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Abstract: Many-core system-on-chips, together with their established communication infrastructures,
Networks-on-Chip (NoC), are growing in complexity, which encourages the integration of third-
party components to simplify and accelerate production processes. However, this also adversely
exposes the surface for attacks through the injection of hardware Trojans. This work addresses active
attacks on NoCs and focuses on the integrity and availability of transmitted data. In particular, we
consider the modification and/or dropping of data during transmission as active attacks that might
be performed by malicious routers. To mitigate the impact of such active attacks, we propose two
lightweight solutions that respect the performance constraints of NoCs. Assuming the presence of
symmetric keys, these approaches combine lightweight authentication codes for integrity protection
with network coding for increased efficiency and robustness. The proposed solutions prevent
undetected modifications and significantly increase availability through a reliable detection of
attacks. The efficiency of these solutions is investigated in different scenarios using cycle-accurate
simulations and the area overhead is analyzed relative to state-of-the-art many-core system. The
results demonstrate that one authentication scheme with network coding protects the integrity of
data to a low residual error of 1.36% at 0.2 attack probability with an area overhead of 2.68%. For
faster and more flexible evaluation, an analytical approach is developed which is validated against
the cycle-accurate simulations. The analytical approach is more than 1000× faster while having a
maximum estimation error of 5%. Moreover, the analytical model provides a deeper insight into the
system’s behavior. For example, it reveals which factors influence the performance parameters.

Keywords: Networks-on-Chip; integrity; availability; network coding; performance

1. Introduction

The shift from single core to multi-processor systems-on-chip (MPSoCs) [1] has facil-
itated a massive increase in performance while keeping the power consumption within
limits. Since MPSoCs can consist of thousands of cores, it is of utmost importance to provide
a scalable and efficient communication medium for them. Here, classical bus-based systems
are increasingly being replaced by systems based on packet-switched Networks-on-Chip
(NoC) as a solution to the interconnection problem [2–4].

The growing complexity of the systems implies a higher susceptibility to errors [5].
This increased complexity is also reflected in the respective supply chain: own implemen-
tation of such design processes as well as owning the respective factories is associated with

Electronics 2021, 10, 238. https://doi.org/10.3390/electronics10030238 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7125-1737
https://doi.org/10.3390/electronics10030238
https://doi.org/10.3390/electronics10030238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10030238
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/3/238?type=check_update&version=2


Electronics 2021, 10, 238 2 of 31

immense costs [6]. Hence, due to complexity and costs, MPSoC design and production pro-
cesses increasingly rely on the integration of third-party components, potentially also from
untrusted sources [7]. Even tools used for design and development may be compromised,
and hence pose a tangible threat to MPSoCs [8]. Such threats can be realized by inserting
hardware Trojans (HT), as reported, e.g., in [7,9–12]. When designing NoCs it thus becomes
increasingly important to consider not only the resilience against errors but the systems
security as well. Although different methods for HT detection have been proposed, the
general presence of an HT can never be excluded [6]. Hence, system designs have to be
Trojan-tolerant, i.e., the system itself works even if an HT is present [6].

NoCs are an attractive target for attackers due to their basic functionality: By design,
the MPSoCs’ entire data exchange passes through the NoC, hence, an attacker has the
maximum possibilities of intervention at this point [13]. Purely passive HTs which act as
eavesdroppers and aim to exfiltrate confidential data over local or remote channels can be
countered by using end-to-end encryption of data. Active attackers, on the other hand, who
additionally modify or discard data, are much harder to deal with. Even if the modifications
or losses of flow control units (flits) are detected, the respective retransmissions significantly
increase the network load and thereby reduce the performance or even basic functionality.

In this work, we present protocols, which ensure integrity and increase availability
in NoCs, even in the presence of HTs in routers [14]. For this, we combine the features
of network coding [15] with cryptographic authentication schemes. The authentication
schemes relying on lightweight message authentication codes ensure that flit modifications
are detected and handled accordingly. Since message authentication codes are symmetric
cryptographic primitives, they require a shared secret between the communicating nodes—
this key exchange is out of the scope of this work, but could be realized by pre-sharing
keys during an initiation phase. Additionally, network coding measures create robustness
against the dropping of flits by HTs and also against the discarding of modified flits, which
in combination effectively reduces retransmissions.

We evaluate our proposed schemes with cycle-accurate simulations under realistic
traffic assumptions as well as with an analytical model. The results demonstrate that
our schemes can ensure a secure data transmission in the presence of active attackers by
reducing the respective error probability by up to 85.6% at a very reasonable overhead.
Finally, we analyze to area overhead inflicted by the newly proposed schemes and show
that only a 2.68% area increase is needed in comparison to a state-of-the-art MPSoC.

In summary, we make the following contributions in this paper:

(1) we propose protocols providing integrity protection and availability enhancement
for NoC communications,

(2) we subsequently evaluate the performance of these protocols extensive simulations,
(3) we develop an analytical model for faster and more flexible evaluation,
(4) finally, we analyze our solutions in terms of additional chip area required.

The remaining work is organized as described below: The state of the art regarding
NoC security and HTs is laid out in Section 2. Section 3 describes our system model and the
respective assumptions. In Section 4, we propose our solution for integrity protection. We
then present our analytical model for further analysis of the proposed security solutions
in Section 5. Here, we also detail the results of this model accompanied by the respective
simulation results and a discussion of the inflicted area overhead. Finally, Section 6
summarizes the paper and describes possible further research questions.

2. Related Work and State of the Art

One of the main attack angles against MPSoCs is the embedding of HTs into them,
e.g., [6,13,16,17]. HTs are covert autonomous functional units directly incorporated by
attackers into the hardware of the attacked system. Due to the physical hardware in-
tegration, HTs have direct access to all processed data at the lowest level. This allows
them to arbitrarily read, possibly exfiltrate, modify or discard data [6]. Their ability to
execute arbitrary attacks, especially in the domain of internal communications, demands
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effective countermeasures [13]. A presentation of significant work in this area is given in
the following.

Ancajas et al. [10] were the first to present the threat potential of HTs in NoCs and
presented initial solutions on how to diminish such threats. These solutions include
measures such as scrambling the data at the lowest layer, certifying individual transmitted
packets, and a process migration scheme, which serves to obfuscate the respective target
application [10]. These measures are primarily intended to prevent data interception by
a malicious NoC by complicating the tracing of logical data streams. Additionally, these
schemes intend to prevent the initial triggering of an HT. A similar strategy is followed by
the solution of Setumadhaven et al. [7], where the triggering events of HTs are also inhibited.
Despite the effectiveness of these measures, they involve considerable computational effort
and thus significantly degrade the performance of the system.

Another approach to minimizing the risks posed by HTs is to detect and remove
them at runtime. Frey and Yu [18] proposed a system based on a finite state machine,
which represents the possible execution paths for the single MPSoC components. If a
component deviates from the set of valid execution paths, it is assumed to be compromised
and accordingly, this component is disabled. Since the finite state machine must represent
the respective executions in real time and store the individual states of all monitored
components, this system comes with a non-negligible computational and memory overhead.
The authors proposed a more lightweight solution for the detection of HTs that alter flits
and their attached meta-data, e.g., routing information [18]. Since this system operates
within the NoCs routers, an additional overhead for each router and in turn a reduced NoC
performance is implied.

A fundamentally different approach is to prevent HTs from being embedded in the
system up front [7,19]. For this purpose, different systems have been proposed that verify
the design procedure of outsourced production processes by performing static backdoor
analysis during the complete design and production phases. Alternatively, the entire design
process is changed to security orientated development procedures.

However, HTs are an attack vector that cannot be mitigated completely [6]. Therefore,
other strategies aim to diminish the exposed risk by securing the communication during
attacks. Following the classification in [6], such solutions are Trojan-tolerant, as they
provide the functionality even in the presence of an active HT. Notable works include
the solution by Boraten and Kodi [12], who propose the use of algebraic manipulation
detection codes for the identification of flit modifications. The authors claim a minimal
performance impact of 1% compared to NoCs. No evaluation with respect to security
is presented. Alternatively, Kapoor et al. proposed to protect the communication using
authenticated encryption [20]. However, the chosen cryptographic primitive, AES-128 in
GCM mode, is heavy-weight regarding efficiency and area overhead and, therefore, it is an
infeasible solution for NoCs [9].

For a comprehensive presentation of the state-of-the-art regarding HTs and the protec-
tion against them, we would like to refer the reader to surveys like those by Rajesh et al. [13],
which details the threats and attack vectors exposed through HTs, Xiao et al. [6], presenting
a classification for HTs itself as well as for the respective countermeasures and, finally,
Shakya et al. [8], describing HT deployment strategies and their detectability.

In summary, of the classic security objectives, confidentiality, integrity, and availability,
the presented works usually consider only the first two. If all three are considered, the
efficiency and chip area are neglected instead. In this work, we consider both integrity and
availability, taking both under the special circumstances of high latency requirements and
limited area. Additionally, our solution is completely independent of the actual application
and thus can be used widely.
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3. Background and Assumptions
3.1. System Model and Attacker Model

Our system model assumes a 2D mesh network consisting of N × N nodes as under-
lying NoC topology. An example of this topology is visualized in Figure 1. Each network
node is composed of a processing element (PE), an interface to the NoC (NoC interface,
NI), and a router. The routers will process the flits in first-in-first-out (FIFO) order. The
respective routing decision is determined via XY routing. Hence, the order of the single
flits traversing the NoC is not altered by this transmission. Finally, we assume a flit size of
approximately 150 bits.

PE

NI

PE

NI

PE

NI

PE

NI

PE

NI

PE

NI

PE

NI

PE

NI

PE

NI

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

Router

Figure 1. Example Networks-on-Chip (NoC) topology (2D mesh) with attached processing elements
(PE) and network interfaces (NI).

In this paper, we use a spatial uniform traffic distribution with a constant injection
rate per module. To simplify matters, we consider the transmission of single flits, i.e., each
flit contains the necessary header fields such as source and target address. The actual
flit injection rate into the network is directly influenced by the communication scheme
used—for example, schemes based on network coding will inject redundant flits to increase
robustness and, thereby, alter the actual injection rate. To account for this changed injection
rate, the creation rate of flits in the PE is adapted accordingly. Therefore, the actual flit
injection rate is kept equal for all schemes at ≈0.2 flits/module/cycle. Furthermore, we
assume that the NIs are equipped with retransmission buffers of sufficient size to avert flit
loss (see Section 5).

