
Compiler Toolchains for Deep Learning Workloads
on Embedded Platforms

Max Sponner
Infineon Technologies

Dresden GmbH & Co. KG
Dresden, Germany

max.sponner(at)infineon.com

Bernd Waschneck
Infineon Technologies

Dresden GmbH & Co. KG
Dresden, Germany

bernd.waschneck(at)infineon.com

Akash Kumar
Dresden University of Technology

Dresden, Germany
akash.kumar(at)tu-dresden.de

Abstract
As the usage of deep learning becomes increasingly popular
in mobile and embedded solutions, it is necessary to convert
the framework-specific network representations into exe-
cutable code for these embedded platforms.
This paper consists of two parts: The first section is made
up of a survey and benchmark of the available open source
deep learning compiler toolchains, which focus on the capa-
bilities and performance of the individual solutions in regard
to targeting embedded devices and microcontrollers that are
combined with a dedicated accelerator in a heterogeneous
fashion.
The second part explores the implementation and evalua-
tion of a compilation flow for such a heterogeneous device
and reuses one of the existing toolchains to demonstrate the
necessary steps for hardware developers that plan to build a
software flow for their own hardware.

CCS Concepts: • Computing methodologies → Artifi-
cial intelligence.

Keywords: deep learning, embedded, deep learning com-
piler
ACM Reference Format:
Max Sponner, Bernd Waschneck, and Akash Kumar. 2021. Com-
piler Toolchains for Deep Learning Workloads on Embedded Plat-
forms. In Proceedings of TinyML Research Symposium(TinyML Re-
search Symposium’21) (Burlingame ’21). ACM, New York, NY, USA,
10 pages.

1 Introduction
As AI is moving closer to the edge, the limitations of the
popular deep learning frameworks in regard to embedded
platforms become apparent. These platforms often employ

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Burlingame ’21, March 22, 2021, Burlingame, CA
© 2021 Association for Computing Machinery.

Cortex-M CPUs or similar solutions and can operate on the
(sub) milliwatt range for their power consumption. Deep
learning frameworks are mostly designed for the server and
workstation use and incorporate many features that are not
relevant for the inference on low power devices, this prevents
them from running on microcontrollers and other embedded
solutions.
Due to this, the usage of deep learning models on embed-
ded devices typically relies on the manual implementation
of the previously trained networks. The developers have to
implement the required layer types, preferably using the
vendor-provided math kernel libraries for the platform. This
process is labour intensive, error prone and can easily re-
sult in inferior performance due to missing or incorrectly
executed optimizations. In addition, the support of new plat-
forms can result in extensive effort as the function kernels
might need to be re-implemented for them.
The necessary modifications increase even further if dedi-
cated deep learning accelerators are employed. Due to their
use of domain-specific instruction sets, which often uti-
lize long pipelines that cover common neural network sub-
patterns, these accelerators cannot easily be targeted by stan-
dard compiler toolchains. Additional obstacles can be the
coarse-granular accelerator instruction set architectures and
the usage of custom data types, which can differ from the
types used by the neural networks.
A possible solution to automate these tasks are deep learn-
ing compilers. These toolchains operate similar to standard
compilers, but introduce a number of important peculiarities:
Instead of handwritten source code, deep learning compilers
process serialized trained neural network descriptions. Ad-
ditionally, they should be able to automatically employ the
optimized math kernel libraries or alternative optimizations
of the function kernels.
A benefit of employing domain-specific compilers is the op-
tion to introduce additional optimizations that target deep
learning models. Typically these are layer fusion or general
network graph optimizations and quantization schemes.
Lastly, these toolchains should be able to target heteroge-
neous platforms and dedicated accelerators by employing
runtimes on the target devices. These runtimes take care of
the scheduling and additional support operations that are

ar
X

iv
:2

10
4.

04
57

6v
1 

 [
cs

.P
L

] 
 8

 M
ar

 2
02

1



Burlingame ’21, March 22, 2021, Burlingame, CA Max Sponner, Bernd Waschneck, and Akash Kumar

necessary as well as the deserialization of the compiled net-
works.
This paper will start with an overview of the available opti-
mizations and math kernel libraries for deep learning work-
loads on embedded platform, which should be incorporated
by the compiler toolchains for optimal performance. The
following sections will cover a survey of the compiler fea-
tures and the achieved performance on different embedded
and low-power platforms, while the last part of the paper
contains the implementation of a compilation flow for a new
custom target.
The intended target audience of this paper are research teams
that are looking for a software stack to support their own
deep learning hardware efforts, while achieving optimal per-
formance and broad compatibility across the available frame-
works.

2 Related Work
Two recent studies focus on the employed techniques and
the use with FPGA platforms [43], as well as an in-depth
overview over the different approaches for common prob-
lems of the available deep learning compilers [26]. In contrast
to these publications, this work focuses more on embedded
platforms. In addition to the survey and benchmark a com-
pilation toolchain based on TVM has been implemented to
target a heterogeneous platform. This was done to demon-
strate the steps that are currently required to support custom
accelerators with their own software stack.

2.1 Deep Learning Optimizations
Deep Learning toolchains can employ a multitude of domain-
specific optimizations in addition to standard compiler strate-
gies. These include weight pruning, which cuts redundant
and unnecessary weights from the networks to reduce their
size and - depending on the implementation - the compute
workload. While a wide range of pruning algorithms exist,
none of them are currently employed by deep learning com-
pilers [4, 25, 36, 41].
In contrast, quantization schemes are utilized by most deep
learning compilers. This optimization converts the floating
point representations for weights, intermediate results and
outputs into smaller fixed-point formats, while mostly keep-
ing the accuracy of the original network. This enables the
network to take up less storage and reduces its bandwidth
requirements during the execution as well as the computa-
tional intensity, if optimized function kernels for the quan-
tized representations exist [20, 21, 27, 37, 42].
Additional strategies include optimizations on the neural
network graph like layer fusion, dead node elimination and
others [23, 38].

