the
output error to the least significant product bit and the final
output accuracy to 75% with maximum error magnitude of
‘1’ for all input combinations. Approximation of any other
product bit results in a higher magnitude of error in the final
output. The proposed approximate design of 4 x 2 multiplier
uses 4 LUTs for its implementation by truncating ‘F,’ and
generating ‘P;’ and ‘P»’ by a single LUT6_2.

B. Approximate Design of a 4 X 4 Multiplier

The approximate design of a 4 x 4 multiplier requires
two 4 x 2 multipliers, consuming eight LUTs for gener-
ating partial products. For multiplicand A(A3A3A;Ap) and
multiplier B(B3B2B1By), the first 4 x 2 multiplier takes

Fig. 15: Implementation of Gen; and Prop; for Pg and P;

A(A3A3A1Ag) & B(B1By) and the second 4 x 2 multiplier
occupies A(A3AsA1Ag) & B(BsBs) as input operands.

As shown by the black box in Fig. 14, the accurate sum-
mation of the approximate partial products generated by the
two 4 x 2 multipliers requires the use of two carry chains’.
Therefore, the approximate 4 x 4 multiplier, with accurate
summation of partial products, requires 16 LUTs* (2 LUTs
wasted by the second carry chain). Due to the truncation
of PPy<0> and PP;<0> in Fig. 14, this 4 x 4 multiplier
implementation has an average relative error of 0.049 with
an error probability of 0.375 for a uniform input distribution.
However, the proposed design performs approximate addition
along with FPGA-specific optimizations of second 4 x 2
multiplier and uses one single carry chain for partial products
summation, as shown by the blue rectangle in Fig. 14. Our
optimizations not only provides area gains but also signifi-
cantly improves the total number of error cases by having
only 6 erroneous outputs. Our proposed optimization uses
three LUT6_2s for the implementation of required Carry
Propagate and Carry Generate signals to compute P3, P, and
Ps product bits. Since PP; <4> and PP; <5> share same six
operands, therefore our design does not compute PP;<4>
and PP;<5> explicitly for subsequent addition by the carry
chain. The proposed approach, as shown in Fig. 15, computes
the respective Carry Propagate ‘Props;’ and Carry Generate
‘Gen;s’ signals for the computation of Pg and P; directly from
the multiplier and multiplicand bits by implicitly generating
PPy<4> and PP;<5>. This implicit implementation of
PP;<4> and PP;<5> saves one LUT as compared to their
explicit computation. In order to improve the output accuracy,
the recovered LUT is then assigned for the accurate realization
of Py and P,. Since the computation of P; is also dependent
on the carry-out from P,, therefore, the corresponding LUT
for P3 besides, using PPy<3> and PP;<1> also utilize Ay,
B, and PFPy<2> to resolve the effect of the missing carry-out
from P,. As carry propagate and carry Generate signals cannot
be ‘1’ simultaneously, all the cases where Agy, B,, PPy<2>,
PPy<3> and PP;<1> are all ‘1’ concurrently, will generate

TA carry chain is 4-bit wide in Xilinx 7 series FPGAs.
#Each position of a carry chain is controlled by a corresponding LUT6_2.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 16:09:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056337, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE IV: 4x4 multiplier error values

Multiplier | Multiplicand l;i((:)l(ll‘l.lact: Ap[gg:&;ltlate Difference
5 15 75 67 8
6 7 42 34 8
6 15 90 82 8
7 15 105 97 8
13 13 169 161 8
15 5 75 67 8

an error. To limit the error occurrences to a single product bit,
P3, we propose to correctly compute the carry Generate signal
only. This decision limits the error to P; only with a fixed
error magnitude of “8”.

Tables IV and V present the input operands with erroneous
outputs and INIT values employed by each LUT along with
input/output pins configuration respectively. It is noteworthy
that depending upon an application’s input data, the proposed
4 x4 multiplier may produce better result due to its asymmetric
nature and the values presented in Table IV only show the
maximum number of possible error occurrences for uniform
distribution of all input cases. Our proposed multiplier does
not generate erroneous outputs for highlighted inputs, in
Table IV, with multiplier and multiplicand mutually swapped.
For achieving better output quality results, the proposed ap-
proach suggests an initial analysis of input data, before multi-
plication, to decide operands for multiplier and multiplicand.
The asymmetric nature of the proposed multiplier and the
analysis of input data for achieving better output accuracy are
further explored in Section VII.

VI. DESIGNING HIGHER ORDER APPROXIMATE
MULTIPLIERS

We have used the modular approach of implementing
higher-order approximate multipliers using submultipliers. For
example, as shown in Fig. 16, the results of four M x M
submultipliers are added together to implement a 2M x 2M
multiplier. The modular approach provides a broader design
space by using various accurate/approximate submultipliers
to implement a higher-order accurate/approximate multiplier.
Furthermore, various accurate and approximate adders can be
utilized to add together the results (referred to as sub-products:
SPs) of submultipliers to obtain the final accurate/approximate
product.

TABLE V: LUTs’ inputs and outputs pins configuration for
approximate 4 x4 Multiplier

LUT Output Pins
LUT Input Pins Configuration INIT value (Hex)
LUT Configuration
15 14 13 12 11 10 06 o5
LUT,| 1 | B, B, |A,| A, | A, |BACCF00066AACCO0| PP,<2> | PP,<1>=P,
LUT,| B, | B, A, LA | A A, | C738FOFOFF000000 | PP,<3>
LUT,| B, | B, A, LA | A A, | 07COFF0000000000 | PP,<4>
LUT,| B, | B, A, [A | A A, | F800000000000000 | PP <5>
LuT,| 1 | B, B, |A,| A A, |BACCF00066AACCO0| PP,<2> | PP,<1>
LUT,| B, | B, A, [A | A A, | C738FOFOFF000000 | PP,<3>
LUT,| B, | B A, |A | A A, | F800000000000000 | Gen,
LUT,| 1 1 |PP,<2>| B B, A, | 5FA05FA088888888 P, Py
LUT,| 1 |PP,<1>|PP,<3>| B, | A, |PP,<2>| 007F7F80FF808000 | Prop, Gen,
LUTg| 1 1 1 1 |PP,<2>|PP,<4>| 6666666688888880 | Prop, Gen,
LUT,| 1 1 1 1 |PP,<3>|PP,<5>| 6666666688888880 | Prop, Gen,
LUT,| B, | B A, LA | A A, | 07COFF0000000000 | Prop,