The data interface between PE and NI will be 64 bit wide, i.e., a single data chunk
will be of size 64 bit. To prepare this data for transmission through the NoC, the NI will
add the following meta-data to it: The payload itself is extended by a 24-bit flit identifier
FID (corresponding to network coded transmission, Section 3.2), which enables a unique
identification in case of retransmission.Hence, the payload is composed of a mode field
(4 bit) specifying the flit type, an address field (32 bit) for memory accesses, the 24-bit FID,
and 64 bits of data. Furthermore, a header is added, which contains the information to
route the flit through the NoC. This header is composed of a single bit indicating burst
transmission (burst mode will be considered in future work) as well as x and y coordinates
of source and target nodes. To support a 2D mesh of up to 16× 16 modules, we assume
4 bits for each coordinate. Hence, in total, the single flits exiting the NI will be 141 bits long.

In accordance with [21], we assume the PE and NI to be trustworthy, whereas the routers in
the NoC are considered to be corrupted. This assumption is rooted in the respective functionality
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of these elements. The PE and NI typically contain the business logic of the MPSoC and are
therefore developed in house in a controlled environment. The NoC’s routers, on the other hand,
realize deterministic functionality, which makes them suitable candidates for outsourcing and
thus vulnerable to attack. Since we assume the NIs to be trustworthy, the additional functionality
proposed by our protocols is placed within those components as shown in Sections 4.2 and 4.3.

This work is focused on active attacks executed by the NoC routers, i.e., they modify a
traversing flit with a certain modification probability pm or drop it with a drop probability pd. At-
tackers are computationally restricted so that they are not able to break cryptographic measures.

In general, active attacks cannot be prevented but only detected. A simple approach
would be to stop the system whenever an attack was detected. However, then an attacker
can disturb the availability of the system with a single modification or drop. In contrast,
we aim at a robust system that allows transmitting data even in the presence of an active
attacker. We assume that an attacker tries to keep undetected what implies that he will not
manipulate all transmissions. Hence, when the receiver recognizes modifications or losses,
an automatic repeat request (ARQ) will be issued in order to trigger the retransmission of
the affected flits. ARQs have a similar structure than data flits; the data field can be used to
specify details regarding the retransmission.

The solution design for an appropriate protection scheme must account for the special
requirements of MPSoCs and NoCs. Specifically, this means that the high speed of the
NoC must be maintained and the use of the limited available chip area and in turn the
energy used must be minimized. Thus, the proposed security concept must neither cause
significant performance losses nor use a comparatively large amount of chip area.

3.2. Network Coded Transmission

For the transmission of flits, we consider the use of network coding to increase robustness
against loss of flits. We also implement uncoded transmission as a baseline communication
scenario to be able to evaluate the benefits of network coding. In a network coded transmission,
linear combinations of data to be sent is computed. The network coded transmission applied
in this work follows the approach of Practical Network Coding [22]. In that approach, data to
be transmitted is divided into blocks ~xi = (xi,1, xi,2, . . . , xi,n) ∈ Fn

q with q = 2m. Each block
is enlarged by a so-called global encoding vector (GEV) (βi,1, βi,2, ..., βi,G) ∈ FG

q , βi,j 6=i =
0, βi,j=i = 1. The enlarged blocks ~x′i = (βi,1, βi,2, ..., βi,G, xi,1, xi,2, . . . , xi,n) are arranged in
matrices (generations). G blocks constitute the rows of one generation of size G. For each
generation, the sender randomly selects encoding coefficients αi,j ∈ Fq, i = 1, 2, . . . , C; j =
1, 2, . . . , G and computes C ≥ G linear combinations~ci:

~ci =
G

∑
j=1

αi,j ·~x′j (1)

The computations are done in the underlying finite field Fq. The elements of the GEV re-
flect the linear combinations applied to the original blocks what enables the receiver to decode.
Whenever the receiver got at least G linear independent combinations of one generation, he
can decode by solving a system of linear equations. Since the receiver needs to know to which
generation the combinations belong, they are tagged with a generation identifier GID.

For data transmission with a NoC, network coding is applied to flits. To meet the
demand for low latencies, we use a generation size of G = 2 that achieves average latencies
comparable to an uncoded transmission [23]. We employed three communication scenarios
during our evaluations:

UC: uncoded transmission,

G2C3: network coded transmission with G = 2, C = 3,

G2C4: network coded transmission with G = 2, C = 4.
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Hence, a generation in the case of network coded transmission always consists of two
flits ~f1, ~f2:(

~f1
~f2

)
=

(
β1,1 β1,2 x1,1 x1,2 · · · x1,n
β2,1 β2,2 x2,1 x2,2 · · · x2,n

)
=

(
1 0 x1,1 x1,2 · · · x1,n
0 1 x2,1 x2,2 · · · x2,n

)
(2)

Only the sending node computes linear combinations so that the forwarders are
not burdened with computational overhead. It selects at random the encoding coef-
ficients αi,j ∈ Fq, i = 1, 2, . . . , C; j = 1, 2 for the computation of the linear combinations
~ck, k = 1, 2, . . . , C. For example, the three linear combinations in the case of G2C3 are
computed according to the following equation: ~c1

~c2
~c3

 =

 α1,1 α1,2
α2,1 α2,2
α3,1 α3,2

×( ~f1
~f2

)
(3)

Given the generation size of G = 2, two linear independent combinations ~ci,~cj are
sufficient for decoding the resulting matrix of these combinations by multiplying it with
the inverse of the 2× 2 matrix A of their corresponding encoding coefficients:(

~f1
~f2

)
= A−1 ×

(
~ci
~cj

)
=

(
αi,1 αi,2
αj,1 αj,2

)−1

×
(

~ci
~cj

)
(4)

Invertibility of A ensures that the matrix of linear combinations can be decoded. This
invertibility depends both on the size of A (given by G) and on the size of the finite field
q [24]. The probability pinv(G, q) that A can be inverted is given by [25]

pinv(G, q) =
G

∏
i=1

(
1− 1

qi

)
. (5)

According to Table I in [24], the field GF (24) already achieves an inverting probability
of 0.93384 for a matrix of size 2× 2 as considered here. Besides, only the sender selects
encoding coefficients so that the invertibility of the resulting matrix can be easily checked.
Hence, we assume a symbol size of 4 bits for encoding coefficients and data symbols.

The network coded flits that are injected into the network comprise nearly the same
fields as the uncoded flits (Section 3.1). There is only one extra field of 8 bits for the GEV
(2 symbols with 4 bits each) and the GID replaces the FID. Figure 2 depicts the structure of
a network coded flit.

We selected a size of 24 bits for the GID to prevent replay attacks, i.e., an injection of
formerly intercepted combinations into a transmission. Such an injection would prevent
the successful decoding of the corresponding generation since the injected flit is not a valid
combination for that generation. Details regarding the prevention of replay attacks are
given in the next section.
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Source XB Source Y Target X Target Y Mode Address

Address (cont.) GID

data

GID (cont.) GEV

Header Payload

Figure 2. Structure of a network coded flit with 64-bit data field; uncoded flits would have nearly the same structure but
without the global encoding vector (GEV) and a flit identifier (FID) instead of the generation identifier (GID).

4. Concept for Communication Protection
4.1. Possible Approaches

Losses of flits will be detected using timers (details are given in the following sections).
The common measure to achieve integrity is authentication through a symmetric or asym-
metric cryptographic system. By both approaches, an authentication tag is computed that
is used to verify the integrity of the message: a digital signature in the case of asymmetric
authentication or a message authentication code in the case of symmetric authentication.
Digital signatures are not suited for authentication of flits since they are too long to be
included within a flit. Furthermore, their computation requires a high computational effort.
Under the consideration of these drawbacks, we decided to use symmetric authentication
schemes for the computation of the tags. The necessary key exchange is out of the scope of
this paper. One possibility is to exchange keys during an initialization phase of the system.

An adequate solution for communication within a NoC has to fulfill the specific de-
mands on delay and area overhead. The Advanced Encryption Standard (AES) is not suited
because it requires 1032 cycles per block encryption [26]. Therefore, a lightweight method
that is optimized for implementation in hardware should be chosen as the cryptographic
scheme. We selected mCrypton [27] since that algorithm provides a low delay of only
13 cycles per block and requires an area of 2681 gate equivalents only [26].

The authentication tag prevents undetected modification of data to be transmitted
since the computation of this tag requires the knowledge of the secret key. In addition
to the data field, it is also necessary to protect the metadata fields since modifications of
these fields can also harm the system. If the receiver detects a modification, he discards
the affected flit. In the case of network coding, he might still be able to decode due to the
included redundancy. Otherwise or in case of uncoded transmission, the receiver issues an
ARQ to initiate the retransmission of the modified flits.

In the case of network coded transmission, tags are computed for the linear combina-
tions. Hence, the receiver can check the validity of combinations after arrival and use only
valid ones for decoding. Network coding implies in general the need to use homomorphic
authentication schemes. However, since we assume that only the sender computes linear
combinations, this is not necessary. To avoid computational overhead for intermediate
nodes, the tags are used for an end-to-end authentication, i.e., only the receiver verifies the
validity of flits received.

An attacker is not able to undetectably modify flits but he could try to disturb trans-
mission by injecting a valid flit sent by the same sender (replay attack). The FID or GID is
an increasing number so that the receiver can recognize the injection of an already received
fit. Hence, the FID or GID must not repeat as long as the same key for the computation of
the tag is used to prevent a replay attack. A length of 24 bits allows 224 different values
for the identifier. Given the payload of 64 bits per flit, a sender can send 128 MiB data
using uncoded transmission to the same receiver before the corresponding key needs to be
changed. In the case of network coded transmission, the sender can transmit 256 MiB since
the two flits of a generation get the same GID. The amount of data that can be exchanged
using the same key can be increased by enlarging the FID or GID.
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We investigated two different possibilities for authentication:

• Solution 1 (S1): send data and tag in two separate flits
• Solution 2 (S2): include data and tag in one flit

4.2. S1: Send Data and Tag in Two Separate Flits

In this protocol, the symmetric block cipher mCrypton is directly used to compute
the tag. Therefore, CBC-MAC is employed that bases on cipher block chaining (CBC)
mode [28]: Using an initialization vector of zero, the input blocks are encrypted employing
CBC, and the last ciphertext block serves as tag. CBC-MAC has security deficiencies for
messages of arbitrary length [29], but in the proposed protocol, the number of input blocks
that need to be authenticated is constant.