2.2 Math Kernel Libraries
Math kernel libraries are a way to provide developers with
optimized function kernels for common operations, increas-
ing the efficiency of software solutions that employ them,
while decreasing the redundancy of implementations. They
are typically platform-specific and provided by the device-
vendors1. These libraries differ largely in their implementa-
tion strategies and offered functionality. While all libraries
provide function kernels, their implementations follow dif-
ferent approaches: ARM CMSIS-NN [22] mostly resorts to a
low number of kernels that deliver consistent performance
across the majority of the configuration space. In contrast, In-
tel’s oneDNN2 [13] library implements most operations with
multiple different strategies, based on the available instruc-
tion set extensions, data types and the configuration of the
currently executed layer. The final selection of the function
kernel takes places at runtime3 to achieve the best perfor-
mance under the current circumstances. While this strategy
can be able to achieve better performance in certain cases, it
requires much more maintenance and implementation effort
compared to the more generalized function kernels.

2.3 Deep Learning Accelerators
In recent years plenty of deep learning accelerators emerged
in commercial and research applications. Commercial accel-
erators for embedded platforms include the NVDLA from
Nvidia 4 [31], Google’s EdgeTPU [5] as well as ARM’s Ethos-
U NPUs [2]. Most of these solutions employ custom compila-
tion toolchains that are limited to support of only one deep
learning framework for its input formats.
Research platforms include the Eyeriss accelerators (v1, v2)
[8, 9], VTA [30] as well as a many FPGA-based solutions [35].
These typically do not focus on the software toolchain and
explore novel architecture approaches instead.

3 Survey & Benchmark
The survey section of the paper covers open source projects
that are still in development. Its focus lies on the inference of
deep learning models on embedded hardware. The support
for the training step will not be evaluated as it is uncommon
to execute it on the embedded device itself.
The evaluated deep learning compilers are TensorFlow Lite
(TFLite) [39], TensorFlow XLA (TF XLA) [40], Glow [34],
TVM [7], ONNC [28] and nGraph [14], which has been tested
as part of Intel’s openVINO toolkit.

1Efforts for device-independent solutions exist as well, but have not
found the same rate of adaption, e.g. XNNPack [16]

2previously known as MKL-DNN
3only for its x86_64 CPU backend
4The NVDLA is available as an open source project, which provides the

hardware description and software stack, but is also contained in several
of Nvidia’s own products like the Jetson Xavier NX, using an alternative
closed-source software stack



Compiler Toolchains for Deep Learning Workloads on Embedded Platforms Burlingame ’21, March 22, 2021, Burlingame, CA

As µTVM was in an early stage at the time of testing, it has
not been evaluated in this paper.

3.1 Common Strategies
All evaluated toolchains follow the typical compiler structure.
The frontend converts the serialized pretrained models into a
high-level intermediate representation (IR). Most toolchains
utilize a two-level IR: The high-level IR is a graph-level rep-
resentation of the compiled model and the low-level IR de-
scribes the operations on the tensor level. The graph-level
IR is typically used for mostly target-independent optimiza-
tions and operator fusion. The tensor-level IR is used by the
backend to optimize the individual operations.
One exception is TFLite, which does not perform target-
dependent optimizations at the compilation stage and only
uses a graph-level representation. Instead, its compiler (called
TFLite converter) generates a graph-level representation that
does not contain execution details, as the device-specific
function kernels are part of its runtime. This allows for a
better portability of the compiler output across devices, but
prevents more target-specific optimizations at the offline
compilation stage.
The majority of the evaluated toolchains employs a runtime5,
which needs to be present on the target device to execute the
compiled neural network. The functionality of the runtime
differs between projects. All runtimes provide support in-
frastructure to unpack the compiled neural networks and an
API for the integration into the user program. Solutions like
TFLite and ONNC deliver the operation execution strategies
for the platform as part of the runtime. Glow and TVM utilize
the runtime for heterogeneous targets and in addition TVM
requires the runtime for profiling during the auto-tuning
step. TVM delivers function kernels that have been gener-
ated by its auto-tuner alongside the model description and
weights to the runtime.
The main difference between the evaluated projects is the
provisioning of the function kernels. Most solutions utilize
handcrafted implementations that integrate math kernel li-
braries. This requires maintenance and updating of imple-
mentations for each layer type across all supported plat-
forms6. To circumvent these limitations, TVM employs an
Auto-Tuning solutions which tries to find the best suited
function kernels by using an AI-guided flow that incor-
porates measurements and estimations of execution times
on the real target. Glow bypasses all of these concerns by
reusing the same generalized function kernels across all
targets, where its target-dependent optimizations are only
applied by the LLVM backend for the selected target.

5The only exception that never uses a runtime is TensorFlow XLA,
while Glow’s AOT flow for CPUs does not require a runtime, it is deployed
on other platforms

6TFLite, ONNC and others employ this strategy

3.2 User Accessibility
User Accessibility mostly depends on the user interface of
the offline compiler stage, the integration of the compiler
output into the target application and the supported input
formats.
For the supported frameworks and formats, ONNX[32] is the
most important, as it is an industry standard and converts
from most frameworks that exist. See table 1 for an overview
of the supported formats and frameworks of each compiler
toolchain.
All compilers either support a command-line interface, like

Table 1. Overview of the supported deep learning frame-
work formats and target hardware platforms.

