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Abstract—Approximate Computing is a promising paradigm
for mitigating computational requirements of Deep Neural Net-
works (DNN), by taking advantage of their inherent error
resilience. Specifically, the use of approximate multipliers in
DNN inference can lead to significant improvements in power
consumption of embedded DNN applications. This paper presents
a methodology for efficient approximate multiplier selection and
for full and uniform approximation of large DNNs, through
retraining and minimization of the approximation error. We eval-
uate our methodology using 422 approximate multipliers from the
EvoApprox library, with three different Residual architectures
trained with Cifar10, and achieve energy savings of up to 18%
surpassing the original floating-point accuracy, and of up to 58%
with an accuracy loss of 0.73%.

I. INTRODUCTION

Through approximate computing, hardware requirements in
error-resilient applications such as DNNs can be reduced.
Approximations at software level are e.g. precision scaling or
quantization [1], [2], [3]. At hardware level, approximation of
arithmetic units such as multipliers [4] can lead to significant
energy savings. In this context, DNNs can be partially or fully
approximated. Techniques for partial approximation include
retraining [4], [5], and more recently, authors in [6] proposed
ALWANN, a framework for partial DNN approximation with-
out retraining. Drawbacks of partial approximation are the
energy savings, limited by the amount of approximated ele-
ments, and its challenging implementation in generic hardware
accelerators. Furthermore, the search for optimal designs is
highly time-consuming in traditional simulation frameworks
[6]. On the other hand, through specialized methodologies for
full approximation of DNNs, a more generic implementation
and more energy savings can be achieved. In [7], authors
investigate fully approximated and retrained DNNs with quan-
tized weights and FP activations. Methods for optimizing the
Approximate Multiplier (AM) itself were introduced in [8],
[9], which proved to be effective but time-consuming and
with low flexibility, and authors in [10], [11] demonstrated
the viability of accuracy recovery through hardware-aware re-
training in DNNs for digit recognition. Specialized simulation
frameworks such as Concrete [12], based on Caffe [13], have
been recently proposed to further accelerate approximate DNN
computation in Graphic Processing Units (GPUs) with small
time overhead, making the optimization of larger approximate
DNNs more attractive.

Considering all currently available approximate hardware de-
signs, selecting the appropiate AM for uniform DNN inference
without accuracy loss is a non trivial task, which depends
mainly on the availability of resources for DNN retraining.
For some applications, such as those with proprietary DNNs,
retraining with the original dataset is not possible as it is
not available to the public, and therefore, other approaches to
overcome this are needed. On the other hand, retraining with
all possible design points given all existing AMs is a time
exhaustive task even with specialized simulation frameworks.
For example, we would need around 1.5 days just to train a
ResNet20 [14] with every multiplier from [15] for only one
epoch with our specialized simulation framework. With this
motivation, we present a methodology for efficient multiplier
selection and full approximation of large DNNs without ac-
curacy loss. We focus on designs with the same multiplier
for all convolutional and fully-connected (FC) layers, which
is desirable for hardware accelerators with uniform processing
elements. For this, given an initial set of AMs, we first select
the Pareto set of power consumption and Mean Relative Error
(MRE), as we prove that MRE is highly correlated to DNN
accuracy. Through this, we restrict our search to 18% of the
initial design space. Then, we retrain only the approximate
DNNs with multipliers from this Pareto set. Our methodology
allows retraining even without the original dataset, as we
can switch to minimizing the propagated approximation error
instead of optimizing the DNN accuracy itself.
The novel contributions presented in this work are:

• A data-driven analysis for multiplier selection based on
MRE, focused on convolutional and FC layers.

• a methodology for efficient uniform and full approxima-
tion of DNNs.

• An alternative to DNN retraining when the original
training dataset is not available.

• Significant power improvements without accuracy loss
of three residual architectures [14] trained with Cifar10,
through simulation of 422 AMs from the EvoApprox
library [15].