The block size of the underlying cipher determines the size of the tag. The block size
of the chosen cipher mCrypton is 64 bits, hence, it equals the size of the data field. The tag
is put into the data field of an additionally generated flit, the so-called tag flit. The mode
field indicates the flit type. All other fields of data and tag flit are the same.

Uncoded transmission (UC): In the case of UC, the sender computes for each original
flit delivered by the PE a tag flit. If the computation of the tag is finished, data flit and tag
flit are put into the transmission buffer and sent consecutively. Additionally, a copy of both
flits is stored in the retransmission buffer so that the tag does not need to be computed
again in case of retransmission.

When the receiver gets a data flit, the computation of the tag can immediately start. If
the computed tag equals the received tag, verification was successful and the data flit can
be delivered to the PE. Otherwise, an ARQ for both data flit and tag flit has to be issued
since it is not possible to decide which of them was modified.

The arrival of a flit also triggers the start of a timer at the receiver to allow for the
recognition of losses. If there is a time-out, the receiver issues an ARQ. If the receiver gets first a
tag flit, it can directly issue an ARQ since the order of flits is not changed during transmission.

Network Coded transmission (NC): When G original flits arrived at the NI of the
sender, the computation of the C linear combinations starts (Figure 3). Afterward, the
sender computes a tag for each of these combinations, puts the resulting 2 · C flits into the
transmission buffer, and sends them consecutively. Similar to UC, copies of all flits are
stored in the retransmission buffer.

When the receiver gets a data flit (i.e., a linear combination), it starts the computation
of the tag. After successful verification of at least G combined flits, decoding starts. Finally,
the decoded flits are delivered to the PE. Due to the redundancy, decoding may still be
possible even if modifications are detected. For example, if 2 of 4 received combinations
failed verification, decoding is possible if the remaining 2 combinations are unmodified.
If there are not enough valid combinations, the receiver issues an ARQ for both data and
tag flit.

For the recognition of losses, timers are used as described for UC. However, an ARQ
is only necessary if not enough valid combinations arrived at the receiver.

Input for the computation of the tag is the whole data flit of 141 bits (UC) or 149 bits
(NC). Given the block length of 64 bits, there are three input blocks for mCrypton, the last
one padded with zeros. Hence, the computation of the tag implies a delay of 3× 13 = 39
cycles for both sender and receiver. Since the injection rate of flits is much higher, it is
necessary to consider a reasonable number of crypto modules for each NI in the NoC so
that authentication of different flits can be performed in parallel (Section 5.5).

Although we consider the transmission of single flits, the protocols imply that more
than one flit will be injected into the network. The flits that are needed for a successful
transmission form a transmission unit. In the uncoded case, a transmission unit comprises
the data flit and tag flit, in the network coded case, it comprises the C linear combinations
and the corresponding tag flits.
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Figure 3. Steps performed by the network interface in case of S1/Network Coded (NC) transmission.

4.3. S2: Include Data and Tag in One Flit

The advantage of this approach is that the receiver only needs one flit for the verifica-
tion of integrity. However, if we do not want to increase the flit size, the tag size is a problem.
Adding a tag of 64 bits would imply an increase of the flit size by 45.4% for UC and by
42.9% for NC. Nevertheless, the block size should not be smaller for security reasons.

Therefore, we decided to use an authentication code [30] as an alternative. As shown
in Table 1, this authentication code requires two randomly selected key bits for the au-
thentication of one message bit. For each message and tag bit, two possible keys remain.
Hence, when an attacker wants to modify an intercepted flit, he can only guess with a
probability of 0.5 the correct key bits for every single bit he wants to change. Authentication
of x message bits requires a stream of 2x key bits. Thus, 64 key bits can be used for the
authentication of 32 message bits. The resulting 32 tag bits can be put together with the
32 data bits in the data field of one flit.

Table 1. Example for the authentication of one bit.

key bits 00 01 10 11

message bit
0 0 0 1 1

1 0 1 0 1

Verification requires the generation of the identical stream of key bits at the receiver
side, even if previous flits are lost. Encryption of all fields but the field allows pseudo-
randomly generating the necessary key bits.

Uncoded transmission: The sender splits each 64-bit data block into two blocks
containing only 32 bits. These blocks are distributed to two flits where they are stored as
the first half of the data field. The other fields of these flits are equal despite the flit ID that
indicates which flits belong together.

For UC, there are 77 bits of metadata that need to be encrypted to generate the 64-bit
key for authentication. Hence, there are two input blocks for encryption, the second one
padded with zeros. The block cipher is used in CBC mode, and the second ciphertext block
serves as the key. The actual computation of the tag bits can be done by a simple look-up
in Table 1 with negligible effort. The authentication bits are stored in the second halves of
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the corresponding flits. The resulting flits are sent consecutively while a copy of each of
them is stored in the retransmission buffer.

After the arrival of a flit, the receiver starts to compute the pseudo-random key,
computes the tag bits, and verifies the integrity of the flit by a comparison of received and
computed tag bits. Since one data block is divided into two flits, both flits are necessary
for successful transmission. If verification of one or both flits failed, the receiver issues an
ARQ. However, in contrast to S1, if only one flit was affected, the retransmission of that
single flit is sufficient. Equivalently to solution S1, timers are employed for the recognition
of losses.

Network Coded transmission: Again, the 64-bit data field is split into two halves that
are distributed to two flits. These two flits establish a generation of size G = 2 so that the
sender can immediately compute the C linear combinations (Figure 4).

split flit encode
generation

authenticate
combinations

store copies in
RTB

loss detected issue ARQ

merge flits
tag

=tag’
store for

verification
retrieve flit(s)

from RTB

decode
generation

compute tag’ ARQ?

yes

no

yes

Network Interface

From PE To router

From routerTo PE

sending
receiving

Figure 4. Steps performed by the network interface in case of S2/NC.

Since the GEV also belongs to the metadata, the size of the input for the block cipher
is 85 bits which also results in two input blocks. The subsequent processing is equivalent
to the uncoded case: For each of the two flits, the input blocks are encrypted, the tag bits
are computed and stored in the second halves of the data field and the flits are sent.

As in the uncoded case, the receiver starts to compute the pseudo-random key im-
mediately after receiving a flit. For successful decoding, G of the C linear combinations
need to arrive successfully at the receiver. If this is the case, the receiver decodes, generates
the original 64-bit data block and delivers it to the PE. Otherwise, it issues an ARQ for the
retransmission of a single flit.

For both uncoded and network coded transmission, there are two input blocks for the
block cipher what requires 2× 13 = 26 cycles for the selected algorithm.

For S2, a transmission unit contains the two flits in case of the uncoded transmission
and all C linear combinations in case of network coded transmission.

4.4. Security Analysis: Integrity and Availability in Case of Losses and Modifications

The goals of the proposed protocols are to ensure integrity and to increase availability
in NoCs in presence of an active attacker who modifies or drops flits. Integrity means
that data is correct or that it is unnoticeably not the case. In other words, there must be
no undetectable modifications of transmitted data. In the proposed protocols, protection
of integrity bases on the use of tags. Given that the cryptographic primitives used are
secure, an attacker is not able to compute a valid tag for modified data without knowledge
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of the symmetric key shared between sender and receiver. Hence, any modification will
be detected by the receiver. The attacker may also change address information so that
the receiver uses the wrong symmetric key, but of course, this will also result in a failed
verification of the tag. Hence, integrity will be guaranteed—modified flits are discarded
so that there is no chance for an attacker to influence subsequent processing by injecting
falsified data.

The second goal is to increase availability. Of course, availability includes integrity,
thus, this protection goal is influenced by both modifications and losses. Three requirements
need to be fulfilled in order to ensure that flits sent are available at the receiver: (R1) The
receiver must be able to detect losses and modifications, (R2) the receiver must be able to
issue useful ARQs (an ARQ is useful if it triggers the retransmission of the needed flit(s)),
and (R3) the retransmission must be successful.

Of course, it is not possible to enforce availability if there is an attacker that is able
to massively disturb the system so that at least one of these requirements cannot be met.
However, this is a general limitation and not specific for the protocols proposed in this
paper. Under the assumption that the attacker tries to hide his activities, there will be a
limited number of losses and modifications. In this case, the suggested protocols still allow
transmiting data.

Availability in case of losses: Losses will be recognized by means of timers (R1). The
receiver always starts a timer after the arrival of a flit, in case of a timeout, an ARQ is issued.
A special case is the loss of the first flit of a transmission unit, but this will be detected
as well:

• S1 UC: The receiver will immediately recognize this loss. Since the order of flits is
not changed during transmission, the arrival of a tag flit indicates the loss of the
corresponding data flit.

• S1 NC: The same applies here, the arrival of a tag flit indicates the loss of the corre-
sponding linear combination. If both data and tag flit are dropped, decoding may still
be possible due to the included redundancy, otherwise, an ARQ will be issued.

• S2 UC: The flit identifier of the second flit indicates the loss of the first flit.
• S2 NC: Detection of loss is not possible in this case; but equivalently to S1 NC, either

the redundancy is sufficient or an ARQ is triggered by the timer.

Hence, losses will be detected given that at least one flit of a transmission unit arrives
at the receiver.

If there is only loss, the receiver is always able to specify the flit to be retransmitted, i.e.,
to send a useful ARQ. In S2 NC, the receiver cannot directly specify the lost flit; however,
the flits already received. A limitation of the second requirement (R2) is given by the need
to limit the number of possible ARQs in order to restrict the increase of the network load.
However, the number of ARQs per transmission unit is a system parameter that can be set.

The fulfillment of the third requirement (R3) depends on the size of the retransmis-
sion buffer (a system parameter that needs to be set accordingly) and the success of the
retransmission itself. The selection of another path is suggested to increase the chance to
use a path without corrupted routers.

Availability in case of modifications: As stated above, any modification will be de-
tected and the affected flit(s) will be discarded. Hence, availability requires that the receiver
is able to issue a useful ARQ if a modification was detected (R2) and that the necessary
flit(s) can be successfully retransmitted (R3). The former condition requires a closer exami-
nation of modifications of the fields contained in a flit (Figure 2). We will not discuss the
modification of the burst bit since it is not used here. Hence, it is always set to zero.