Legends ‘ AL X B, ‘
A: 2M bit multiplier ‘ Ay X B, ‘ ‘ ‘
B: 2M bit Multiplicand

\ A, X By Py_yom Py Py

AL&B,:MLSBsofA&B
Ay& By: MMSBs of A&B |

Ay X By \

Fig. 16: Designing higher order multipliers from lower order
multipliers

Utilizing the modular approach, we have used four instances
of our proposed approximate 4 x4 multiplier and the accurate
ternary adder, shown in Fig. 10, to implement an approximate
8x8 multiplier, referred to as Ca. For example, the SP<4>
— SP<7> from A x By, SP<0> - SP<3> from Ay x By,
and SP<0> — SP<3> from ApxBpy are added in one
single step to produce final product bits Py, — P; for an 8x8
multiplier. The O5 output of the fourth LUT6 and the Cout
of the carry chain in Fig. 10 are routed to the next slice for
generation of higher order product bits. The same process can
be repeated for the implementation of arbitrary sizes of higher
order multipliers.

For the approximate addition of the results of accu-
rate/approximate submultipliers to implement higher-order
multipliers, we also present a novel approximate adder. Our
proposed adder adds the results of three submultipliers si-
multaneously without using carry-out from the preceding bit
locations. The gate-level diagram of our proposed adder is
shown in Fig. 17. Utilizing the proposed adder and four
instances of our proposed approximate 4x4 multiplier, Fig. 18
shows the implementation of an approximate 8x8 multiplier,
referred to as Cc. Each blue box represents an instance of the
proposed approximate adder implemented using a LUT6_2.
As shown, the four least and most significant product bits are
obtained without using addition. The proposed approximate
addition further improves the performance of the realized
higher-order multiplier by reducing its critical path and the
number of LUTs employed during the summation of the results
of submultipliers.

VII. RESULTS AND DISCUSSION
A. Experimental Setup and Tool Flow

All presented multipliers have been implemented in VHDL
and synthesized for the 7VX330T device of Virtex-7 family
using Xilinx Vivado 17.4. For PDP and EDP calculations,
Vivado Simulator and Power Analyzer tools have been used.

LL,LL I, I
| |

LUT6_2

‘06

Fig. 17: Proposed approximate adder for implementation of
higher-order multipliers: LUT6_2-based representation

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 16:09:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056337, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

PP;<7> — PP;<4> are not added in Cc implementation of higher
order multipliers.

PP,<3> — PP(<0> are not added in any
implementation(accurate/approximate) of higher order multipliers.

| PP <7>|| PP <6>|| PP,<5>(PP <4>| |PP <3>|| PP <2>|| PP <1>||PP <0>|
I'pp,<75l pp,<65ll PP,<55l PP <a>! I PP <3>'I PP <z>|: PP <1>||PP <05 |

| I I Il I
PP,<7> PP,<6> PP,<5> PP,<4>| PP <3>|| PP <2>|| PP <1>|| PP,<0>

>
|
14 P13 P, l P1 I ey I Pq d Pg :

P
C e e o

15 P

|

| I Il |
I p, I p p, |
L _6 5!

v v v v

|
|
P, J| P, P, P, Py

) | I | S

Fig. 18: 8x8 approximate multiplier and its approximate summation

Our methodology implements each design multiple times
with a different critical path constraint in each iteration to
produce precise area (LUTs), critical path delay, and dynamic
power consumption values. In each implementation-iteration,
our automated tool flow adjusts the new critical path constraint
according to the critical path-slack obtained from the previ-
ous iteration. The total number of implementation-iterations,
performed by our tool flow to provide the final critical path,
resource utilization, and dynamic power consumption infor-
mation of a design, is adjustable. For this paper, we have kept
the maximum number of implementation-iterations at /0.

To evaluate the efficacy of the proposed accurate multipliers,
we compare it to the existing standard multipliers, such as Xil-
inx LogiCORE Multiplier /P (area and speed optimized) [2],
Booth Multipliers (S3) [9], Xilinxs default K-Map solved
optimized multiplier ($§4) [31], Wallace Tree (S5) [14], Dadda
(86) [15] multipliers, and signed multipliers (S7) [34] and
(88) [35]. We compare the proposed approximate multipliers
for performance gains and output accuracies with S1 [25], S2
[23], library of 8-bit approximate multipliers EvoApprox8b
[30], precision-reduced 88 multiplier with four LSBs of the
final product rounded to zero and Xilinx accurate multiplier
IP [2].

The designed multipliers have also been implemented for
the image smoothing accelerator of the SUSAN application

the proposed approximate adder for the summation of partial
products. For approximate 8§ x8 and 16 x 16 multipliers Ca and
Cc, all sub-multipliers are approximate.

The 4x4 Approx multiplier offers reduced latency and
energy consumption than the corresponding Acc multiplier. As
shown by the results, the approximate summation of partial
products has helped in significantly reducing the latency and
energy consumption of Cc and Acc_app multipliers. Further,
the proposed Acc multiplier consume less number of LUTSs
and has reduced latency for larger multipliers. This reduction
in resource utilization and latency is due to the proposed
method of partial product generation and their summation. For
larger multipliers, the proposed accurate multiplier produces
less number of partial products and computes final product in
a fewer number of stages than the corresponding approximate
multipliers.