II. PRELIMINARIES

A. Deep Neural Networks

DNNs are characterized by the use of convolutional and FC
layers. These operations can be generalized as follows: y =
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Fig. 1: Fast design exploration of approximate DNNs
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Fig. 2: Parameter distributions on ResNet8

Ψ(g(x,w) + b), where y is the layer output, g is the weighted
operation between inputs x and weights w, b is the layer bias,
and Ψ is a non-linear activation function, usually a Rectified
Linear Unit (ReLU) [16]. To reduce energy consumption, we
quantize all weights and activations to int8 precision. In this
work, we employ linear, layer-wise quantization [3].

B. Approximate Multipliers

We implement the behavioral model of 422 different 8-
bit AMs from the EvoApprox library [15]. As reference for
100% energy consumption, we use the accurate multiplier with
the lowest power consumption (mul8 433), and we discard
all multipliers with higher power. We define f(x, y)acc as
the accurate multiplication between inputs x and y. For an
AM, the operation is defined as f(x, y)approx = x × y + ε,
where ε is the approximation error, and the corresponding
error metrics are formally computed within this range for
each possible value. To compare the approximation error of
different AMs, we use the Mean Relative Error (MRE) as in
(1),where n = 2bw−1, and a maximum function is included to
avoid division by 0 and to impose a larger error penalization
when f(i, j)acc = 0. The motivation of choosing the MRE is
presented in detail in section III-A.

MRE =
1

n

n∑
i=0

n∑
j=0

|f(i, j)approx − f(i, j)acc|
max(1, |f(i, j)acc|)

(1)

III. METHODOLOGY

Our proposed methodology is presented in Fig. 1. All key
steps are detailed in the following sub-sections.

A. Pareto-set generation

For a given set of AMs, their Pareto front of power con-
sumption and DNN accuracy represents an optimal solution.

However, to generate this set we would need to implement
all possible design choices, which is highly time-consuming.
To avoid this, we propose to generate a sub-optimal solution,
by obtaining the Pareto front of power and an error metric
highly correlated to the DNN accuracy, similar to [9], where a
Weighted MRE (WMRE) is proposed. To this end, we propose
to use the MRE, and to showcase its advantage against more
specialized metrics like the WMRE, we perform the following
analysis: We adapt the WMRE to generalize all DNN layers
and activations. We focus on convolutional and FC layers,
where most weights and inputs are characterized by Gaussian
distributions. This is supported by recent research works [17],
[18], and holds for our case studies, e.g. in Fig. 2. Note that
this analysis can be extended to other data distributions present
in different DNN layers. The WMRE is defined as:

WMRE =
1

n

n∑
i=0

n∑
j=0

|f(i, j)approx − f(i, j)acc|wi , (2)

In [9], weights wi are defined individually for each DNN
layer, according to the corresponding weights distribution. To
obtain weights which generalize to all DNN layers and also to
activations distributions, we instead define our goal as follows:
To give more relevance to more probable combinations of
x = i and y = j. Then, wi,j can be derived from the
multivariate distribution N (x, y;µ,Σ). We make the following
generalizations:

• Weights have Gaussian distribution with mean µ = 0 and
std. deviation σx. If the weights mean is not 0, we add
an offset to the DNN weights as follows: µ + offset =
0→ µ̃ = 0 to perform this analysis.

• All post-ReLU activations have rectified Gaussian distri-
bution with standard deviation σy and probability density
functions as follows:

f(y;µ, σ2) = Φ
(
−µ
σ

)
δ(y) +

1√
2πσ2

e−
(y−µ)2

2σ2 U(y) ,

(3)
where Φ

(
−µσ
)

is the cumulative distribution function of
the normal distribution, δ(y) is a Dirac impulse and U(y)
is a unit step [19]. Thus, for y > 0, the distribution is
Gaussian. For the case of y = 0, we implicitly integrate
a formal guarantee of maximum error penalization.