A modification of the data field that contains the data or the tag is the simplest case
since the required flits can be correctly specified in the ARQ. The same applies to the
address field. Modifications of the remaining fields need to be further considered; thereby,
we assume that at least one flit of a transmission unit is correctly transmitted:

• Source address: If the modified source address is not valid for the given topology,
there is no possibility to issue an useful ARQ. However, the receiver will recognize
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the loss of that flit as described above. If the modified source address is valid, the
ARQ will be sent to the wrong sender, a retransmission is not possible. However, the
arrival of a further flit at the correct recipient will imply the recognition of loss so that
an ARQ is issued.

• Target address: The incorrect receiver will issue an ARQ; the sender cannot find
the requested flit(s) in its retransmission buffer and will discard the ARQ. However,
detection of loss by the correct recipient will issue a useful ARQ.

• Mode: For S1, the mode can be changed from data to tag and vice versa. This will
imply a detection of loss and the retransmission of the modified flit. A change of
data or tag mode to ARQ will imply that the receiver tries to select the requested flit
from its retransmission buffer what is of course not possible. However, if the other
flit, either data or tag, is not modified, a useful ARQ will be triggered due to the
recognition of a loss. A change of mode ARQ to data or tag prevents that the intended
retransmission is successful; the issued ARQ is not useful.
For S2, there are only two modes, data or ARQ. The implications of changes are similar
to S1.

• FID/GID: For S1, verification cannot be completed since two corresponding flits are
necessary for all communication schemes. A change of the FID or GID implies that
the modified flit seems to belong to another transmission unit, hence, the receiver
recognizes two lost flits and will issue two ARQs. Examples given, if the FID of the
data flit in case of S1/UC is modified, the receiver will issue one ARQ using the
modified FID for the tag belonging to the modified data flit and another ARQ using
the correct FID for the data flit belonging to the correct tag flit. Only the latter is useful
but this is sufficient for a successful transmission.
In case of S2, computation of the tag can start immediately. Basically, the change of
the FID or GID also implies that the receiver treats the modified flit as part of another
transmission unit and recognizes loss for both received flits. For the correct flit, the
receiver will detect loss and issue a useful ARQ. For the modified flit, both loss of the
corresponding (but not existing) flit and modification are detected. It depends on the
timer for the recognition of loss as well as on the time needed for the computation of
the tag what problem is detected first. In both cases, the issued ARQ is not useful but
also not necessary for a successful transmission.

• GEV: In case of S1, there are always two flits with the same GEV. Hence, a change of
the GEV implies the detection of loss in two cases; verification cannot be completed
since the receiver does not have two corresponding flits. The second flit of the pair
is the tag flit. Since the order of flits is not changed, the arrival of the tag flit with a
GEV that was not contained in the data flit received before indicates the loss of a tag
flit and a data flit. To enable the sender to select the correct flit for retransmission, we
consider to include in the ARQ the GEVs and modes of already received flits.
In case of S2, computation of the tag will immediately start. The redundancy included
in NC is sufficient for decoding if only one flit was modified. Nevertheless, it is
possible to issue a useful ARQ by including the GEVs of the unmodified flits.

Given a limited number of losses or modifications, data can still be successfully
transmitted. If there is only one modification or loss per transmission unit, availability can
be guaranteed (a change of the mode field from ARQ to data or tag will not appear in this
case). In some cases, unnecessary ARQs are issued what increases the network load, but
transmission can be completed due to the recognition of losses. To support the selection
of flits from the retransmission buffer, ARQs specify required flits as well as successfully
received flits.

5. Performance Evaluation
5.1. Parameters and Performance Metrics

The performance of our proposed authenticated schemes was evaluated by simula-
tion in a cycle-accurate NoC simulator as well as using an analytical model. The specific
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simulation parameters and their corresponding values used in the investigations are sum-
marized in Table 2. In all scenarios, the NoC was injected with a total average flit injection
rate of 0.2 flits/module/cycle for all schemes. Due to the coding and communication
schemes, the actual flit injection rate is different from the flit generation rate at the PE so
that the latter must be adjusted to ensure an equal injection rate of 0.2 flits/module/cycle.
In UC, two flits are generated from the original flit (e.g., due to tag generation in S1 or
due to data flit halving in S2), so that the flit generation rate at the PE was corrected to
0.1 flits/module/cycle. In the NC schemes, to account for the redundant combinations as
well as the tag flit generation, the flit generation rates at the PE were similarly adapted to
0.067 and 0.05 for G2C3 and G2C4 respectively.

Table 2. Simulation parameters and their respective values.

Topology 2D mesh of size 8× 8

Routing Deterministic, dimension-ordered XY

Arbitration Round-robin

Injection rate (flits/module/cycle) λ = 0.2

Communication models S1/{UC, G2C3, G2C4}, S2/{UC, G2C3, G2C4}

Malicious routers 8 (at random locations in the 8× 8 NoC)

Modification probability for a malicious router pm

Drop probability for a malicious router pd

Attack probability pa = wd pd + wm pm

pa = 0.01 · i, i = 0, 1, . . . , 20

Loss detection timer 8 cycles

Simulation run time 50,000 cycles

In the evaluations, a limitation of the maximum number of retransmission and ARQs
to 1 per logical transmission unit was applied to avoid very high loads that would saturate
the network. This limitation also keeps the error control system simple but effective. It was
assumed that ARQs can be dropped but not modified and hence ARQs are not authenticated.
This assumption is reasonable since a modified ARQ would cause the retransmission of the
flits unrelated to the desired logical transmission unit and therefore would have the same
effect as if the ARQ had been lost.

The following performance metrics were considered:

Acceptance rate (A): also denoted as the network load, this is given by the total number
of flits (including redundant flits due to NC, tag flits, ARQs and retransmissions)
injected per node in a clock cycle.

Information rate (I):the ratio of actual data flits transmitted to the total flits transmitted,
which includes the redundant flits, tag flits, ARQs, and retransmissions.

Residual error probability (ε):The proportion of transmitted data flits that failed to reach
the destination, due to dropping and modifications, under the assumed limitation of
ARQs and retransmission.

Finally, the metric Latency was evaluated throughout the simulations and within the
analytical model, which described the average path latency with respect to the varying pm
and pd. However, there are some problems with latency results. Due to the rising drop and
modification probabilities, there will be more flits lost over the course of the experiments,
which finally will lead to the loss of complete transmission units. Since this loss cannot
be detected, the overall load in the network will become smaller, which in turn results in
lower path latencies, giving the false impression that the performance regarding latency
would be better with increasing pm/pd. This effect was verified by the simulations as well
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as the analytical model. Due to this diminished information value, we do not consider
the latency throughout the upcoming discussion. Nevertheless, the latency results are
presented for the base and analytical model to show the mentioned effects.

5.2. Simulation Scenarios

Simulations were conducted in different overall scenarios. In a single scenario, a key
component of the simulation is changed, to inspect the respective impact on the solutions
and the key metrics. The following scenarios are considered:

Base The base scenario, which uses the simulation parameters as described in Table 2 and
the weights wd = wm = 0.5 for the sum pa.

No drops In this scenario, the attacker does not perform any dropping attacks but solely
modification attacks. This means the weighted sum of pa is calculated with weights
wd = 0 and wm = 1, hence pa = pm. Therefore, the impact of modifications can be
further evaluated.

No modifications The same as above but reversed: the rogue routers will not perform
modifications, but solely dropping attacks, i.e., wd = 1, wm = 0 and thereby pa = pd.

More attackers To further investigate the effect of different numbers of attacking nodes,
the number of rogue routers will be varied. In this case, the number of attackers will
be increased from formerly 8 to here 16.

Fewer attackers In this scenario, the number of attacking routers will be decreased to 4.

All parameters not explicitly mentioned will be kept constant in the single scenarios.

5.3. Simulation Results

The proposed authentication schemes were evaluated by cycle-accurate simulations
in a C++ simulation framework [31] extended to include the authentication schemes and
NC, including delays implied by network coding and cryptographic primitives.

The different performance parameters were evaluated in response to a varying attack
probability pa. To remove the effect of the locations of the malicious routers within the
NoC, the random position of the malicious routers were varied over 1000 iterations and
then the obtained results were averaged.

The results of the base simulation scenario are depicted in Figure 5. The effect on the
acceptance rate is shown in Figure 5a, in which the curves rise from a starting value of
0.2 at 0.0 attack probability as the ARQs and retransmissions increase to tackle the drops
and modifications as the attack probability increases to 0.2. The effect is more severe in
the UC scheme in which the lack of redundancy results in ARQ and retransmission for
each flit loss or modification. In comparison, NC due to the inherent redundancies requires
retransmissions only when the generation could not be completed at the receiver. G2C4
performs better than G2C3 since it has greater redundancy than G2C3. S1 has a lower
performance in comparison to S2 since S1 requires greater retransmissions. This is because
due to the separate transmission of the data flit and the corresponding tag flit, not only is
the susceptibility to attack increased but also because when one of them is modified, both
of them must be retransmitted since since the receiver cannot decide which was modified.

Figure 5b depicts the information rate with respect to the attack probability. As the
ARQs and retransmissions increase, the total rate of information transmitted is decreased
and for the same reasons as mentioned before, S2 performs better than S1.
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Figure 5. Simulation results for the base scenario: 8 × 8 2D mesh with 8 attacking routers.

The residual error probability (Figure 5c) starts from 0 and increases with increasing
attack probability, as fewer logical transmission units are received at the destination. In
general, S1 has higher error probabilities, because of its higher attack susceptibility. For the
greatest attack probability of pa = 0.2, the lowest error probability of ≈0.014% is achieved
by S2/G2C4. The redundancy of the NC schemes displays its advantage over the UC
schemes; however, from the curve of S1/G2C3, it can be observed that the redundancy of
G2C3 is insufficient at higher error rates to counter the higher attack susceptibility so that
the error performance of S1/G2C3 degrades rapidly and becomes worse than UC at attack
probabilities pa = 0.1 and pa = 0.13 for S1 and S2 respectively.

The further simulation scenarios in general supported these results. A complete set of
figures depicting the results of these runs can be found in Appendix A.