1) Performance comparison of the proposed accurate mul-
tiplier with the state-of-the-art accurate multipliers: Fig. 19
compares the area and critical path delay requirements of
different unsigned accurate multipliers for different bit-widths.
The proposed Acc multiplier always lie on the area-delay

TABLE VI: Area, latency and PDP results of proposed

unsigned multipliers

and a multilayer perceptron for classification of the MNIST Multiplier Size | Design | Area [LUTs] | Latency ns] | PDP [pJ]
dataset to record the area savings offered by our novel multi- Acc 12 2016 1127
. 4x4
pliers. Approx 12 1.564 0.649
Acc 52 3.755 6.099
Acc_acc 57 3.508 6.910
B. Evaluation and Characterization of Designed Multipliers 8x8 Acc_app 56 2.388 5.886
Table VI presents the implementation results of our pro- (C; 22 f ;gg g‘;ié
posed accurate (Acc) and approximate (Approx) unsigned mul- Acc 206 4721 20627
tipliers. The NxN Acc_acc multipliers have been implemented Acc_acc 275 5504 32053
utilizing four instances of % X % proposed accurate multipliers 16x16 Acc_app 224 4301 28.448
Acc and ternary adders. Similarly, the NxN Acc_app multipli- Ca 245 4.979 26.495
ers use four instances of & x £ accurate multiplier Acc and Ce 240 2375 16.155
—_ s3[9]e —_ @S5 [14] 1.8mW 70T g s3913.a mw —13] @S319]
223 0-59mwW £4.0 s31011.6mw 2 £ N33 mw
E E @® Accl.6mW F E‘ll
g Acc 0.56mwW g 3.6{ g g
el __IP_speed [2] = \ =55 =
dfs . ‘t\).SlmW a‘-'g @P-area [2]11.7mW g ﬁ 9
o a 3.2 i a -9
w17]] : s6 115) ® Acc @ R s N sa31]
- N - IP_speed [2] 2.3mW 2imwe | B 6.2mW " 2‘3[,3,&]., £ ’ Ac B Piee [,:\]N -8y
5 1.4 osé's[,?.b‘u ® G @ @54[31]2.0mW 5 4.0 IP. speed l21 ‘@ 7.5 mW 'G 5 101 mwlP speed 21e 21 2 mw
12 14 18 60 20 120 150 170 210 250 290 600 800 1000 1200
Area [LUTs] Area [LUTs] Area [LUTs] Area [LUTs]
(a) 4x4 (b) 8x8 (c) 16x16 (d) 32x32

Fig. 19: Area and critical path delay results of different accurate unsigned multipliers

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 16:09:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056337, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

TABLE VII: Performance comparison of proposed signed multiplier

Design 4x4 8x8 16x16 32x32
LUTs | CPD [ns] | PDP [pJ] | LUTs | CPD [ns] | PDP [pJ] | LUTs | CPD [ns] | PDP [pJ] | LUTs | CPD [ns] | PDP [p]]
Proposed 14 2.59 131 54 437 7.26 208 5.28 31.14 803 735 63.75
S7 [34] 12 2.15 1.09 40 425 5.14 144 7.64 21.15 544 15.181 4456
S8 [35] 13 1.65 1.13 66 238 6.06 243 4.48 26.52 928 6.08 57.50
Vivado IP Area Opt. [2] 30 2.91 2.25 38 345 9.07 326 5.04 35.25 1102 6.79 95.21
Vivado IP Speed Opt. [2] 18 2.14 1.06 74 354 5.73 286 427 3391 1103 5.81 104.46

TABLE VIII: Error analysis of 8 x8 approximate multipliers

o ‘ Approximate Architectures
Error Description
‘ Ca Ce Acc_app| S1[25] | S2[23] | Mult(84) P8_1 P8_2
Maximum Error o35 | gogs | 8160 | 7225 | 14450 | 15 509 1521
Magnitude
Average Error 54.19 1592.26 | 1579.12 | 1354.69 | 903.12 6.50 127.25 380.25
Average Relative
0.0029 | 0.13 0.13 0.14 0.032 0.0037 0.026 0.069
Error
Error Occurrences 5482 52731 52437 53375 30625 53248 48896 61056
Maximum Error
14 1 2 31 1 2048 1 1
Occurrences
Zz 0.12 0.20[o1
3 »
2 g
S 0.08 £ 0.15
< [
a =
z 3
g 0.04 § 0.10
[*] o
< 0 & 0.05
0 2 3 4 5 7
Bit-position
P! 0 02 3 4
(a]) 4 x4 0 5 10 15 20
> 0.06 Errors in Output [x 102]
3 (b1) 8 x 8 Ca
8
o 0.04
a 1
z 0.012] o
g 0.02 "
8]
< 0 5 0.008
0 2 4 6 8 10 12 14 5
Bit-position g
(a2) 8 x 8 Ca §0004
=
£ 0.06 “
2 J
© ikl
S 0.04 0 2 4 6 8
E Errors in Output [x 103]
§ 0.02 (b2) 8 X 8 Cc
3
Q
o
< 0
0 2 4 6 8 10 12 14

Bit-position

(a3)8 x 8Cc
Fig. 20: Probability of error in individual product bits: (a) Nor-
malized bit histograms of different multipliers, (b) Normalized
probability mass functions (PMFs) of different multipliers

Pareto fronts of different sizes multipliers. The S5 and S6
implementations consume a large number of LUTs, and have
high critical path delays as shown in Fig. 19(b); therefore,
they have not been considered for designing higher order
multipliers. Even though the S3 occupies a reduced number of
LUTSs for higher order multipliers, the sequential generation-
addition of partial products, in S3, results in higher critical
path delays. The dynamic power consumptions of all of the
above implementations have also been shown along with each
implementation.