TV
M

TF
Li
te

TF
XL

A

Gl
ow

O
N
N
C

op
en
VI
N
O

ONNX[32] ✓ ✗ ✗ ✓ ✓ ✓

TensorFlow[1] ✓ ✓ ✓ ✗ ✗ ✓

TensorFlow Lite flatbuffer ✓ ✓ ✗ ✓ ✗ ✗

PyTorch[33] ✓ ✗ ✗ ✗ ✗ ✗

MXNet[6] ✓ ✗ ✗ ✗ ✗ ✓

Caffe[29] ✓ ✗ ✗ ✓ ✗ ✓

Keras[11] ✓ ✓ ✓ ✗ ✗ ✗

x86_64 ✓ ✓ ✓ ✓ ✓ ✓

Cortex-A ✓ ✓ ?7 ✓ ✓ ✗

Cortex-M ✗8 ✓ ?7 ✓ ✓ ✗

GPU (CUDA) ✓ ✗ ✓ ✗ ✗ ✗

GPU (OpenCL) ✓ ✓ ✓ ✓ ✗ ✓

Deep Learning Accelerator ✓ ✓ ✓ ✓ ✓ ✓

traditional compiler toolchains, or the use through a Python
API, which allows for the integration in the original training
script of the deep learning model. One exception is Intel’s
openVINO that provides an additional graphical user inter-
face through a web-interface [18]. This enables more direct
feedback to the developer on the impact of different opti-
mizations on the overall model performance.
For the integration into the user application, all toolchains
provide a C or C++ API. TVM and TFLite provide an addi-
tional Python interface through their standard runtimes9.

7inconclusive data
8µTVM was not ready at the time of testing
9TFLite provides an additional runtime for microcontrollers, which

does not come with a Python API



Burlingame ’21, March 22, 2021, Burlingame, CA Max Sponner, Bernd Waschneck, and Akash Kumar

3.3 Supported Platforms & Extensibility
As the support for low-power embedded devices10 in the
currently available deep learning compilers is still limited,
additional platforms have been used during the evaluation
to allow for a more complete performance comparison.
The range of supported platforms varies between the evalu-
ated toolchains. In addition, the level of optimization for the
supported platforms fluctuates widely. One such example is
TFLite’s support of the x86_64 platform: While its runtime
can be compiled for it, the function kernels are not optimized,
resulting in worse performance compared to other platforms
or compilers.
For TF XLA no conclusive information about its support for
different architectures could be found, as the official docu-
mentation and publications contradict each other [17, 24].
The support for bare-metal use cases and embedded proces-
sors is much less common, as only TFLite, ONNC and Glow
are able to target Cortex-M CPUs. For an overview of the
supported platforms see table 1.
While all toolchains include some kind of support for het-
erogeneous platforms, the implementations differ between
them. Themost complete solution has been provided by TVM
in its Bring-Your-Own-Codegen (BYOC) flow [10], which
allows developers to target new libraries and accelerators
from TVM’s high-level IR. It does not only provide an API
to include new backends, it also supports the developer by
implementing solutions for common problems, like the CPU
fallback for unsupported operations, an infrastructure for
custom operator fusion rules and the option to change the
data layout of tensors. Most other toolchains only supply a
simple API to access values and layer configurations and re-
quire the developer to reimplement many of these common
support tasks.
A stark contrast to TVM is TFLite. Its compilation stage does
not provide an interface for the inclusion of additional target-
specific tasks and optimizations. New platforms are targeted
by porting the runtime to them and deploying optimized
function kernels with it. As this flow only allows the target-
ing of general purpose hardware, its support for the currently
available accelerators has been realized by additional tools.
These modify the flatbuffer file, which has been generated
by the offline compilation stage, before it can be executed on
the heterogeneous platform [3, 12]. This approach breaks the
portability of TFLite and requires additional work to keep
these tools compatible with the current scheme of the TFLite
flatbuffer files. Some compiler toolchains like Glow, which
reuse LLVM’s backends11 can easily target new architec-
tures, if a LLVM backend already exists. In that case Glow’s
ahead-of-time (AOT) compilation mode can be reused, if
other targets need to be supported, a separate runtime can
be used and the AOT flow can no longer be utilized.

10e.g. ARM Cortex-M and similar
11for its AOT flow

3.4 Features
For the embedded use case, the AOT compilation and quanti-
zation support are the most important compiler features. For
the optimal execution on the target devices, the toolchains
should be able to incorporate math kernel libraries or auto-
tuning to provide optimal function kernels for the execution.
Features like support for the backpropagation and training
steps are not as important for embedded devices (yet) and
are only supported by TF XLA, Glow and openVINO as they
primarily target HPC and cloud applications.
For the optimization of the layer execution TFLite, ONNC
and openVINO rely on math kernel libraries, while Glow
utilizes the same set of generalized function kernels across
all targets, only utilizing the LLVM backend optimization
steps. TVM is the only evaluated toolchain that employs an
auto-tuning process to find good performing function ker-
nels automatically, but can also exploit third party libraries
through the BYOC flow.
All toolchains - with the exception of TVM - implement only
a limited number of static quantization schemes with fixed
bit-widths for intermediates and weights. This is a limitation
for the targeting of custom devices as they could employ
alternative quantizations. TVM has implemented a more
flexible quantization system, that offers different sizes and
requantization strategies. However, it is more difficult to con-
figure compared to the other solutions and did not achieve
competitive accuracies in this benchmark.

3.5 Performance
The performance was evaluated on an ARM Cortex-M55 fast
model12, an Cortex-A7213 and a Intel Celeron J190014. The
Cortex-A and Intel platform have been selected, to allow for
a more complete performance overview due to the limited
support of Cortex-M in the tested toolchains. This also al-
lowed for a direct comparison to the standard TensorFlow
framework on these two platforms.
All of these platforms provide a SIMD vector extension and
have been tested with the same simple MNIST test network,
consisting of convolutional, fully connected, ReLU and max-
imum pooling layers. The batch size has been set to one and
the final activation function has been removed after training.
These are common optimizations for embedded applications,
as it reduces the jitter that is introduced by the predicition
as well as the latency, as the final activation does not change
the classification result.