The scenario no drops mainly affects the UC cases, whereas the NC solutions mostly
deliver the same results as in the base scenario. The most obvious difference is an increased
acceptance rate for the UC cases, which are≈4% higher than in the base scenario. As acceptance
and information rate are tightly coupled, the information rate for these cases drop more than in
the base scenario.

In the no modifications scenario the most prominent change is that both UC cases now
follow the same slope for all metrics. The diagrams also show that the acceptance rate is in
general a bit lower for all schemes. The biggest decrease can be observed for S1 UC.

A closer look at the impact of drop and modification delivers an explanation for these
results. In case of a drop, only the missed flit needs to be retransmitted. In contrast, a
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modification always requires to retransmit data and tag, i.e., two flits in case of S1. Conse-
quently, a drop in S1 UC has the same effect as a drop in S2 UC since there is no redundancy.
The differences between the NC schemes stem from the different redundancy (differences
between G2C3 and G2C4) and from possible cases that may cause a retransmission (differ-
ences between S1 and S2). The analytical model provides a deeper insight into the reasons
for these differences.

The two scenarios varying the number of attacking routers, more attackers and fewer
attackers, have straight forward effects on the metrics: Reducing the number of attackers
from 8 to 4 more than halves the residual error probability while the overall shape of
the curves is pertained. For pa of 0.2 the highest residual error probabilities (S1/UC and
S1/G2C3) are reduced from over 0.1 to ≈0.04 (0.045 resp.). The worst solution in the base
scenario (S1/UC) added 0.05 to the acceptance rate—with 4 attackers only 0.025 are added,
while again pertaining the overall slope. Finally, the same holds for the information rate,
where the attackers negative effect is approximately halved.

For more attackers, the effects are comparable: the residual error probability is ap-
proximately doubled for all solutions. The acceptance rate is not affected in the same linear
way: for pa = 0.2, the added impact for S1/UC is not increased by 100% to 0.1 but solely by
50% to ≈0.07 since we limited the number of ARQs in the simulation runs. Similar results
are obtained for the information rate, where the impact is increased by a factor of 1.5.

Overall, the extend evaluation with more diverse scenarios validates the results from
the base scenario: the network coded approaches are significantly more robust than the
uncoded transmission. Among the coded solutions, S2 outperformed S1, especially in
terms of residual error probability and acceptance rate.

5.4. Analytical Model

An analytical model gives us a deeper insight into the system behavior so that we can
understand how the performance is affected by the different factors. Furthermore, with an
analytic model it possible to investigate with greater flexibility different scenarios such
as other topologies or various NoC sizes. In contrast to the extremely time-consuming
cycle-accurate simulations, the model computes results significantly faster (more than
×1000 faster for the 8× 8 NoC), allowing investigating the performance of large NoCs that
would be impossible to investigate through cycle-accurate simulations.

In the following, we develop analytical expressions of Residual error probability (ε),
Acceptance rate (A), Information rate (I) and Latency (`) for S1 and S2. These will be
then applied to compute the performance results for the 8× 8 NoC and compared to that
obtained from cycle-accurate simulations. Furthermore, as an application of the analytical
model, we use it to determine the system performance of a very large NoC consisting of
over a 1000 nodes when using S1 and S2 authentication schemes. The different parameter
symbols used in the analytic model are summarized in Table 3. Certain symbols (such as
the drop and modification probabilities, pd and pm) were already introduced in Table 2 and
is not repeated here.

The total flit drop or the modification probability between two modules are two
quantities which are extensively used in the expressions of the performance metrics. This
metric depends on the number of attacking routers, Na,b encountered along the XY route
between two modules a and b:

da,b = 1− (1− pd)
Na,b (6)

ma,b = 1− (1− pm)
Na,b (7)
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Table 3. Analytical model parameter symbols.

M Number of modules in the NoC

λa,b Flit injection rate from module a to module b

λ′a,b
Total flit injection rate from a to b including ARQs and

retransmissions

`a,b Latency from module a to module b

`′a,b Latency from a to b with retransmission

Na,b Total number of attacking routers in the XY route from a to b

da,b Total flit drop probability from a to b

d′a,b = 1− da,b Probability of no drop from a to b

ma,b Total flit modification probability from a to b

m′a,b = 1−ma,b Probability of no modification from a to b

ε Average residual error probability

5.4.1. S1 Authentication Scheme

In S1 authentication scheme, flits are always transmitted in pairs, the first flit con-
taining the actual data and the second containing the authentication tag for the data flit.
Both of these must be received for authentication to occur. When a flit loss is detected,
that flit must be retransmitted. The expression d′b,ad′a,bm′a,b gives the probability that (in the
case of a flit drop from a to b), the ARQ arrived successfully (with probability d′b,a) and the
retransmitted flit was not dropped or modified (d′a,bm′b,a). Thus, the probability that the
ARQ or the retransmission was unsuccessful, denoted as Ra,b, is given by 1− d′b,ad′a,bm′a,b.
If authentication fails, an ARQ is issued requesting the retransmission of both data and tag
flit as it is impossible to determine which was modified. In this case, the probability that
the ARQ or the retransmission was unsuccessful, denoted as Ta,b must take into account
that 2 are retransmitted and is thus given by 1− d′b,ad′a,b

2m′a,b
2.

UC Transmission S1

Residual Error Probability: When one flit (from a transmission unit of two flits)
is dropped ((2

1)da,bd′a,b), an ARQ is issued to request a retransmission. However, if the
ARQ or retransmission fails (with probability Ra,b), then error occurs. Error also occurs
if both flits are received but one or both are modified and the ARQ/retransmission fails
(d′a,b

2(1−m′a,b
2)Ta,b). The limitation of 1 ARQ per transmission unit further increases the

error probability, e.g., when one flit of a pair was dropped but the received flit was modified
((2

1)da,bd′a,bma,b). Here, an ARQ was already issued for the dropped flit and since another
ARQ cannot be issued for the modified flit, error occurs. If both flits are dropped (da,b

2), the
receiver is not aware of the loss and does not issue an ARQ, resulting in error. By combining
all these error scenarios and averaging over all source-destination pairs of the NoC (since
we assumed uniform communication), we obtain the average residual error probability:

ε =
1

M(M− 1)

M

∑
a=1

M

∑
b=1
b 6=a

{
da,b

2 +

(
2
1

)
da,bd′a,b(m

′
a,bRa,b +ma,b)+ d′a,b

2
(1−m′a,b

2
)Ta,b

}
(8)

Acceptance Rate: The total flit injection rate λ′a,b at any module consists of the regular
flit injection, λa,b and the issued ARQs (λarq_a,b) and retransmissions (λretr_a,b):

λ′a,b = λa,b + λarq_a,b + λretr_a,b (9)
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One ARQ is allowed per pair of flits (so that rate of λarq is half in comparison to λ) and
is issued by a module, a for a dropped flit ((2

1)db,ad′b,a) or for a flit pair when authentication

fails (d′b,a
2(1−m′b,a

2)):

λarq_a,b =
λb,a

2

{(
2
1

)
db,ad′b,a + d′b,a

2
(1−m′b,a

2
)

}
(10)

In the above discussed cases, if the ARQ from a module b successfully arrives at a
module a (with probability d′b,a), the missing flit (or flits in the case of authentication failure)
is retransmitted:

λretr_a,b =
λa,bd′b,a

2

{(
2
1

)
da,bd′a,b + 2d′a,b

2
(1−m′a,b

2
)

}
(11)

The acceptance rate is computed by averaging the total flit injection rate λ′ over
all modules:

A =
1
M
·

M

∑
a=1

M

∑
b=1
b 6=a

λ′a,b (12)

Information Rate: The information rate is defined as the proportion of data flits to all
transmitted flits (data, ARQ, retransmission and tag flits) and is therefore computed by the
ratio of λa,b

2 (half of λa,b are tag flits) to λ′a,b using Equations (9)–(11):

I =

1
2 ∑M

a=1 ∑M
b=1
b 6=a

λa,b

∑M
a=1 ∑M

b=1
b 6=a

λ′a,b

(13)

Latency: The latency is computed by considering those flits which reached the des-
tination successfully, within the limit of 1 retransmission. There are three possible cases
for these:

• error-free: latency = `a,b (NI injection and ejection delays + router traversal delays) + 2`tag
(Authentication tag computation time at the sender and at the receiver).

• with retransmission of a lost flit: the loss of a flit is detected by a timer tracking
the inter-arrival delays of flits and an ARQ is issued. If the ARQ and retransmis-
sion is successful ,the retransmission reaches the receiver after a round trip delay
(RTD) of 2`a,b plus some buffering delays (RTDa,b = 2`a,b + δ), after which the
authentication occurs.

• with retransmission of a modified flit: the retransmitted data and tag flit reach the
destination after the RTD, if the ARQ and retransmission was successful (with prob-
ability 1− T). Here, there is an additional `tag cycles compared to the flit drop case,
since retransmitted data flit must be verified again at the receiver.

The total latency, `′a,b is given by:

`′a,b = d′a,b
2m′a,b

2 ·
(
`a,b + 2`tag

)
+

(
2
1

)
da,bd′a,bm′a,b(1− Ra,b) ·

(
`a,b + RTDa,b + 2`tag

)
+ d′a,b

2
(

1−m′a,b
2
)
(1− Ta,b) ·

(
`a,b + RTDa,b + 2`tag + `tag

)
. (14)

The average latency is computed by averaging `′ over all sender-receiver pairs.

NC Transmission S1

Residual Error Probability: Here, C pairs of data and tag flits are transmitted at the
sender. Depending on how many unmodified flits are received at the destination, different
error cases can arise, as summarized in Table 4.
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Table 4. Error cases for NC transmission with S1 authentication scheme.

Number of Flits Received, n Possible Flit Combinations The Cases, Where Error Occurs

n < 2G− 1 ∑2G−2
n=0 (2C

n )
Always, as 1 ARQ is insufficient

to complete G pairs.

n = 2G− 1
G− 1 pairs + 1 f lit, ( 2G−1

G−1 pairs):(
C

G−1)(
2C−2(G−1)

1 )

If any received flit is modified or
issued ARQ/retransmission

fails, with probability R.