Table VII compares the LUTs utilization, CPD, and PDP
of the proposed signed multiplier with state-of-the-art signed
multipliers for different bit-widths. Compared to the S8 de-
sign and Vivado area- and speed-optimized signed multiplier

IPs, the proposed accurate multiplier implementation always
requires fewer LUTs. For example, the proposed 8 x 8 imple-
mentation offers a 38.63% reduction in LUT utilization when
compared with Vivado area-optimized IP. Similarly, the energy
consumption (PDP) of our proposed multiplier is also less than
the Vivado area- and speed-optimized multiplier IPs. The S7
design is more resource-efficient than the proposed implemen-
tation; however, S7 has, on average, a higher CPD than our
proposed design. For example, compared to the 16 x 16 S7
design, our implementation offers a 30.8% reduction in the
multiplier’s critical path delay.

2) Error analysis of the proposed approximate multipli-
ers: Table VIII presents an error analysis of our designed
approximate multipliers in comparison with the state-of-the-
art approximate multipliers and precision-reduced 8x8 mul-
tipliers Mult(8,4), P8_1, and P8_2. For Mult(8,4), the four
LSBs of the final product are rounded to zero, and all other
bits of the final product are computed accurately. The P8_1
and P8_2 precision-reduced multipliers truncate one and two
bits of each operand, respectively. These precision-reduced
operands are then utilized by corresponding smaller accurate
multipliers (7 x 7 and 6 x 6) to compute the product, which
is shifted by an appropriate number of bits (2-bits and 4-
bits) to calculate the final product. The proposed multiplier
Ca outperforms the existing approximate multipliers in terms
of maximum error magnitude, average error, error occurrences
and maximum error occurrences. The approximate multiplier
Cc has a higher maximum error magnitude compared to the
state-of-the-art S1 [25], however, the maximum error occurs
only once for Cc while it occurs 31 times for S1 [25]. The
precision-reduced Mult(8,4) has highest number of maximum
error occurrences. Regardless of its low average relative error,
its high resource utilization, 350 LUTs, filters it out in Pareto
analysis. The precision-reduced P8_1 and P8_2 multipliers
offer reduced utilization of resources due to the use of smaller
accurate multipliers. However, P§_1 and P8_2 have the highest
number of error occurrences. The average error and average
relative error of P8_1 and P8_2 are also higher than the Ca
multiplier.

To explore the erroneous bit values with their effect on
final output and the frequency of error occurrences, Fig. 20
represents the normalized bit accuracy histograms and the
normalized number of unique error occurrences for proposed
multipliers. Our novel design restricts the errors to limited
bits only. Except Cc multiplier, all other multipliers have few
distinct errors. The low probability of getting accurate bit
values for Cc is due to the highly-inaccurate approximate
addition of the partial products. Such type of architectures,
with limited distinct errors, can be easily configured to have an
error-correction circuitry that can be turned on/off according
to applications’ requirements.

3) Performance comparison of the proposed approximate
multipliers with the state-of-the-art multipliers: Fig. 21 com-
pares the resource utilization, critical path delay (CPD), and

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 16:09:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056337, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

[| Accurate Aop.ax4 A rop.ca Edam.cc Bl s21231 [
: : 15 . .

11

CPD

0.5

7
?
/
?
%

PDP

Fig. 21: LUTs utilization, critical path delay and energy consumption of accurate and approximate unsigned multipliers.
Results are normalized to the corresponding results of Vivado area-optimized multiplier IP [2].

TABLE IX: Performance comparison of proposed multipliers with DSP blocks-based multipliers. The CPD and PDP are in
ns and pJ, respectively.

Design 4 x4 8 x 8 16 x 16 32 x 32

LUTs | DSPs | CPD | PDP | LUTs | DSPs | CPD | PDP | LUTs | DSPs | CPD | PDP | LUTs | DSPs | CPD | PDP

Approximate 4 x 4 12 0 1.564 | 0.63 - - - - - - - - - - - -
Approximate Ca - - - 57 0 313 | 473 245 0 498 | 26.50 1013 0 6.98 | 58.84
Approximate Cc - - - 56 0 1.98 | 3.55 240 0 238 | 16.16 992 0 3.02 | 33.04
Accurate signed 14 0 2.58 1.31 54 0 437 | 7.26 208 0 528 | 31.14 803 0 7.35 | 63.75
Accurate unsigned 12 0 2.016 | 1.13 52 0 376 | 6.10 206 0 472 | 29.63 800 0 6.33 | 64.10
Vivado IP Area opt. [1] 0 1 3.355 | 4.47 0 1 357 | 545 0 1 3.57 591 611 1 7.28 | 56.41
Vivado IP Speed opt. [1] 0 1 3.355 | 447 0 1 3.54 | 545 0 1 3.68 6.00 0 4 6.86 | 2237

power delay product (PDP) of our proposed accurate and ap-
proximate multipliers with Vivado speed-optimized multiplier
IP and state-of-the-art approximate multipliers. These results
have been normalized to the corresponding results of Vivado
area-optimized multiplier IP. As shown, the proposed accu-
rate multiplier and approximate multiplier Cc provide better
resource utilization compared to the other implementations.
For example, compared to the area-optimized multiplier IP,
the accurate multiplier provides up to a 25% reduction in
LUTs utilization. The approximate multipliers S1 and S2
consume more LUTs than the Vivado multiplier IPs. The
proposed approximate Cc multiplier trades the output accuracy
to achieve significant reductions in the critical path delay and
energy consumption compared to the other implementations.
For example, compared to the Vivado area-optimized multi-
plier IP, approximate multiplier Cc renders up to 51% and 50%
reductions in the critical path delay and energy consumption,
respectively.