The Cortex-M55 could only be targeted by TFLite15 and
ONNC16. As no hardware of the M55 is available yet, a
instruction-level simulator has been used instead. While

12as no hardware was available at the time of testing
13using a Raspberry Pi 4 with 4GB of system memory
14using 8GB of DDR3 system memory
15using its micro-runtime
16using a special Cortex-M version of the toolchain



Compiler Toolchains for Deep Learning Workloads on Embedded Platforms Burlingame ’21, March 22, 2021, Burlingame, CA

3138 kB

1561 kB

1564 kB

2.58

2.90

3.00

2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10

0 500 1,000 1,500 2,000 2,500 3,000 3,500

TFLite (micro)

ONNC (Release)

ONNC (Debug)

Million Instructions

Cortex M55 Benchmark Results

kBPeak Memory Allocation Instruction Count

Figure 1. Instruction Counts and Peak Memory Allocation
for the execution of the benchmark model on the Cortex
M55.

Glow is able to target Cortex-M CPUs, it was not able to
support the novel instruction set of the M55 (ARMv8.1M).
The testing showed that TFLite required less instructions to
complete an inference run (2.6M instead of 3M instructions,
see figure 1), while ONNC allocated significantly less mem-
ory (1.6MiB instead of 3MiB. See figure 1 for details).
The next test platform was the Cortex-A72. ONNC could not
be compiled for it, as it relied on Intel MKL for its function
kernels17. Instead Glow, TVM and TFLite have been tested
in addition to the standard TensorFlow Python runtime. An
overview of the measured inference times can be seen at
figure 2.
The quantized TFLite version achieved the fastest inference
speed with 0.37ms, followed by the quantized and auto-
tuned TVM program, using its C runtime (0.41ms). Glows
fastest output achieved a mean inference time of 1.77ms
by using floating-point representations. Besides Glow, all
compilers achieved faster inference times using quantized
networks - suggesting that they employ optimized function
kernels for quantized operations, while Glow uses its gen-
eralized standard kernels and wraps them into additional
quantization and dequantization steps, which causes addi-
tional overhead. The worst result by a compiler was achieved
by TVM, for its floating-point auto-tuned solution, as it tried
to apply x86 function templates to the ARM platform18. How-
ever, the slowest result of 6.51ms was still significantly faster
than the use of the network in combination with the stan-
dard TensorFlow runtime - requiring 104.64ms for a single
inference run. This makes the slowest and incorrectly op-
timized compiled version 16 times faster, while the fastest
compiled version achieved a speedup of 282.6 times.
The Intel Celeron CPU allowed for the additional testing

17While the CMake script for the standard runtime contained a pa-
rameter to disable the MKL integration, it could not be build when it was
selected

18it could not be determined, if it was caused by user error or by TVM,
but it reoccurred over multiple tries and did not affect the quantized version

1.77

3.84

0.91

0.47

6.51

0.41

1.79

0.75 0.46 0.37

1.66

2.93

0.68 1.01
0.68 1.01

2.15

9.81

1.08

6.56

4.15

1.71

0

2

4

6

8

10

G
low

 (float)

G
low

 (quant)

TVM
 (float)

TVM
 (quant)

TVM
 (A

utoTVM
, float)

TVM
(AutoTVM

, quant)

TVM
 (M

KL, float)

TVM
 (M

KL, quant)

TF Lite (float)

TF Lite (quant)

TF Lite (float, Python)

TF Lite (quantized, Python)

openVIN
O
 (float)

O
N
N
C (float)

Comparison of Inference Times
Cortex A72 Celeron J1900

[ms]

Figure 2. Comparison of the inference times on the ARM
Cortex-A72 and Intel Celeron J1900 platforms.

of nGraph19 and ONNC’s standard flow20. See figure 2 for
the inference time results of the platform. In comparison to
the Cortex-A results the ranking of the toolchains by their
inference time changed, suggesting different levels of opti-
mizations across the supported target devices for some deep
learning toolchains. In addition, TVM was tested with the In-
tel MKL BYOC-based backend instead of its auto-tuning flow.
This backend is not primarily optimized for performance
as it is a demo for the BYOC functionality and was used to
estimate the overhead which results from it. For the Celeron
J1900, the floating-point versions of the compiled networks
achieved faster inference speeds across all toolchains. This
suggests either a lack of optimized kernels or a better imple-
mentation of the floating-point components of the hardware
itself. The fastest results have been achieved by TVM with
0.68ms (FP) and 1.01ms (quantized). TVM did not show a
significant difference between the standard and the BYOC
flow results, which implies that the overhead of the BYOC
flow is minimal. The next best results were achieved by
TFLite’s floating point network (1.08ms, using the Python
API), Glow (also floating point, 1.66ms) and ONNC (1.71ms).
openVINO’s compiled program did require 4.15ms for a
single inference, which made it the slowest floating point
version out of the tested compiled networks. It was not able
to quantize the network, as that is only supported on newer
Intel CPU generations. Only TFLite’s quantized networks
took more time than openVINO to complete their inference
run.
In addition to the inference times, the peak memory allo-
cations have been measured. The measured results varied
by two orders of magnitude between the toolchains. Glow’s
compiled networks required 10MiB of system memory at

19as part of openVINO
20besides its Cortex-M version



Burlingame ’21, March 22, 2021, Burlingame, CA Max Sponner, Bernd Waschneck, and Akash Kumar

10 10
21 23 23 26

238

14

1,248 896
489

51

2,342

1

10

100

1,000

10,000

G
low

 (float)

G
low

 (quant)

TVM
 (float)

TVM
 (quant)

TVM
 (float, M

KL)

TVM
 (quant, M

KL)

TFLite (float)

TFLite (quant)

TFLite (float, Python)

TFLite (quant, Python)

nG
raph/openVIN

O
 (float)

O
N
N
C (float)

TF Keras (Interpreter + XLA )

Peak Memory Usage[MiB]

Figure 3. Comparison of the peak memory allocation on the
Intel Celeron J1900 platform.