For a parameter-invariant case, we approximate σy ' σx = σ.
The resulting probability density function is:

f(x, y;σ) =
1

2πσ2
exp− x2+y2

2σ2 (4)

Eliminating constants outside the exponent, and substituting
(4) in (2), we obtain:

WMRE =
1

n

n∑
i=1

|zapprox,i − zacc,i| exp− β(x2+y2)

2σ2 , (5)

Where β = 0 if x × y = 0 and 1 otherwise. Although
this introduces a strong non-linearity, this also guarantees a
maximum error penalization when x× y = 0.
For our case studies, the Pearson’s correlation coefficient ρ
of WMRE and MRE of all EvoApprox multipliers indicates a
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Fig. 3: MRE vs WMRE vs power of EvoApprox Multipliers

linear relationship (see Fig. 3). The ρ of WMRE and ResNet
accuracies are between 0.74 and 0.85, indicating that WMRE
as well as MRE are indeed affine towards evaluating DNN
approximation errors. As the ρ of WMRE and Mean Absolute
Error (MAE) or Root Mean Squared Error (RMSE) is very
low (0.05 and 0.04 respectively), we conclude that MRE is
the most suitable metric to generate our Pareto-front of AMs,
shown in Fig. 3. The advantage of using MRE against WMRE
is that we do not need the distribution values of the examined
DNN for its computation.

B. Definition of loss function

After the given pre-trained DNN model is quantized and
approximated, we retrain the DNN. For this, we first determine
the loss function. In our case studies, we use the cross-entropy
loss, defined as in (6), where yk is the label, pk the output, θ
the DNN parameters and n the number of prediction classes.

Cθ(p) = −
n∑
k=1

yk log pk (6)

Then, we determine the objective to be optimized. In our
methodology, we have two possible optimization objectives:

• Accuracy optimization. If the original training dataset is
available, we retrain with (7), where p̃k is the approximate
DNN output.

Cθ(p̃) = −
n∑
k=1

yk log p̃k (7)

• Minimization of the propagated approximation error
(MinPropAE). If the original training dataset is not avail-
able, we propose to generate an auxiliary dataset using
the DNN with Floating-Point (FP) accuracy and without
approximation. For this, we first generate a balanced
dataset (same number of samples for each class) in the
order of 100 to 1000 samples per class for a given
DNN. Then, we input each data sample to the DNN and
compute the corresponding FP-output pk. This output will
then be used as hard label of the corresponding input for
retraining. Substituting in (7) we have:

Cθ(p̃t) = −
n∑
k=1

pk log p̃k , (8)

where p̃k is the approximate prediction at iteration t. pk
is a static parameter, independent of the updated weights.
Thus, we are explicitly minimizing the propagated quan-
tization error with respect to the FP accuracy.

Through approximate DNN retraining we impose soft con-
straints, as the use of weights that lead to approximation
errors is not prohibited but has a well-defined penalization, and
thus, this steers the weights to their error-free neighborhoods
(determined by their MRE), if any, which mantains the pro-
portionality between MRE and DNN accuracy after retraining.

C. Approximate retraining

The corresponding training loss is hereby minimized
through stochastic gradient descent (SGD). The gradient up-
date is computed using Straight-Through-Estimators (STE) as
in [11], except for the quantization function:

wt+1 = wt + ∆w = wt −∇
∂C(p̃)

∂w
,where: (9)

∂C(p̃)

∂w
=
∂C(p̃)

∂p̃

∂p

∂Wq︸ ︷︷ ︸
STE

∂Wq

∂w
, (10)

where Wq are the quantized weights. In the STE the gradient
is computed with respect to the accurate operation, as the
derivative of approximated operands is undefined. Through
this, we compensate simultaneously the quantzation and the
approximation error.

IV. EVALUATION

A. Simulation framework

For analysis and evaluation we use ProxSim [20] based on
CUDA [21], a library for GPU parallel programming, and
Tensorflow [22]. For efficient computation of approximate
DNNs, we perform dynamic allocation in the GPU to load the
behavioral simulation of the corresponding AM. All experi-
ments were performed with an Nvidia GeForce GTX 1080Ti.
We implement three residual architectures [14] initially trained
with Cifar-10, during 200 epochs with an initial learning rate
(lr) of 1e-3, with FP precision and without approximations.
The characteristics of these DNNs are described in Table I.