We also compare our proposed accurate and approximate
designs with DSP blocks-based multipliers. These results are
presented in Table IX. To provide a thorough comparison,
we have explored the various synthesis optimization strategies
provided by the Xilinx Vivado synthesis tool for DSP blocks-
based multipliers, such as area/speed optimization and un-
signed/signed operations. However, the performance metrics of
DSP blocks-based multipliers do not have a significant differ-
ence between unsigned and signed numbers based operations;
therefore, we have shown the results for only signed numbers-
based DSP blocks. The proposed approximate multiplier Cc
has a lower CPD than DSP blocks-based multipliers for
various bit-widths. Compared to the proposed approximate
Ca and accurate multiplier implementations, the DSP blocks-
based multipliers have higher CPD and PDP values for lower
bit-widths multipliers, such as 4 x4 and 8 x 8. For example, the
proposed 4 x 4 signed multiplier offers a 23% and 70.6% re-
duction in CPD and PDP values, respectively, when compared

with the area-optimized 4 x 4 DSP block-based multiplier.
The DSP blocks-based multiplier’s degraded performance is
because the DSP48E1 slice in 7 series FPGAs (used for all
experiments in this work) hosts a 25 x 18 multiplier and
is not optimized for smaller multipliers. According to the
design recommendations of Xilinx Vivado [1], LUTs-based
soft multipliers should be used for implementing lower bit-
widths multipliers. Our proposed accurate and approximate
multipliers provide a feasible trade-off between accuracy,
performance, and resource utilization for such scenarios. For
higher-order multipliers, such as 16 x 16 and 32 x 32, the DSP
blocks-based multipliers provide reduced CPD and PDP values
than our proposed accurate multipliers. However, compared
to the proposed 32 x 32 multipliers, the area-optimized DSP
block-based multiplier utilizes one DSP slice and 611 LUTs.
The corresponding speed-optimized 32 x 32 IP utilizes 4 DSP
slices.

The utilization of DSP blocks along with a large number of
LUTs for DSP blocks-based multipliers call for the orthogonal
approach of defining resource-efficient soft multiplier archi-
tectures for multiplier-intensive applications, such as artificial
neural networks, implemented on a small FPGA. Towards
this end, we experimented on a small multilayer perceptron
(MLP) to classify the MNIST dataset [44]. The inference
accuracy of the dataset using the single-precision floating-
point number is 97%. The corresponding inference accuracy
using 8-bit fixed-point quantization is 96.6%, resulting in
an insignificant drop in output accuracy. To evaluate the
performance metrics of the quantized MLP implementation on
FPGA, we implemented a single layer of the MLP on Xilinx
Zynq UltraScale+ MPSoC (xczu3eg-sbva484-1-e device). The
implementation consists of instantiating 20 neurons with 128
input activations. The experiment results using 8 x 8 DSP
blocks-based multipliers and the proposed signed multiplier
are presented in Table X. The DSP blocks-based design
offers a lower critical path delay than the proposed signed

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 16:09:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056337, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE X: MLP implementation results on FPGA

Design LUTs DSPs CPD | Max. Perf.!
Util. [%] | Util. [%] | [ns] [GOPS]
DSP Blocks 34.6 54.5 53.4 4.1
Proposed Signed Mult. 46.4 0.0 57.2 4.5

IWe report the maximum theoretical performance for both implementations
by exhausting the corresponding DSP blocks and LUTs.

multipliers-based implementation. However, the DSP blocks-
based implementation requires overall more resources than
the proposed multiplier-based implementation. As shown, the
DSP blocks-based implementation utilizes 54.5% and 34.6%
of the total available DSP blocks and LUTs, respectively,
on the FPGA. However, the corresponding implementation
using our proposed multiplier requires only 46.4% of the
total available LUTs. The resource efficiency of the proposed
multipliers can be utilized to instantiate more multipliers to in-
crease the implementation’s overall performance. For example,
Table X shows the maximum theoretical performance, Giga
Operations per Second (GOPS), of two implementations by
instantiating the maximum number of DSP blocks-based and
proposed multipliers. The proposed multipliers-based design
offers higher performance than the DSP blocks-based design.
It is obvious to use both DSP blocks and soft multipliers to
realize high-performance accelerators on resource-constrained
FPGAs. For example, the maximum theoretical performance of
the MLP experiment by initially exhausting the DSP blocks-
based multipliers and then utilizing the remaining LUTs to
instantiate proposed signed multipliers is 5.5 GOPS.

Finally, to provide a more exhaustive analysis of the pro-
posed approximate multipliers, Fig. 22 compares the average
relative error, the total number of utilized LUTSs, and the
critical path delay of all configurations of the proposed 8 x 8
approximate multipliers and state-of-the-art approximate mul-
tipliers S1 [25], S2 [23], EvoApprox8b [30] and SMApproxlib
[32]. To minimize the design space evaluation time, we have
obtained these results by synthesizing and implementing each
design point only once, i.e., without utilizing the iterative im-
plementation technique described in Section VII-A. The Pareto
optimal analysis reveals that the number of non-dominated
points reported by Evoapprox8b in [30] has significantly
reduced for FPGA-based implementation. This analysis is in
accordance with our observation of ASIC-based approxima-
tions less effective in producing comparable results for FPGA-
based systems. For the 500 8 x 8 multiplier implementations
provided by the EvoApprox8b library, only 8.6% of designs
lie on the Pareto surface. Similarly, for the SMApprox library,
only 6% of the implementations are non-dominated design
points. However, our proposed approximate multipliers pro-
vide a better trade-off between resource utilization, critical
path delay, and average relative error by offering 43.75%
design points that lie on the Pareto surface. These results
are summarized in Table XI. We have also performed
the hypervolume analysis [43] of the Pareto design points
to identify each implementation’s dominance in the design
space. The hypervolume indicator quantitatively computes the
volume of the design space’s dominant portion. As shown
in Table XI, our proposed designs provide the maximum
exclusive hypervolume contribution. Therefore, despite having
only 14 solutions out of 93 non-dominated design points, our
implementations offer the maximum coverage of the entire de-
sign space. Our proposed design points offer a better reduction

12

Pareto Points
Non-Pareto Points

[J Our Design Points
A s1(2s)

V s2(23]

O EvoApprox [30]
+ SMApprox [32]

Non-dominated design points with low average
1 p o [relative error and reduced latency are provided
o by our proposed design.