peak, followed by TVM with 21MiB to 26MiB. As the higher
allocations have been measured for the MKL-BYOC vari-
ant, it suggests, that the BYOC flow requires some memory
overhead compared to the standard flow during the execu-
tion. TFLite required 14MiB for a quantized version of the
network utilizing only its C-API, which took significantly
longer than the other results for a inference. The same con-
figuration, but with a floating point version of the network
allocated 238MiB which is more than the expected increase
by four times21. ONNC could only be tested with a floating
point network as its open source standard branch does not
support quantization. Its peak memory allocation of 51MiB
is more in line with the expected memory allocation. open-
VINO’s implementation allocated 489MiB of memory during
the inference, only TFLite’s Python runtime used more mem-
ory with 896MiB (quantized) or 1,248MiB (floating point).
While this values are significantly higher than the results
of the other toolchains, they are still an improvement in
comparison to the standard TensorFlow framework that allo-
cated up to 2.3 GiB. The prediction accuracy for the compiled
networks stayed mostly the same, even for the quantized
variants, with the exception of TVM. It only reached an ac-
curacy of around 50%, which might have been user error
due to its configurable quantization scheme and the usage
of a global quantization scheme.
The benchmark has shown that the available deep learn-
ing compilers are all able to deliver significantly better per-
formance compared to the use of the standard TensorFlow
framework. Additionally, they allowed for fast deployment
of models on the evaluated platforms, without the need for
handcrafted layer implementations.
TVM was able to deliver the best inference speeds on the
larger test devices; nonetheless, its accuracy was limited by

21as 8-bit integers are 4 times smaller than 32-bit floating point values

the quantization flow, which was the only flexible quantiza-
tion system out of the tested toolchains. While its frontend
offered support for the majority of neural network serializa-
tion formats, the backend and runtime are unable to target
the Cortex-M platform yet22. Its newly introduced BYOC
flow allows developers to target heterogeneous platforms,
while reusing the frontend for different input formats and
the standard components for the execution of unsupported
operations on the system CPU.
TFLitewas able to target the Cortex-M55 platform and achieved
a similar performance to TVM on the Cortex-A system for
the measured inference times. Nevertheless, it allocated sig-
nificantly more memory for its execution and does not offer
a simple flow to target heterogeneous systems that include
a dedicated accelerator. Additionally, users are limited to the
capabilities and formats of the TensorFlow ecosystem.
Glow’s support for the ONNX standard makes it compatible
with most deep learning frameworks and its quantization
flow achieves similar accuracies to TFLite. While it achieved
the lowest peak memory allocation out of the tested solu-
tions, the use of generalized kernels lead to slower inference
times compared to the other platforms. For the targeting
of embedded microcontrollers, the inclusion of CMSIS-NN
could result in a significant performance improvement.
ONNC was able to target the Cortex-M55 system and de-
livered competitive performance to TFLite’s micro-runtime.
However, the separation of the quantization tool into a com-
mercial product, outside of the open-source project and the
lack of support for newer ONNX subsets might limit its use
in future endeavors.
Intel’s openVINO is only able to target the Celeron platform,
but did not achieve a competitive performance result on this
platform. Its limitation to x86 CPU’s makes it unable to tar-
get any kind of low-powered embedded platform. However,
its graphical user interface (called workbench) made the op-
timization and compilation process more transparent for the
user, which could be a helpful feature for other toolchains
as well.
While the number of supported layer functions is important
for the user, it is difficult to compare these toolchains based
on a single snapshot of their development stages, due to
constant updating of most of them.
This survey has shown that the support for embedded plat-
forms in the current deep learning compiler toolchains is
still at an early stage as only a small subset is able to target
platforms like the Cortex-M55.

22However, a mico-runtime is currently in development, but not pro-
duction ready yet



Compiler Toolchains for Deep Learning Workloads on Embedded Platforms Burlingame ’21, March 22, 2021, Burlingame, CA

4 Implementation
For the implementation, an abstract accelerator has been
defined and an instruction set simulator was implemented23.
The simulator was verified with TensorFlow and is able to
estimate the hardware utilization and cycle count for input
and output parallel execution strategies24.
The simulated accelerator uses an instruction set that is sim-
ilar in its capabilities to other solutions like Nvidia’s NVDLA
[31]. It only supports signed integer formats for operations
and the majority of them are limited to a length of eight bit
for the individual values in their input tensors while produc-
ing outputs with a length of either eight or 32 bit.
For the software flow TVM was used due to its BYOC func-
tionality. This flow starts with the definition of annotation
rules for supported nodes and patterns in TVM’s graph-level
IR25. These are then merged into subgraphs, which will be ex-
ecuted by the accelerator. These steps are handled by TVM’s
BYOC flow and did only require the definition of supported
graph patterns during the implementation of the new back-
end. TVM manages the execution of unsupported operations
on the CPU as well as the invocation of the subgraphs from
the standard runtime. After the annotation, the network
graph is partitioned to separate the supported sections of the
network into subgraphs. These subgraphs are then passed
on to the custom code generation, where they are converted
into a JSON format for better portability across different
instruction set variants. The final generation of the accelera-
tor command stream happens at runtime before the initial
inference. This allows to target different ISA variants with
varying memory sizes using a single serialized file. A custom
runtime component executes the code generation and passes
back a run function for each subgraph to the standard TVM
graph runtime. During inference the subgraphs are executed
by the simulator through the invocation of these run func-
tions.
Besides the quantization and data layout transformation
functionality, which was provided by TVM, the memory
planning for DMA operations between system and acceler-
ator memory, the assembly generation, the configuration
register file management and tiling for larger tensor sizes
needed to be implemented by the custom runtime compo-
nent. The tiling was implemented by primarily splitting the
workload along the output channel dimension.

5 Evaluation
The correct functionality was initially tested with neural
networks that only contained supported operations as sin-
gle nodes and patterns. Additional testing with the MNIST

23the simulator was written to only target the desired ISA and operates
on the custom output files of the new compiler backend, which contain the
initial memory layout and instructions for each subgraph.