TABLE I: Characteristics of implemented ResNets

DNN FP Acc. 8b Acc. #Params. #MAC Val.time
ResNet8 85.68% 84.61% 78,666 12.5M 12.9 s
ResNet14 89.41% 89.20% 176,554 26.7M 25.7 s
ResNet20 91.04% 90.34% 274,442 40.8M 37.9 s

B. Overall results

We test all multipliers from Section II-B in all DNNs from
Table I. As in [6], we propose an accuracy tolerance of 1%
with respect to the 8b accuracy. The results are plotted in
Fig. 4. Note that we only plot the multipliers with accuracy
above 80% for clear visualization with respect to the accuracy
tolerance, and that the FP accuracy is never surpassed. The
Pareto set of MRE vs. power has a mean distance of 5% to
the Pareto-front of DNN accuracy vs. power, and thus presents
a suboptimal solution of the design space. This Pareto set
contains 75 AMs, which is only 18% of the original set. In
this work, we keep the whole Pareto set for retraining to
validate our approach, but after performing DNN inference
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TABLE II: Comparison with ALWANN

DNN ours ALWANN
#AMs Train/epoch time Total time Energy savings Acc. [%] Acc. loss [%] #AMs Total time Energy savings Acc. [%] Acc. loss [%]

ResNet8
75

92 sec. 1.91 hrs 58 % 83.88 0.73
36

0.7 days 30 % 81.56 1.7
ResNet14 182 sec. 3.79 hrs 57 % 88.34 0.86 2.3 days 30 % 84.65 0.9
ResNet20 260 sec. 5.42 hrs 53 % 0.74 – 89.6 – –
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on the Pareto set, it is recommended to retrain only with
the multipliers below our accuracy tolerance. With this, we
further reduce our design space to around 50 multipliers (12%)
depending on the DNN.
For ResNet8 and ResNet14, we perform approximate retrain-
ing with accuracy optimization for one epoch, for all AMs,
to corroborate that our selected Pareto set is still suboptimal
after DNN optimization. We use SGD with momentum, lr
of 1e-3 and batch size of 512. We find that one epoch is
enough to compensate for at least 85% of the lost accuracy
due to approximations, making our proposal for approximate
retraining less time-consuming than other approaches. As we
demonstrate that the initial Pareto front is also suboptimal
after retraining, we retrain ResNet20 only with the AMs of the
Pareto front. The results are plotted in Fig. 5. With our method,
the original FP accuracy can be reached or even surpased in
all DNNs with different multipliers. With a better accuracy

compared to the original FP accuracy, we reach energy savings
of up to 15%, 18% and 9% in the case of ResNet8, ResNet14
and ResNet20 respectively.
We compare retraining with accuracy optimization and Min-
PropAE by retraining ResNet8 with the latter approach. The
results are presented in Fig. 6. We observe that this method
is also effective to recover DNN accuracy and thus is a valid
alternative when the original dataset is not available. However,
the FP accuracy can not be surpased.
The comparison of our work with ALWANN [6], with respect
to DNN accuracy and retraining/excecution times with approx-
imate multipliers, is presented in Table II. With this results,
we demonstrate that retraining with arbitrary AMs is feasible
for large approximate DNNs given the proper methodology
and simulation tools, contrary to the stated in [6].

V. CONCLUSIONS

In this paper, we propose a novel methodology for efficient
multiplier selection and full and uniform approximation of
DNNs through retraining, for reducing the energy consumption
of multiplications in convolutional and FC layers. Addition-
ally, we present an alternative method for retraining without
the original training dataset, specially helpful when approxi-
mating proprietary DNNs. Although we are limited by not con-
sidering partial approximation, we demonstrate that through
effective DNN retraining and specialized tools, we achieve
better energy savings in shorter execution times, compared to
state-of-the-art frameworks for partial DNN approximation.
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