Latency [ns]
© s
%

o

40
60
100 ::)ea putsl

0.10 0.15
Average. Relative Error 0.20 120

Fig. 22: Pareto optimal analysis of the proposed approximate
8x 8 multipliers with state-of-the-art designs

TABLE XI: Summary of Pareto optimal analysis of different
88 multipliers

Design Total D esign Pareto Points | % Pareto Points Max. Exclusive
Points Hypervolume
S1 [25] 16 1 6.25 0.0004
S2 [23] 16 4 25.00 0.0445
EvoApprox [30] 500 43 8.60 0.0521
SMApprox [32] 512 31 6.05 0.0164
Ours Approximate 32 14 43.75 0.0656
Total 1076 \ 93 - -

in the average relative error, LUTs utilization, and critical path
delay in the multi-objective design space of Fig. 22.

4) Quality Evaluation for Application Kernels: The pro-
posed multipliers are also tested for the multiply-mode-based
image blending application and SUSAN application-based im-
age smoothing accelerator to observe degradation in the final
output accuracy. For the image blending filter, we have utilized
our approximate multipliers in the Python-based behavioral
model of the application and used it for ten random test images
from USC-SIPI Database [36]. In comparison to the accurate
multiplier-based filter, the Ca and Cc multipliers-based filters
produce an average of 51.9 dB and 31.6 dB Peak signal-to-
noise ratio (PSNR) values. Fig. 23 presents the visual output
along with respective PSNR values for a single image.

We also synthesized the SUSAN application-based image
smoothing accelerator with Vivado’s default multiplier S4 and
our proposed Ca and Cc multipliers using Xilinx Vivado. Our
approximations offers 17%, and 17.2% area gains for Ca and
Cc multipliers respectively with insignificant output quality
loss. Fig. 24 and Table XII contrast the output visual qualities
and the PSNR values of SUSAN image smoothing accelerator,
using proposed approximate multipliers, accurate multiplier
and state-of-the-art multipliers S/ and S2 respectively. The
results show that our designed approximate multipliers provide
better visual quality outputs and PSNR values than those
displayed by the S2 multiplier. The approximate multiplier
S1, apparently, produces better PSNR value than those pro-
duced by Ca and Cc. However, the input values analysis, in
Fig. 25, of the image under consideration shows that most of
the multiplications during the image smoothing process are
limited to a narrow band and increasing the multiplication
output accuracy for this band can increase the accelerator’s
output quality. Exploiting the asymmetric nature of our pro-
posed multiplier, the mutual swapping of all input values
to our approximate multipliers for SUSAN image smoothing
accelerator and input-image under consideration results in
enhanced output qualities with higher PSNR values as shown

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 16:09:10 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056337, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

(¢) Ca (d) Cc

Fig. 23: Image blending application (multiply-mode); the
PSNR values of the approximate multipliers-based filters are
computed with respect to the accurate multiplier-based filter:
Ca PSNR=51.9 dB, Cc PSNR=31.6 dB

Accurate

Fig. 24: Accurate and approximate multipliers-based SUSAN
image smoothing accelerator output

in Table XII. Hence depending upon the input-data and the
application under analysis, Ca, Cc or Cay, Cc, can be deployed
for achieving desired area, latency, EDP gains with required
output accuracy.

TABLE XII: PSNR values of 8x8 approximate multipliers

Multiplier Architecture | SUSAN Accelerator PSNR [dB]

Accurate 00
Ca 33.716
Cc 25.602
S 47.493
S2 17.944
Cag (Ca Swapped Inputs) 59.119
Ccs (Cc Swapped Inputs) 27.366

VIII. CONCLUSION

In this paper, we have used the 6-input lookup tables and
the associated carry chains of modern FPGAs to propose area-
optimized, high-performance softcore accurate and approxi-
mate multipliers. Compared to the area-optimized multiplier
IP provided by Vivado, our proposed accurate unsigned and
signed multipliers provide up to 25% and 53% reduction in
the total utilized LUTs, respectively. For an M x N accurate
multiplier, our proposed methodology generates only % partial
products in parallel. It then utilizes ternary and binary adders
to add the generated partial products to compute the final
product. We have used the modular approach for implement-
ing higher-order approximate multipliers using our proposed

13

15000
multiplications gccurs in this

region

10000

Product
5000

Fig. 25: Analysis of input image: SUSAN application 8x8
multiplication histogram

approximate 4 x 2 and 4 x 4 multipliers. Towards this end, we
have also presented the design of a novel resource-efficient
and high-performance ternary adder for adding the results
of submultipliers. Our approximate multipliers provide up to
51% reduction in the critical path delay when compared with
Vivado’s area-optimized multiplier IP. Our proposed multipli-
ers can be utilized in implementing resource-efficient high-
performance accelerators for different applications. We have
also applied our proposed multipliers in different real-world
applications and tested for output quality and performance
gains. We also intend to extend our proposed methodology of
defining LUT-level optimizations for designing other resource-
efficient and high-performance accurate and approximate arith-
metic circuits, such as multiplieraccumulator (MAC) and di-
viders. We provide our open-source library of the accurate
and approximate multiplier at https://cfaed.tu-dresden.de/pd-
downloads to assist reproducible results.

REFERENCES

[1] Xilinx 7 Series DSP48E1 Slice https://www.xilinx.com/support/
documentation/user_guides/ug479_7Series_ DSP48E1.pdf

[2] Xilinx LogiCORE IP v12.0 https://www.xilinx.com/support/
documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf

[3] Integer Arithmetic IP Cores User Guide https://www.altera.com/en_US/
pdfs/literature/ug/ug_lpm_alt_mfug.pdf

[4] N. Brunie, F. de Dinechin, M. Istoan, G. Sergent, K. Illyes and B. Popa,
”Arithmetic core generation using bit heaps,” 2013 23rd International
Conference on Field programmable Logic and Applications, Porto, 2013,
pp. 1-8.