24input parallel: input channels are processed in parallel; output parallel:
same for output channels

25called Relay

network from the performance benchmark revealed that
the current TVM quantization flow inserts additional meta
nodes into the graph. These nodes prevent the merging of
multiple compute layers into a single subgraph. Due to this,
the network was split into three subgraphs, which requires
the system to move the intermediate results back to the
shared system memory between the subgraph executions.
This resulted in reduced throughput and efficiency due to un-
necessary bus transactions. Otherwise, the custom backend
worked as intended and generated the expected inference
results.
For a more realistic test case Google’s MobileNetV1 [19]
with the ImageNet dataset [15] has been used. The addi-
tional batch normalization layers prevented the use of the
larger convolutional pipelines, as they are located between
the convolutional and activation function nodes. This adds
additional bus transactions between accelerator memory and
compute units, which reduces the efficiency of real hardware.
The network was evaluated with three iterations of the ac-
celerator and its toolchain:

• Without support for depthwise convolutions:
Depthwise convolutional layers are executed by the
standard runtime on the CPU. This results in a lower
share of the network to be accelerated by the target
device. The estimated cycle counts can be seen in figure
4a.

• Software-only Implementation:
The depthwise convolutions are mapped to a the stan-
dard convolution instruction of the DLA. The ISA has
not been changed. This allows for a larger share of the
network to be accelerated, but the depthwise layers
are constraint to a small utilization of the processing
elements in the vector ALU.

• Full support:
The ISA has been extended to provide a dedicated
instruction for deptwhise convolutional layers. This
instruction allows for a higher utilization, resulting in
shorter execution times.

This was done to evaluate the flexibility of the coarse-grained
ISA for the support of new layer types, as the deep learning
research community develops new layer types at a very rapid
pace, which makes it difficult to develop accelerators that can
stay up-to-date for extended time periods without changing
the hardware architecture. A possible solution would be to
update the software flow, to enable it to map new layers to
existing instructions. In the case of depthwise convolutions,
this approach was represented by the second test scenario.
While the implementation was possible, it resulted in drasti-
cally increased cycle counts if compared to a native solution
(compare figure 4c and 4e). This was caused by the low uti-
lization of the processing elements (PEs) as only one filter
could be processed at a time.
Additionally, these scenarios were tested with different sizes



Burlingame ’21, March 22, 2021, Burlingame, CA Max Sponner, Bernd Waschneck, and Akash Kumar

of the accelerators exclusive memory and the vector ALU as
well as input and output parallel mode for cycle and utiliza-
tion estimations to evaluate the impact of operation tiling on
the overall performance. The evaluated memory sizes were
512 KiB and 256MiB. The last configuration does not require
any tiling to take place, while the first is the smallest size
which is supported by the implementing tiling methods for
this network26.
As shown in figure 4a, the output parallel hardware achieved
lower cycle counts due to its higher utilization in the early
layers of the network. However, this changed as soon as tiling
was required due to the limited amount of device memory.
As the tiling splits the workload along the channel dimen-
sion of the output tensor, the parallelization opportunity for
this architecture shrinks. This results in a lower utilization,
and a faster execution of input parallel strategies. Addition-
ally, it can be seen in figure 4e, which includes an additional
1024KiB configuration, that the cycle count does not scale
linearly with the available memory. Instead, a combination
of larger vector ALU with 128 processing elements (PEs)
and 1024 KiB of memory can be faster than a configuration
with 64 PEs and 256MiB of memory. The reason is, that the
1024 KiB configuration only requires tiling of the initial lay-
ers of the network, which allows it to compensate for the
additional cycles in the later layers where it can calculate
twice as many results per cycle as the 64 PE configuration
with 256MiB of memory. A benefit of the TVM BYOC flow is
the ability to quickly evaluate the performance for different
real-world network architectures across multiple hardware
configurations during the hardware development.

6 Conclusion
This evaluation has shown that, while all evaluated toolchains
deliver reasonable performance across different platforms,
their support for low-powered embedded devices and hetero-
geneous solutions with dedicated accelerators is still at an
early stage. Some are limited by the use of existing compiler
backends, which prevent the targeting of dedicated hard-
ware. Another limitation is the use of static quantization
schemes that do not offer an easy solution to adapt them for
different hardware implementations.
Additionally, while it was possible to target a novel accelera-
tor using TVM, our implementation showed two drawbacks:
The more flexible quantization flow of TVM introduces an-
notation nodes into the code generation, which prevent the
solution from reaching higher efficiency. It is currently not
possible to connect the BYOC flow with the micro-TVM
runtime that is also still under development. This prevents
the usage of TVM on (heterogeneous) embedded devices for

26For convolutional layers only a split along the output channel dimen-
sion was implemented, as the splitting along the rows and columns requires
extensive effort to implement and validate all edge cases that can occur

TinyML applications, however, it can already be utilized dur-
ing the hardware development to evaluate the performance
of prototypes with real-world test cases.

A Performance of Hardware Variants
As the accelerator was simulated with different software
flow versions, ISA variations and memory configurations,
multiple performance estimations have been collected. Each
of the three test scenarios from section 5 has been tested with
64 or 128 PEs in the compute module of the accelerator and
512KiB, 1MiB (only for the last scenario) and 256MiB for
the SRAM memory on the device. An additional parameter
for the simulation was the hardware parallelization of the
workload, which was either input or output parallel. The
input parallel configuration would split the workload along
the channel dimension of the input feature map, while the
output parallel version would parallelize the workload along
the output feature map’s channel axis.
The bars of the diagrams are segmented according to the
cycles spent on each supported subgraph type. In the test
case for MobileNetV1 only up to three different subgraph
types could be accelerated:

• CONV subgraph:
The CONV (Convolutional) subgraphs contain the
Conv2D layers of the network, which can be mapped
to the accelerator.

• REQUANT subgraph:
The REQUANT subgraphs contain the requantization
operations that are executed in-between layers to con-
vert the 32-bit output of the previous layer back to an
8-bit format.

• DEPTH subgraph:
TheDEPTH (Depthwise Convolution) subgraph is only
present in the second and third test scenario, as the first
did not offer support for the depthwise convolutional
layer that is contained in it.