< G− 1 pairs,
( 2G−1
< G−1 pairs):(

2C
2G−1)− ( C

G−1)(
2C−2(G−1)

1 )

Always, as 1 ARQ is insufficient
to complete G pairs.

n = 2G v 2C with k number of pairs

k ≥ G pairs, ( n
≥ G pairs):∑

n/2
k=G (C

k)(
C−k
n−2k)(

2
1)

n−2k
If less than G unmodified pairs

are received, even with ARQ
and retransmission

k = G− 1 pairs,

( n
G−1 pairs):(

C
G−1)(

C−(G−1)
n−2(G−1))(

2
1)

n−2(G−1)

If any of the received flits are
modified or issued

ARQ/retransmission fails, with
probability T.

k < G− 1 pairs, ( n
< G−1 pairs):(

2C
n )− ( n

≥ G pairs)−
( n

G−1 pairs)

Always, as 1 ARQ is insufficient
to complete G pairs.

By combining these error cases, we obtain the residual error rate, εa,b for a transmission
from module a to module b. We obtain the average residual error probability, ε after
averaging εa,b over all sender-receiver pairs:

εa,b = εa,b_<2G−1 + εa,b_2G−1 + εa,b_≥2G−1 (15)

εa,b_n<2G−1 =
2G−2

∑
n=0

(
2C
n

)
d′a,b

nda,b
2C−n (16)

εa,b_n=2G−1 = d′a,b
2G−1da,b

2C−(2G−1)
{

(
2G− 1

G− 1 pairs

)(
m′a,b

2G−1Ra,b + 1−m′a,b
2G−1

)
+

(
2G− 1

< G− 1 pairs

)}
(17)

εa,b_n≥2G−1 =
2C

∑
n=2G

d′a,b
nda,b

2C−n
[

(
n

k ≥ G pairs

){(
k

G− 1

)
m′a,b

2(G−1)
(

1−m′a,b
2
)k−(G−1)

Ta,b +
G−2

∑
t=0

(
k
t

)
m′a,b

2t
(

1−m′a,b
2
)k−t

}

+

(
n

G− 1 pairs

)(
m′a,b

2G−1Ra,b + 1−m′a,b
2G−1

)
+

(
n

< G− 1 pairs

)]
(18)

Acceptance Rate: By considering the error cases in Table 4, we can accordingly deduce
the issue of ARQs depending on the number of flits received, n :

• 0 < n ≤ 2G− 1. Here, 1 ARQ is issued for a missing flit.
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The rate of ARQ (λarq) is 1
2C of λ as 1 ARQ or retransmission is allowed per generation:

λarq_a,b =
λb,a

2C

[
2G−1

∑
n=1

(
2C
n

)
d′b,a

ndb,a
2C−n +

2C

∑
n=2G

d′b,a
ndb,a

2C−n·{(
n

k ≥ G pairs

) G−1

∑
t=0

(
k
t

)
m′b,a

2t
(

1−m′b,a
2
)k−t

+

(
n

< G pairs

)}]
(19)

If the ARQ reaches the target without being dropped, the retransmission of the
requested flit (or flits in case of modification) is done. Similar to ARQs, the rate of retrans-
mission (λretr) is 1

2C of λ:

λretr_a,b =
λa,b

2C
d′b,a

[
2G−1

∑
n=1

(
2C
n

)
d′a,b

nda,b
2C−n +

2C

∑
n=2G

d′a,b
nda,b

2C−n·{
2 ·
(

n
k ≥ G pairs

) G−1

∑
t=0

(
k
t

)
m′a,b

2t
(

1−m′a,b
2
)k−t

+

(
n

< G pairs

)}]
(20)

Putting Equations (19) and (20), in Equations (9) and (12), we obtain the average
acceptance rate.

Information Rate: The average information rate can be determined from ratios of λa,b
to λ′a,b, with factor 1

2 ·
G
C to account for coding as well as for the tag flits:

I =

1
2 ·

G
C ∑M

a=1 ∑M
b=1
b 6=a

λa,b

∑M
a=1 ∑M

b=1
b 6=a

λ′a,b

(21)

Latency: The regular path latency of NC transmission, `NCa,b includes some additional
delays in comparison to the UC case such as waiting for G flits at the sender and at the
receiver for encoding and decoding. Thus, the latency components are:

• error free case (G or more pairs of unmodified flits are received): `NCa,b + 2`tag.

`′NCa,b =
(
`NCa,b + 2`tag

)
·

2C

∑
n=2G

{
d′a,b

nda,b
2C−n

(
n

k ≥ G pairs

) k

∑
t=G

(
k
t

)
m′a,b

2t
(1−m′a,b

2
)k−t

}
+
(
`NCa,b + RTDa,b + 2`tag

)
·

2C

∑
n=2G−1

{
d′a,b

nda,b
2C−n

(
n

G− 1 pairs

)
m′a,b

2(G−1)+1
(1− Ra,b)

}
+
(
`NCa,b + RTDa,b + 2`tag + `tag

)
·

2C

∑
n=2G

{
d′a,b

nda,b
2C−n

(
n

k ≥ G pairs

)
·
(

k
G− 1

)
m′a,b

2(G−1)
(1−m′a,b

2
)

k−(G−1)
(1− Ta,b)

}
(22)

Relation between S1/NC and S1/UC equations:

When considered, it is apparent that UC S1 is the G1C1 version of NC transmission
since the transmission unit consists of only 1 data flit (and its corresponding tag flit). In
NC, C pairs are transmitted and G pairs are needed for decoding and verification at the
receiver, which is valid also for UC with G1C1. This relation is apparent in the equations,
e.g., when putting G = 1, C = 1 Equations (15)–(18) (residual error probability S1/NC), we
find that we arrive exactly at residual error probability of S1/UC (Equation (8)). Similarly,
we obtain the equations of UC acceptance rate, information rate and latency by putting
G = 1, C = 1 in the respective equations of NC.
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5.4.2. S2 Authentication Scheme

In S2 authentication scheme, the data is split over two flits occupying half of the data
field. The remaining half of the data field is used for transmitting the tag for the data. Thus,
each flit can be authenticated individually without depending on another flit, in contrast
to S1 authentication scheme. However, both flits must be received (unmodified) in order
to retrieve the original data. If a flit is lost or modified, an ARQ is issued to request the
retransmission of this flit only. Similar to S1, the number of ARQs and retransmissions is
limited to 1 per transmission unit. The expression Ra,b = 1− d′b,ad′a,bm′a,b gives the proba-
bility that in case of a flit loss or modification, the ARQ is dropped or the retransmission is
either dropped or modified.

UC Transmission S2

Residual Error Probability: Error occurs if both flits are dropped (da,b
2) or if one

flit is received
(
(2

1)da,bd′a,b

)
but the ARQ/retransmission for the missing flit fails (with

probability R). However, if the received flit was modified, then no further ARQs can be
issued and so error occurs, regardless whether the ARQ/retransmission was successful
or not. If both flits are received, but one is modified

(
d′a,b

2(2
1)m

′
a,bma,b

)
then error occurs

if the ARQ/retransmission fails. If both received flits are modified, error occurs as only
1 ARQ/retransmission can be issued.

ε =
1

M(M− 1)

M

∑
a=1

M

∑
b=1
b 6=a

{
da,b

2 +

(
2
1

)
da,bd′a,b

(
m′a,bRa,b + ma,b

)
+

d′a,b
2
((

2
1

)
m′a,bma,bRa,b + ma,b

2
)}

(23)

Acceptance Rate and Information Rate: An ARQ is issued whenever either of two flits
are missing or if both flits were received but one or both of them are modified:

λarq_a,b =
λb,a

2

{(
2
1

)
db,ad′b,a + d′b,a

2
(1−m′b,a

2
)

}
(24)

If the ARQ reaches the target successfully i.e., without being dropped, a retransmission
of the requested flit is done. Thus, the rate of retransmissions is equal to the rate of ARQs,
provided the ARQ is not dropped:

λretr_a,b = d′b,aλarq_b,a (25)

Using Equations (24) and (25) in Equations (9) and (12), we can obtain the acceptance
rate. Similarly, we can use Equation (13) to determine the information rate. The factor 1

2 is
also necessary here for determining the information rate to account for the splitting of a
data over 2 flits.

Latency: At the sender, `tag cycles are required to compute the authentication tags in
parallel for the 2 data parts. At the receiver, after individual authentication, the two halves
of the data are combined and forwarded to the module. The latency components are:

• error free case: latency = `a,b + 2`tag cycles.
• with retransmission of a lost flit: if the received flit is not modified, the latency is

increased by the round trip delay, RTD, provided the ARQ/retransmission are not
dropped or modified.

• with retransmission of modified flit: if the ARQ/retransmission is successful, the
latency is increased by RTDa,b along with another `tag cycles for the authentication of
the retransmitted flit.



Electronics 2021, 10, 238 22 of 31

`′a,b = d′a,b
2m′a,b

2 ·
(
`a,b + 2`tag

)
+

(
2
1

)
da,bd′a,bm′a,b(1− Ra,b) ·

(
`a,b + RTDa,b + 2`tag

)
+ d′a,b

2 ·
(

2
1

)
ma,bm′a,b(1− Ra,b) ·

(
`a,b + RTDa,b + 2`tag + `tag

) (26)

NC Transmission S2

In S2 NC transmission scheme, after splitting the data over 2 flits (considered to be
a generation, i.e., G = 2), these are linearly combined into C flits. At the receiver, after
authentication, G flits are decoded to retrieve the original data. To compensate for lost or
modified flits, 1 ARQ/retransmission is allowed per generation .

Residual Error Probability: Error occurs according to the number of flits received, n

• n < G− 1, as 1 ARQ is insufficient to complete the generation.
• n = G− 1 and these are all unmodified, but the ARQ/retransmission fails (m′a,b

G−1Ra,b)

or if one or more flits are modified (1−m′a,b
G−1) because then more than 1 ARQ would

be needed.
• n ≥ G but too many flits are modified, ∑G−2

k=0 (n
k)m

′
a,b

kma,b
n−k so that 1 ARQ is insufficient

to complete the generation or there are G− 1 unmodified flits but ARQ/retransmission
fails (( n

G−1)m
′
a,b

G−1ma,b
n−(G−1)Ra,b).