[5] J. Beuchat and J. Muller, ”Automatic Generation of Modular Multipliers
for FPGA Applications,” in IEEE Transactions on Computers, vol. 57,
no. 12, pp. 1600-1613, Dec. 2008.

[6] Ahmet Kakacak, Aydin Emre Guzel, Ozan Cihangir, Sezer Gren, and
H. Fatih Ugurdag. 2017. “Fast Multiplier Generator for FPGAs with
LUT based Partial Product Generation and Column/row Compression,”.
in Integr. VLSI J. 57, C 2017, 147-157.

[71 M. Kumm, J. Kappauf, M. Istoan and P. Zipf, "Resource Optimal
Design of Large Multipliers for FPGAs,” 2017 IEEE 24th Symposium
on Computer Arithmetic (ARITH), London, 2017, pp. 131-138.

[8] E. G. Walters, ”Array Multipliers for High Throughput in Xilinx FPGAs
with 6-Input LUTs” in Computers, vol. 5, no. 4, 2016.

[9] M. Kumm, S. Abbas and P. Zipf, ”An Efficient Softcore Multiplier Ar-
chitecture for Xilinx FPGAs,” 2015 IEEE 22nd Symposium on Computer
Arithmetic, Lyon, 2015, pp. 18-25.

[10] H. Parandeh-Afshar and P. Ienne, "Measuring and Reducing the Per-
formance Gap between Embedded and Soft Multipliers on FPGAs,”
2011 21st International Conference on Field Programmable Logic and
Applications, Chania, 2011, pp. 225-231.

[11] 7 Series FPGAs Configurable Logic Block https://www.xilinx.com/
support/documentation/user_guides/ug474_7Series_CLB.pdf

[12] H. Parandeh-Afshar, P. Brisk and P. Ienne, “Exploiting fast carry-chains
of FPGAs for designing compressor trees,” 2009 International Conference
on Field Programmable Logic and Applications, Prague, 2009, pp. 242-
249.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 16:09:10 UTC from IEEE Xplore. Restrictions apply.

https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mult_gen/v12_0/pg108-mult-gen.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.altera.com/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3056337, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

[13] B. Parhami, "Computer Arithmetic Algorithms and Hardware Designs”,
2000

[14] C. S. Wallace, ”A Suggestion for a Fast Multiplier,” in IEEE Transac-
tions on Electronic Computers, vol. EC-13, no. 1, pp. 14-17, Feb. 1964.

[15] L. Dadda, "Some schemes for parallel multipliers”, in Alta frequenza,
vol. 34, no. 5, 1965.

[16] B. Millar, P. E. Madrid and E. E. Swartzlander, A fast hybrid multiplier
combining Booth and Wallace/Dadda algorithms,” [1992] Proceedings of
the 35th Midwest Symposium on Circuits and Systems, Washington, DC,
USA, 1992, pp. 158-165 vol.1.

[17] V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, ”’Analysis
and characterization of inherent application resilience for approximate
computing,” 2013 50th ACM/EDAC/IEEE Design Automation Confer-
ence (DAC), Austin, TX, 2013, pp. 1-9.

[18] A. K. Verma, P. Brisk and P. Ienne, ”Variable Latency Speculative
Addition: A New Paradigm for Arithmetic Circuit Design,” 2008 Design,
Automation and Test in Europe, Munich, 2008, pp. 1250-1255.

[19] M. Shafique, W. Ahmad, R. Hafiz and J. Henkel, ”A low latency generic
accuracy configurable adder,” 2015 52nd ACM/EDAC/IEEE Design Au-
tomation Conference (DAC), San Francisco, CA, 2015, pp. 1-6.

[20] V. Gupta, D. Mohapatra, A. Raghunathan and K. Roy, "Low-Power Dig-
ital Signal Processing Using Approximate Adders,” in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 1, pp. 124-137, Jan. 2013.

[21] A. B. Kahng and S. Kang, ”Accuracy-configurable adder for approxi-
mate arithmetic designs,” DAC Design Automation Conference 2012, San
Francisco, CA, 2012, pp. 820-825.

[22] K. Bhardwaj, P. S. Mane and J. Henkel, "Power- and area-efficient Ap-
proximate Wallace Tree Multiplier for error-resilient systems,” Fifteenth
International Symposium on Quality Electronic Design, Santa Clara, CA,
2014, pp. 263-269.

[23] P. Kulkarni, P. Gupta and M. Ercegovac, "Trading Accuracy for Power
with an Underdesigned Multiplier Architecture,” 2011 24th Internatioal
Conference on VLSI Design, Chennai, 2011, pp. 346-351.

[24] S. Hashemi, R. 1. Bahar and S. Reda, "DRUM: A Dynamic Range
Unbiased Multiplier for approximate applications,” 2015 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Austin,
TX, 2015, pp. 418-425.

[25] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, J. Henkel and
J. Henkel, ”Architectural-space exploration of approximate multipliers,”
2016 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Austin, TX, 2016, pp. 1-8.

[26] C. Liu, J. Han and F. Lombardi, "A low-power, high-performance
approximate multiplier with configurable partial error recovery,” 2014
Design, Automation & Test in Europe Conference & Exhibition (DATE),
Dresden, 2014, pp. 1-4.

[27] C. Lin and I. Lin, "High accuracy approximate multiplier with error
correction,” 2013 IEEE 31st International Conference on Computer
Design (ICCD), Asheville, NC, 2013, pp. 33-38.

[28] J. Mody, R. Lawand, R. Priyanka, S. Sivanantham and K. Sivasankaran,
”Study of approximate compressors for multiplication using FPGA,” 2015
Online International Conference on Green Engineering and Technologies
(IC-GET), Coimbatore, 2015, pp. 1-4.