B Target Accelerator
To be more flexible a simulator has been used instead of
a real hardware target as it came with several advantages,
including a more flexible instruction set, easier configura-
tion of hardware parameters. However, the simulator was
still based on the typical concepts of other deep learning
inference accelerators like the NVDLA including the coarse-
grained ISA and the usage of highly optimized and separated
hardware blocks for the different kinds of operations.
Its instruction set architecture was specifically designed for
deep learning operations, and features dedicated instruc-
tions for typical layer operations as well as common patterns
like the combination of convolutional layers with activation
functions and requantization operations, which would be
mapped to separate pipelines, that would combine multiple
different functional units. Most instructions only support the



Compiler Toolchains for Deep Learning Workloads on Embedded Platforms Burlingame ’21, March 22, 2021, Burlingame, CA

0

5

10

15

20

25

30

35

40

45

50

M
ill
io

n
Cycle Count per Configuration

CONV Cycles REQUANT Cycles

(a) The total cycle count for the accelerated operations of MobileNet
without support for depthwise convolutions across testing configu-
rations.

0

10

20

30

40

50

M
ill
io

n

Cycle Count per Configuration

CONV Cycles DEPTH Cycles REQUANT Cycles

(b) The total cycle count for the accelerated operations ofMobileNet
with software emulated support for depthwise convolutions across
testing configurations.

(c) The total cycle count for the accelerated operations of MobileNet
with software-only support for depthwise convolutions across test-
ing configurations.

0

5

10

15

20

25

30

35

40

45

50

M
ill
io

n

Cycle Count per Configuration

CONV Cycles DEPTH Cycles REQUANT Cycles

(d) The total cycle count for the accelerated operations ofMobileNet
with hardware support for depthwise convolutions across testing
configurations.

(e) The total cycle count for the accelerated operations of MobileNet
without support for depthwise convolutions across testing configu-
rations.

Figure 4. The first part of the label describes the size of the
on-device memory, the second value represents the number
of processing elements in the compute unit and the last letter
stands either for an input (I) or output (O) parallel hardware
implementation.

processing of 8-bit integer data. A small subset of support
instructions, like element-wise additions and shifts can also
be executed on 32-bit data.
As most layers require a vast number of additional configura-
tion parameters, which would not fit into a reasonably sized
instruction, most of these parameters are stored in a sepa-
rate register file and updated from the system CPU. This has
the additional benefit that these values can stay unchanged
over multiple operations, without having to submit the same
values multiple times, improving the energy efficiency of the
solution.

Table 2. Examples of instructions that are part of the accel-
erator ISA.

Mnemonic Description Input Type Output Type
Compute Layer Instructions

OP_CONV standard Conv2D, op-
tional combined with
requantization

int8 int32 or int8

OP_CONV_RELU Conv2D + ReLU int8 int8
OP_DEPTH_CONV depthwise Conv2D,

optional combined
with requantization

int8 int32 or int8

OP_MAT_MUL MatrixMulitplication int8 int32
Post-Processing Instructions

OP_ACT_RELU ReLU Activation int8 int8
OP_ACT_LRELU Leaky ReLU Activa-

tion
int8 int8

OP_POOL Pooling Layer int8 int8
Elementwise Instructions

OP_E_ABS calculates absolute
values of single input
tensor

int8 int8

OP_C_MIN compares two ten-
sors of same shape,
writes minimum val-
ues

int8 int8

OP_C_MAX compares two ten-
sors of same shape,
writes maximum val-
ues

int8 int8

OP_E_ADD adds two tensors of
same shape element-
wise

int8 int8

OP_E32_ADD adds two tensors of
same shape element-
wise

int32 int32

DMA Instructions
OP_DMA_READ loads data from sys-

tem memory to accel-
erator SRAM

- -

OP_DMA_WRITE writes data from ac-
celerator SRAM to
system memory

- -



Burlingame ’21, March 22, 2021, Burlingame, CA Max Sponner, Bernd Waschneck, and Akash Kumar

References
[1] M. Abadi, A. Agarwal, P. Barham, and more. TensorFlow: Large-

scale machine learning on heterogeneous systems, 2015. URL https:
//www.tensorflow.org/. Software available from tensorflow.org.

[2] ARM. Arm ethos-u. [Online], 2020. URL https://developer.arm.com/ip-
products/processors/machine-learning/ethos-u55.

[3] ARM. ARM Ethos-U: Tflite compiler. [Online], 2020. URL https:
//git.mlplatform.org/ml/ethos-u/ethos-u-vela.git/.

[4] D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag. What is the state of
neural network pruning?, 2020.

[5] S. Cass. Taking ai to the edge: Google’s tpu now comes in a maker-
friendly package. IEEE Spectrum, 56(5):16–17, 2019.

[6] T. Chen,M. Li, Y. Li, M. Lin, N.Wang,M.Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang. Mxnet: A flexible and efficient machine learning library
for heterogeneous distributed systems, 2015.

[7] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy. Tvm: An
automated end-to-end optimizing compiler for deep learning, 2018.

[8] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks.
IEEE Journal of Solid-State Circuits, 52(1):127–138, 2017.

[9] Y. Chen, T. Yang, J. Emer, and V. Sze. Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 9(2):292–308,
2019.

[10] Z. Chen and I. Cody Yu, Amazon Web Services. How to bring your
own codegen to tvm. [Online], 2020. URL https://tvm.apache.org/
2020/07/15/how-to-bring-your-own-codegen-to-tvm.

[11] F. Chollet et al. Keras. [Online], 2015. URL https://keras.io.
[12] G. Coral. Edge tpu compiler documentation. [Online], 2019. URL

https://coral.ai/docs/edgetpu/compiler/.
[13] I. Corporation. oneapi onednn. [Online], 2020. URL https://github.

com/oneapi-src/oneDNN/.
[14] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart,

A. Chakraborty, W. Constable, C. Convey, L. Cook, O. Kanawi, R. Kim-
ball, J. Knight, N. Korovaiko, V. Kumar, Y. Lao, C. R. Lishka, J. Menon,
J. Myers, S. A. Narayana, A. Procter, and T. J. Webb. Intel ngraph: An
intermediate representation, compiler, and executor for deep learning,
2018.