Averaging over all sender-receiver pairs, we obtain the average residual error probability:

ε =
1

M(M− 1)

M

∑
a=1

M

∑
b=1
b 6=a

[
G−2

∑
n=0

(
C
n

)
d′a,b

nda,b
C−n

+

(
C

G− 1

)
d′a,b

G−1da,b
C−(G−1)

(
m′a,b

G−1Ra,b + 1−m′a,b
G−1

)
+

C

∑
n=G

(
C
n

)
d′a,b

nda,b
C−n

{(
n

G− 1

)
m′a,b

G−1ma,b
n−(G−1)Ra,b +

G−2

∑
k=0

(
n
k

)
m′a,b

kma,b
n−k

}] (27)

Acceptance Rate and Information Rate: An ARQ is issued requesting the retransmis-
sion of a dropped flit when less than G flits were received. When G or more flits were
received but less than G are found to unmodified, then an ARQ requesting the retransmis-
sion of a modified flit is issued. When the ARQ successfully reaches the destination, the
retransmission of the requested flit is done:

λarq_a,b =
λb,a
C

[
∑G−1

n=1 (C
n)d
′
b,a

ndb,a
C−n + ∑C

n=G (C
n)d
′
b,a

ndb,a
C−n

(
∑G−1

k=0 (n
k)m

′
b,a

kmb,a
n−k
)]

(28)

λretr_a,b = d′b,aλarq_b,a (29)

The factor
G/C

2 needs to be included for the computation of the information rate to
account for the data splitting as well as the encoding:

INC =

G/C
2 ∑M

a=1 ∑M
b=1
b 6=a

λa,b

∑M
a=1 ∑M

b=1
b 6=a

λ′a,b

(30)

Latency: In the error free case, i.e., when G or more unmodified flits were received,
the total latency includes the usual path latency, `NCx,y as well as 2× 26 cycles for the
authentication tag computation. The latency is increased by the round-trip delay, RTD
when G− 1 unmodified flits were received and the ARQ and retransmission is received
successfully with probability 1− R. When G or more flits were received but only G− 1
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flits were found to be unmodified, then the latency is increased by RTD as well as another
26 cycles for the authentication of the retransmitted flit:

`′NCa,b =
(
`NCa,b + 2`tag

)
·
{

C

∑
n=G

(
C
n

)
d′a,b

nda,b
C−n

(
n

∑
t=G

(
n
t

)
m′a,b

tma,b
n−t

)}
+
(
`NCa,b + RTDa,b + 2`tag

)
·
(

C
G− 1

)
d′a,b

G−1da,b
C−(G−1)m′a,b

G−1ma,b
C−(G−1)(1− Ra,b)

+
(
`NCa,b + RTDa,b + 2`tag + `tag

)
·
{

C

∑
n=G

(
C
n

)
d′a,b

nda,b
C−n

(
n

G− 1

)
m′a,b

G−1ma,b
n−(G−1)(1− Ra,b)

}
(31)

Relation between S2/NC and S2/UC equations:

Similar to S1, S2/UC appears to be the G2C2 version of S2/NC. However, it must be
noted that there is no encoding here in contrast to NC where it is possible to encode 2 flits to
generate 2 combinations. Putting G = 2, C = 2 in Equation (27) (residual error probability
S2/NC), we arrive exactly at residual error probability of S2/UC (Equation (23)). Similarly,
we can also obtain the equations for UC acceptance rate, information rate and latency by
putting G = 2, C = 2 in the respective equations of S2/NC.

5.4.3. Results and Discussion

The performance of the authentication schemes for the 8× 8 NoC was evaluated
with the analytical model. The results were averaged over 1000 different locations of
attacking routers and it was found that these results matched closely with those obtained
from the simulations. To evaluate the effectiveness of the analytical model, the maximum
difference between the performance parameter results from the cycle-accurate and the
analytical model simulations was determined. From the summary depicted in Table 5, it is
evident that the analytical model matches very closely the cycle-accurate simulator, with a
maximum relative error of 5%. The exception to this are the latency calculations, which
in the simulations is affected by congestion in the NoC which, however, is not covered by
the analytical model. As a result, the results obtained by simulation are greater than those
by the analytical model, particularly for S1 G2C3 in which the relatively higher error rates
result in many ARQs and retransmissions leading to greater congestion and delay. Due to
its greater speed of calculation and accuracy, we use the analytical model next to compute
the results for a large NoC of 1024 modules.

Application of the model to 32× 32 NoC:

The 32× 32 NoC was investigated with an identical ratio of attacking routers as in
the 8× 8 NoC, so that there are 128 attacking routers in this scenario. The total flit attack
probability is similarly varied from 0 to 0.2 in steps of 0.01. The results were computed
over 5000 different locations of attacking routers and the average results for the residual
error probability, acceptance rate and information rate are displayed in Figure 6.

To understand the performance results for the 32× 32 NoC, we need to first consider
the average path length of such a NoC. With uniform random traffic pattern, the average
path length of the 32× 32 NoC is 22.33 hops, whereas for the 8× 8 NoC it is 6.33 hops. The
probability of encountering an attacking router with average path lengths of 6 hops and
22 hops are:

Pr(≥ 1 attacking routers) = 1− Pr(0 attacking routers) (32)

Pr6hops(≥ 1 attacking routers) = 1− 56
64
× 55

63
× 54

62
× 53

61
× 52

60
× 51

59
= 0.5669

Pr22hops(≥ 1 attacking routers) = 1− 896
1024

× 895
1023

× 896
1022

× 877
899
× 876

898
× 875

897
= 0.9487
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Table 5. Maximum relative error between the analytical model and simulation.

S1 S2

UC G2C3 G2C4 UC G2C3 G2C4

Base: Error probability 1% 3% 2% 1% 4% 4%
pa = 0.5pd + 0.5pm Information rate <1% <1% <1% <1% <1% <1%

Acceptance rate <1% <1% <1% <1% <1% <1%
Latency 2% 7.5% 5% 3% 1% 1%

No drops: Error probability 1% 3% 2% 1% 2% 5%
pa = pm Information rate <1% <1% <1% <1% <1% <1%

Acceptance rate <1% <1% <1% <1% <1% <1%

No modifications: Error probability 1% 5% 1% 1% 3% 6%
pa = pd Information rate <1% <1% <1% <1% <1% <1%

Acceptance rate <1% <1% <1% <1% <1% <1%
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Figure 6. Analytical model results for 32 × 32 2D mesh with 128 attacking routers.

Since there is a significantly higher probability of passing through an attacking router
in the 32× 32 NoC, we can expect significantly higher rates of flit drops and modifications.
As a result, residual error rates (Figure 6a) are considerably higher in comparison to the
8 × 8 NoC. Similar to the performance for 8 × 8 NoC, in the 32 × 32 NoC S2 behaves
better than S1: S2/G2C4 has less than half the residual error probability of S1/G2C4
at 0.2 flit attack probability. For G2C3, S1 has a 87% higher residual error probability
than S2 at 0.2 attack probability. For UC case, the performance of S1 and S2 are similar,
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which is already expected from Equations (8) and (23). In S1, it is observed that the
redundancy of NC is no longer sufficient since at the high attack rates it becomes less
likely to receive G pairs of unmodified flits, resulting in a worse performance than UC. At
0.2 attack probability G2C3 has a 18.6% higher error rate and G2C4 has approximately the
same error rate as UC.

Another reason for the lower performance of NC compared to UC in S1 is the limitation
of the ARQs and retransmissions to one per transmission unit, which is C pairs of flits for
NC and one pair for UC. The effect of this can be observed in Figure 6b where the high error
rates result in an increase in the issue of ARQs and retransmissions, increasing the average
rates of flit injection, i.e., the flit acceptance rate. In S1, UC has a 25.8% and 33.68% higher
flit acceptance rate than G2C3 and G2C4 respectively. Between S1 and S2, the latter starts
with lower acceptance rates. However, in the S2 coded cases the ARQ and retransmission
rates increase rapidly with increasing attack probability becoming close to S1 at 0.2 attack
probability. This results in a rapidly decreasing information rate as can be observed in
Figure 6c so that for the coded cases, the difference between S1 and S2 becomes less than 5%
at 0.2 attack probability. However, since with similar acceptance rate S2 achieves a much
lower residual error rate, we can select S2 as the superior authentication scheme. In the S2
scheme, we find that G2C4 has 31% lower error rate but also 18.5% lower information rate
than G2C3 at 0.2 attack probability. This means that to transmit the same amount of data,
G2C4 requires approximately 20% more transmissions than G2C3. This may be a point to
consider when choosing a transmission scheme for latency critical applications especially
if the probability of attack is low.

5.5. Area Overhead

As can expected, securing the NoC communication incurs some area overhead. How-
ever, as we demonstrate in this section, the overhead is a reasonable one. Area overhead
results due to authentication as well as due to network coding. Moreover, buffers are
used at each sender NI to store a copy of transmitted flits to allow for retransmission
when needed. The main contributors to the area overhead of the proposed schemes are
summarized in Table 6.

The mCrypton modules [27] contribute to a significant area increase since a certain
number of them is required in the NI to generate the authentication tags for the information
flits, injected to and from the NoC. In S1 scheme, each tag generation requires 39 cycles
whereas in S2 scheme 26 cycles are needed. Data flits injected into the NoC and data flits
incoming from the NoC (also including retransmitted flits) are served by a number of crypto
modules working in parallel. The number of crypto modules must be sufficient so that the
rate of flits queuing up is balanced by the service rate of the crypto modules. We assumed
the total average flit injection at the sender side of the NI is 0.2 flits/cycle. As we assumed
uniform random communication, there is also an equal flit injection into receiver side of the
NI. Flits at both the sender and receiver side must be authenticated. However, in S1 half of
the injected flits are tag flits. Thus, the total incoming rate of flits for the tag generation
queue ( denoted as λq) is 0.2 flits/node/cycle. Similarly, in S2, λq = 0.4 flits/node/cycle.
However, exact value of λq is affected by drops and by (successful) retransmissions of flits
incoming from NoC. The total flit incoming rate (from NoC) consists of flits which are
not dropped, either originally transmitted flits or retransmitted flits. Considering UC case
(which has the highest number of retransmissions), we can evaluate λq at a module a using
Equation (11) and Equation (25) for S1 and S2 respectively:

λq S1 = 0.1 +
M

∑
b=1
b 6=a

{
λb,a

2
d′b,a

2
+

λb,ad′a,b

2

(
db,ad′b,a

2
+ d′b,a

4
(1−m′b,a

2
)

)}

λq S2 = 0.2 +
M

∑
b=1
b 6=a

{
λb,ad′b,a + λretr_b,ad′b,a

}
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By averaging over all modules, we obtain the value of λq for S1 and S2 at different
drop and modification probabilities. With no drop probability i.e., pa = pm, the maximum
value of λq is obtained: 0.2185 flits/node/cycle for S1 and 0.4214 flits/node/cycle for S2.