[29] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan and K. Roy,
"IMPACT: IMPrecise adders for low-power approximate computing,”
IEEE/ACM International Symposium on Low Power Electronics and
Design, Fukuoka, 2011, pp. 409-414.

[30] V. Mrazek, R. Hrbacek, Z. Vasicek and L. Sekanina, "EvoApprox8b:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017, Lausanne, 2017, pp.
258-261.

[31] Vivado Design Suite User Guide https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2017_4/ug910-vivado- getting-started.
pdf

[32] S. Ullah, S. S. Murthy and A. Kumar, “SMApproxlib: Library of FPGA-
based Approximate Multipliers”, in 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC), San Francisco, CA, 2018, pp. 1-6.

[33] S. Ullah, S. Rehman, B. S. Prabakaran, F. Kriebel, M. A. Hanif,
M. Shafique, A. Kumar, “Area-optimized low-latency approximate
multipliers for FPGA-based hardware accelerators”, in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), San Fran-
cisco, CA, 2018, pp. 1-6.

[34] S. Ullah, H. Schmidl, S. S. Sahoo, S. Rehman and A. Ku-
mar, “Area-optimized Accurate and Approximate Softcore Signed
Multiplier Architectures,” in IEEE Transactions on Computers, doi:
10.1109/TC.2020.2988404.

[35] S. Ullah, T. D. A. Nguyen and A. Kumar, “Energy-Efficient Low-
Latency Signed Multiplier for FPGA-based Hardware Accelerators,” in
IEEE Embedded Systems Letters, doi: 10.1109/LES.2020.2995053.

[36] SIPI Image Database (2019) http://sipi.usc.edu/database/database.php?
volume=misc

14

[37] C. R. Baugh and B. A. Wooley, "A Two’s Complement Parallel Array
Multiplication Algorithm,” in IEEE Transactions on Computers, vol. C-
22, no. 12, pp. 1045-1047, Dec. 1973, doi: 10.1109/T-C.1973.223648

[38] S. Mittal, “A Survey of Techniques for Approximate Computing”, in
2016 ACM Computing Surveys.

[39] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, J. Henkel, “Cross-
layer approximate computing: From logic to architectures”, in 2016 53rd
Annual Design Automation Conference (DAC).

[40] M. Kumm, M. Hardieck, J. Willkomm, P. Zipf and U. Meyer-Baese,
“Multiple constant multiplication with ternary adders,” in 2013 23rd
International Conference on Field programmable Logic and Applications,
Porto.

[41] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,”
in IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 2, pp. 203-215, Feb. 2007.

[42] A. D. Booth, “A Signed Binary Multiplication Technique,”
Quarterly Journal of Mechanics and Applied Mathematics 1951.

[43] E. Zitzler, D. Brockhoff and L. Thiele, “The hypervolume indicator

in The

revisited: On the design of Pareto-compliant indicators via weighted
integration,” In International Conference on Evolutionary Multi-Criterion
Optimization, pp. 862-876. Springer, Berlin, Heidelberg, 2007.

[44] MNIST-cnn. (2016). [Online]. Available: https://github.com/integeruser/
MNIST-cnn

Salim Ullah is a Ph.D. student at the Chair for
Processor Design, Technische Universitt Dresden.
He has completed his BSc and MSc in Computer
Systems Engineering from the University of Engi-
neering and Technology Peshawar, Pakistan. His cur-
rent research interests include the design of energy-
efficient systems, approximate arithmetic units, ap-
proximate caches, reconfigurable computing, and
hardware accelerators for Al & machine learning
algorithms.

Semeen Rehman is currently with the Technische
Universitt Wien (TU Wien), Faculty of Electrical
Engineering as a tenure- track Assistant Professor.
In October 2020, she received her habilitation in
the area of Embedded Systems from the Technis-
che Universitt Wien (TU Wien). Before that, she
was a Postdoctoral Researcher with the Technische
Universitt Dresden (TU Dresden) and Karlsruhe
Institute of Technology (KIT), Germany, since 2015.
In July 2015, she received her Ph.D. from Karlsruhe
Institute of Technology (KIT), Germany. Her main
research interests include dependable systems, cross-layer design for error re-
siliency with a focus on run-time adaptations, emerging computing paradigms,
such as approximate computing.

Muhammad Shafique (M’11 - SM’16) received the
Ph.D. degree in computer science from the Karlsruhe
Institute of Technology (KIT), Germany, in 2011.
From 2016 to 2020, he was a Full Professor at Tech-
nische Universitt Wien (TU Wien), Austria. Since
Sep. 2020, he is with the Division of Engineering,
New York University Abu Dhabi (NYU-AD), United
Arab Emirates, and is a Global Network faculty
at the NYU Tandon School of Engineering, USA.
His research interests are in computer architecture,
power-/energy-efficient systems, robust computing,
hardware security, Brain-Inspired computing trends like Neuromorphic and
Approximate Computing.

Akash Kumar (SM13) received the joint Ph.D. de-
gree in electrical engineering and embedded systems
from the Eindhoven University of Technology, Eind-
hoven, The Netherlands, and the National Univer-
sity of Singapore (NUS), Singapore, in 2009. From
2009 to 2015, he was with NUS. He is currently
a Professor with Technische Universitt Dresden,
Dresden, Germany, where he is directing the Chair
for Processor Design. His current research interests
include the Design, Analysis, and Resource Manage-
ment of Low-Power and Fault-Tolerant Embedded

ultiprécessor Sytems.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SLUB Dresden. Downloaded on March 04,2021 at 16:09:10 UTC from IEEE Xplore. Restrictions apply.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug910-vivado-getting-started.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug910-vivado-getting-started.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug910-vivado-getting-started.pdf
http://sipi.usc.edu/database/database.php?volume=misc
http://sipi.usc.edu/database/database.php?volume=misc
https://github.com/integeruser/MNIST-cnn
https://github.com/integeruser/MNIST-cnn