[15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[16] Google. Xnnpack - github repository. [Online], 2019. URL https:
//github.com/google/XNNPACK.

[17] Google. TensorFlow: Xla documentation. [Online], 2020. URL https:
//www.tensorflow.org/xla?hl=en.

[18] Y. Gorbachev, M. Fedorov, I. Slavutin, A. Tugarev, M. Fatekhov, and
Y. Tarkan. Openvino deep learning workbench: Comprehensive anal-
ysis and tuning of neural networks inference. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) Work-
shops, Oct 2019.

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W.Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[20] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference, 2017.

[21] R. Krishnamoorthi. Quantizing deep convolutional networks for effi-
cient inference: A whitepaper, 2018.

[22] L. Lai, N. Suda, and V. Chandra. Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus, 2018.

[23] R. M. Larsen and T. Shpeisman. Tensorflow graph optimizations.
[Online], 2019. URL https://research.google/pubs/pub48051/.

[24] C. Leary and T. Wang. Xla: Tensorflow, compiled. TensorFlow Dev
Summit, 2017.

[25] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In
Advances in neural information processing systems, pages 598–605,
1990.

[26] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan, G. Yang,
and D. Qian. The deep learning compiler: A comprehensive survey,
2020.

[27] D. D. Lin, S. S. Talathi, and V. S. Annapureddy. Fixed point quantization
of deep convolutional networks, 2015.

[28] W. Lin, D. Tsai, L. Tang, C. Hsieh, C. Chou, P. Chang, and L. Hsu.
Onnc: A compilation framework connecting onnx to proprietary deep
learning accelerators. In 2019 IEEE International Conference on Artificial
Intelligence Circuits and Systems (AICAS), pages 214–218, 2019.

[29] A. Markham and Y. Jia. Caffe2: Portable high-performance deep learn-
ing framework from facebook. NVIDIA Corporation, 2017.

[30] T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng, J. Fromm,
Z. Jiang, L. Ceze, C. Guestrin, and A. Krishnamurthy. A hardware-
software blueprint for flexible deep learning specialization, 2018.

[31] Nvidia. Nvidia deep learning accelerator. [Online], 2018. URL https:
//http://nvdla.org/.

[32] ONNX. Onnx - official webpage. [Online], 2020. URL https://onnx.ai/.
[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. In Advances in
neural information processing systems, pages 8026–8037, 2019.

[34] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,
N. Gibson, J. Hegeman, M. Lele, R. Levenstein, et al. Glow: Graph
lowering compiler techniques for neural networks. arXiv preprint
arXiv:1805.00907, 2018.

[35] A. Shawahna, S. M. Sait, and A. El-Maleh. Fpga-based accelerators of
deep learning networks for learning and classification: A review. IEEE
Access, 7:7823–7859, 2019.

[36] H. Song, M. Huizi, and D. William J. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding, 2015.

[37] P. Stock, A. Joulin, R. Gribonval, B. Graham, and H. Jégou. And the
bit goes down: Revisiting the quantization of neural networks, 2019.

[38] T. Team. Tensorflow 2 graph optimizations documentation. [Online],
2019. URL https://www.tensorflow.org/guide/graph_optimization.

[39] T. Team. TensorFlow Lite. [Online], 2020. URL https://www.tensorflow.
org/lite/.

[40] X. Team et al. Xla: Domain-specific compiler for linear algebra that
optimizes tensorflow computations, 2019.

[41] Z.Wang, J.Wohlwend, and T. Lei. Structured pruning of large language
models, 2019.

[42] P. Warden. How to quantize neural networks with tensorflow. [On-
line], 2016. URL https://petewarden.com/2016/05/03/how-to-quantize-
neural-networks-with-tensorflow.

[43] Y. Xing, J. Weng, Y. Wang, L. Sui, Y. Shan, and Y. Wang. An in-depth
comparison of compilers for deep neural networks on hardware. In
2019 IEEE International Conference on Embedded Software and Systems
(ICESS), pages 1–8. IEEE, 2019.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://developer.arm.com/ip-products/processors/machine-learning/ethos-u55
https://developer.arm.com/ip-products/processors/machine-learning/ethos-u55
https://git.mlplatform.org/ml/ethos-u/ethos-u-vela.git/
https://git.mlplatform.org/ml/ethos-u/ethos-u-vela.git/
https://tvm.apache.org/2020/07/15/how-to-bring-your-own-codegen-to-tvm
https://tvm.apache.org/2020/07/15/how-to-bring-your-own-codegen-to-tvm
https://keras.io
https://coral.ai/docs/edgetpu/compiler/
https://github.com/oneapi-src/oneDNN/
https://github.com/oneapi-src/oneDNN/
https://github.com/google/XNNPACK
https://github.com/google/XNNPACK
https://www.tensorflow.org/xla?hl=en
https://www.tensorflow.org/xla?hl=en
https://research.google/pubs/pub48051/
https://http://nvdla.org/
https://http://nvdla.org/
https://onnx.ai/
https://www.tensorflow.org/guide/graph_optimization
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow
https://petewarden.com/2016/05/03/how-to-quantize-neural-networks-with-tensorflow

	Abstract
	1 Introduction
	2 Related Work
	2.1 Deep Learning Optimizations
	2.2 Math Kernel Libraries
	2.3 Deep Learning Accelerators

	3 Survey & Benchmark
	3.1 Common Strategies
	3.2 User Accessibility
	3.3 Supported Platforms & Extensibility
	3.4 Features
	3.5 Performance

	4 Implementation
	5 Evaluation
	6 Conclusion
	A Performance of Hardware Variants
	B Target Accelerator
	References