Using Erlang’s C formula [32], we next estimate the number of crypto modules needed
so that probability that an incoming flit finds all crypto modules busy and must be queued
is less than 0.05. The service rate of the crypto modules for S1 and S2 are 1/39 flits/cycle
and 1/26 flits/cycle respectively. Since S2 has the higher λq, we use this value in our
estimation to find that with 18 crypto modules, a service level greater than 96% is achieved.
Even a slight reduction to 15 crypto modules decreases the service level to 81%. The
area of each mCrypton unit as given in [27] is 2681 gate equivalents (GEs) so that for
18 mCryptons, the total area overhead is 18× 2681 GEs. To determine the actual overhead
of these cryptomodules, we compare it to the total area of a state-of-the-art MPSoC. We thus
consider the MPSoC Tomahawk 4 [33] with total area 24.43 MGEs comprised of a hexagonal
NoC connecting 6 processing modules in addition to a global memory. A total 10 NIs are
present whose communication should be protected. Assuming 18 crypto modules per NI,
this means an area overhead of 10× 18× 2681 GEs over 24.43 MGEs or only ≈1.98%.

Table 6. Overview of area overhead.

Unit Area per NI

Crypto modules 18× 2681 = 48, 258 GEs

LUTs (for network coding) 7080 GEs (S1 G2C3) or 16,992 GEs (S1 G2C4)

Retransmission buffer (depth = 10) 19× 10 = 190 bytes

The matrix multiplications in the GF domain performed in network coding (Section 3.2)
also increase the area. To simplify the multiplication process in the GF domain, we use
look-up tables (LUTs) in which all the results of the multiplication over GF(24) are stored.
The LUT was implemented in Verilog hardware description language and functionally
verified. When synthesized in 65 nm CMOS technology, each LUT had an area of 118 GEs.
For each flit in S1, 18 symbols of 4 bits each (2 symbols for the GEV and 16 symbols for
the 64 bits data) need to be encoded. Due to the generation size of G = 2, 2 encoding
coefficients are necessary for the computation of one linear combination. Hence in S1,
18× 2 or 36 LUTs are required to produce one combination. In S2, fewer symbols need to
be encoded since the data block is only 32 bits (Section 4.3). The multiplication of this flit of
size 10 symbols with the 2 encoding coefficients requires thus 20 LUTs. The NC scheme
G2C4 has the greatest number of combinations and for this case in S1, we need a total of
4× 36 or 144 LUTs. These LUTs incur a total area overhead of 144× 118 or 16, 992 GEs in
each NI. Our considered state-of-art MPSoC ([33]) has 10 NIs so that the area overhead
incurred is 10× 16, 992 GEs, which is an increase of 0.7% for the MPSoC. The decoding
of the generation at the receiver requires a multiplication with the inverse of the 2× 2
encoding matrix. This can be achieved easily via the determinant method. As shown in
Section 3.2, the decoding process requires fewer multiplications as the matrices are smaller,
so that further LUTs are not required.

We know that depending on their size, buffers can occupy large area and also consume
significant power. Buffers are used in the NI to store transmitted flits so that the tag does
not need to be generated again for a retransmission. To determine how large buffers are
needed, let us consider for how long flits should be stored in these buffers. This duration
should be long enough so that when the ARQ arrives, the flit is still present in the buffer.
In our investigated scenarios, the flits of a generation are monitored at the receiver using
a timer that is restarted whenever a flit of the generation arrives. A flit is assumed to be
missing and an ARQ is issued if no new flits arrive within 8 cycles after the last flit. The
ARQ reaches the target after a total round trip delay plus the 8 cycles. In the 8× 8 NoC, the
highest distance between 2 nodes is 15 hops, considering XY routing. In our NoC, each hop
required 2 cycles so that the ARQ reaches the target node after a total delay of 2× 30 + 8
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or 68 cycles. With a retransmission buffer of size Nb flits deep and an injection rate of
0.2 flits/node/cycle, the original flit is stored in the buffer for 5 · Nb cycles on average
before it is overwritten. For the original flit to be found when the ARQ arrives, the flit
must be in the buffer for at least 68 cycles, i.e., 5 · Nb ≥ 68. Thus, with Nb = 68

5 or ∼14, the
original flit can be found.

A flit modification is detected after 26 or 39 cycles after receiving the flit, after which
an ARQ is issued. Thus, the ARQ will reach the sender 2× 30 + 39 or 2× 30 + 26 cycles
respectively after the original flit was transmitted. Thus, for the original flit (or flits in S1)
still to be present in the buffer, the flit must be present for at least 99 or 86 cycles. Thus,
5 · Nb ≥ 99 or 86, i.e., Nb ∼ 20 or 18 flits deep. This demonstrates that the buffer required
to store transmitted flits is very small. Our reference MPSoC has a very small network size
where the nodes have a maximum distance of 3 hops so that even smaller sized buffers are
necessary. The effect of this buffer on the total area can be considered insignificant. Thus,
in total the area overhead is (1.98 + 0.7)% or 2.68%.

6. Summary and Outlook

In this work, we proposed and thoroughly evaluated efficient authentication schemes
to protect NoC communication against active attacks. By combining the usage of MACs
for authentication and network coding for performance and resilience, we devised secure,
highly robust, and efficient solutions. The evaluation of these new schemes is twofold:
first of all, we performed extensive simulations with an cycle accurate NoC simulator
covering different system parameters and attacker scenarios. Additionally, we developed
an analytical model which describes the main performance metrics in a formalized manner.
Thereby, we were able to examine the performance of our proposed schemes in additional
scenarios, which are unfeasible to simulate. Furthermore, the analytical models provides
insight into the system behaviour. Finally, the impact of our solution regarding chip area
was analyzed.

Our evaluation showed, that the proposed solutions realize a robust protection scheme
for NoC communication. This robustness is primarily rooted in the network coding: In
the base scenario, the best solution S2/G2C4 reduces the residual error probability by up
to ≈85.9% compared to uncoded UC solution. The acceptance rate reduction of ≈15.7%
also reflects a more robust transmission as fewer flits were transferred. Additionally, this
means that the overall network load is reduced with the proposed coded schemes. In the
best scenario the residual error probability is reduced by ≈90.06% and the acceptance rate
by ≈22.13%.

The addition of authentication and robustness implies additional costs: First, despite
using an efficient lightweight block cipher, mCrpyton, as cryptographic primitive, the
computation and verification of the MAC each takes up 39/26 cycles for S1/S2, respectively.
In contrast, the network coding implementation via LUTs has negligible impact on the
latency. Second, the addition of network coding decreases the information rate, i.e., for
successful transmission more flits are sent per data flit. For the most robust solution G2C4
this means 4 flits instead of 2 in the uncoded case need to be send.

The developed analytical model overall confirmed the simulation results obtained in
the different scenarios. Additionally, it showed that for a 32 × 32 NoC with 128 attacking
routers matching results could be obtained: Although successful transmission becomes
significantly harder in this extreme setting, the coded solution S2/G2C4 provided the best
results, with residual error rates reduced by ≈54.76% compared to the uncoded case.

Overall, the solution S2/G2C4 consistently provided the most robust efficient protec-
tion over all scenarios and parameters. With this approach, we provide efficient detection
of active attacks. Moreover, the redundancy provided by network coding is very effective
against dropping and modification of flits.

This enhanced robustness and additional security can be achieved with a minimal
area overhead of ≈2.68% in comparison to the total area of a state-of-the-art MPSoC.
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Among many future research topics addressing the protection of NoC communication
is the investigation of efficient key management for symmetric block ciphers. Current
protection schemes do explicitly exclude key management and assume pairwise symmetric
keys. The distribution and management of these secrets pose a demanding issue, since
there is no out-of-band medium available. Therefore, the untrusted medium and endpoints
need to be used to securely distribute symmetric keys.

Another possible topic for future work could be the investigation of the proposed
schemes using different cryptographic primitives. A promising contender can be PRINCE [34]
as proposed in [35]. Its main advantage is the performance of 1 cycle per block, which would
significantly reduce the latency of the current solution. Furthermore, the number of required
cryptographic modules and their respective queues could be reduced. Although a PRINCE
module has a greater area compared to mCrypton, the reduced total number of these required
could result in a comparably similar or even lower area overhead.

Another intended way forward is to further analyze the trade-offs and system parame-
ters of the communication scheme: The application of more sophisticated routing schemes,
e.g., Valiant [36] or ROMM [37], and multipath routing could lead to enhanced robustness
against attackers. In fact, the analytical model is flexible and already applicable to multi-
path routing. Furthermore, the impact of the retransmission solution will be analyzed—the
retransmission limit could be altered or removed to allow for additional retransmission and
the usage of ARQs could be combined with an ACK-based solution. Finally, the application
of burst mode for message transmission in the NoC and its implications for the proposed
secure protocols will be investigated.
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Appendix A. Additional Simulation Results
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Figure A1. Simulation results for 8 × 8 2D mesh in scenario no drop, i.e., pa = pm.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Flit attack probability

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

A
c
c
e

p
ta

n
c
e

 r
a

te
 (

fl
it
s
/c

y
c
le

/n
o

d
e

)

S1 G2C4

S1 G2C3

S1 UC

S2 G2C4

S2 G2C3

S2 UC

(a) Acceptance Rate

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Flit attack probability

0.2

0.25

0.3

0.35

0.4

0.45

0.5

In
fo

rm
a

ti
o

n
 r

a
te

S1 G2C4

S1 G2C3

S1 UC

S2 G2C4

S2 G2C3

S2 UC

(b) Information Rate

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Flit attack probability

0

0.02

0.04

0.06

0.08

0.1

0.12
R

e
s
id

u
a

l 
e

rr
o

r 
p

ro
b

a
b

ili
ty

S1 G2C4

S1 G2C3

S1 UC

S2 G2C4

S2 G2C3

S2 UC

(c) Residual error probability

Figure A2. Simulation results for 8 × 8 2D mesh in scenario no modification, i.e., pa = pd.
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Figure A3. Simulation results for 8 × 8 2D mesh with 4 attacking routers.
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Figure A4. Simulation results for 8 × 8 2D mesh with 16 attacking routers.
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