
Maximizing the Serviceability of Partially Reconfigurable FPGA
Systems in Multi-tenant Environment

Tuan D. A. Nguyen∗
duyatuan@acm.org

Technische Universität Dresden
Chair for Processor Design, cfaed

Dresden, Saxony, Germany

Akash Kumar
akash.kumar@tu-dresden.de

Technische Universität Dresden
Chair for Processor Design, cfaed

Dresden, Saxony, Germany

ABSTRACT
In cloud computing, software is transitioning from monolithic to
microservices architecture to improve the maintainability, upgrad-
ability and the flexibility of the applications. They are able to request
a service with different implementations of the same functionality,
including hardware accelerator, depending on cost and performance.
This model opens up a new opportunity to integrate reconfigurable
hardware, specifically, FPGA, in the cloud to offer such services.
There are many research works discussing solutions for this prob-
lem but they focus primarily on the high-level aspects of resource
manager, hypervisor or hardware architecture. The low-level phys-
ical design choices of FPGA to maximize the accelerator allocation
success rate (called serviceability) is largely untouched. In this paper,
we propose a design space exploration algorithm to determine the
best configuration of partially reconfigurable regions (PRRs) to host
the accelerators. Besides, the algorithm is capable of estimating the
actual resources occupied by the PRRs on the FPGA even before
floorplanning. We systematically study the effects of having more
PRRs on the system in various aspects, i.e., serviceability, waiting
time and resource wastage. The experiments show that at a certain
number of PRRs, upto 91% serviceability can be achieved for 12
concurrent users. It is a significant improvement from 52% with-
out our approach. The average amount of time that each request
has to wait to be served is also reduced by 6.3X . Furthermore, the
cumulative unused FPGA resources is reduced almost by half.

KEYWORDS
FPGA; cloud; microservice; design automation; design space explo-
ration; partial reconfiguration; floorplan
ACM Reference Format:
Tuan D. A. Nguyen and Akash Kumar. 2020. Maximizing the Serviceability
of Partially Reconfigurable FPGA Systems in Multi-tenant Environment.
In Proceedings of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’20), February 23–25, 2020, Seaside, CA,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3373087.
3375305
∗Tuan has joined Xilinx Research Labs Asia Pacific after submitting this article.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’20, February 23–25, 2020, Seaside, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7099-8/20/02. . . $15.00
https://doi.org/10.1145/3373087.3375305

Request Service A

VM0

VM2 VMn

Scale-out Horizontally Scale-out Vertically

VM1

o o o

VM1 FPGA
Service A Service A

Hypervisor

Figure 1: The microservice hypervisor decides whether to allocate
conventional Virtual Machines (scaling-out horizontally) or hard-
ware accelerator (FPGA) (scaling-out vertically).

1 INTRODUCTION
The software architecture has been evolving from monolithic to
modular architecture. In the former case, the software stack is writ-
ten as a long stretch of code which is tightly coupled. The functions
are highly dependent on each other. The functions’ library compat-
ibility also causes difficulties in deploying complicated and large-
code-base software. In the modular approach, the software is de-
composed into smaller, loosely-coupled (if not independent) pieces
called microservices [8]. It addresses the aforementioned problems
in monolithic architecture. Another advantage of microservices is
scalability. Since the services are deployed independently, they can
be replicated quickly to handle the growing processing demands.
The services can be mixed and matched with different performance
and memory characteristics or even platform from several vendors.
The purpose is to utilize the resources more efficiently [26] as long
as the communication protocols are compatible [25]. i

The microservices architecture fits really well to the context of
utilizing FPGA as an accelerator for an application. Conventionally,
a software-based implementation of a service is loaded into memory
and CPU when requested. Now, a hardware accelerator, in the form
of bitstream, can be configured to the FPGA instead. It runs just as
any other microservice as shown in Figure1. The presence of FPGA
is transparent to the users [30]. There are many efforts from both
industry and research community attempting to incorporate FPGA
into the cloud [1, 3, 4, 10, 13, 14, 18, 22, 24, 27, 29, 30, 33, 34]. The
most common feature that these works suggest is the use of the
partial reconfiguration (PR) [32] to provide the virtualized FPGA-
based computing resources.

The aforementioned works cover various aspects of FPGA in the
cloud such as (1) the high-level hypervisor to provide virtualization
service; (2) the middle-ware to manage, select and reconfigure the

https://doi.org/10.1145/3373087.3375305
https://doi.org/10.1145/3373087.3375305
https://doi.org/10.1145/3373087.3375305

PR regions (PRRs); andfinally the system architecture on the FPGA
with predefined PRRs. The size of the PRRs, their utilized FPGA
resources and their quantity are neither discussed nor analyzed.
Those PRRs are mostly fully-mapped, i.e, each of them can host all
of the existing accelerators (hereby called PR modules or PRMs). In
this case, the valuable FPGA resources will be wasted if the smaller
PRMs are used most of the time. Additionally, the larger these PRRs
are, the fewer of them that can be implemented on a fixed-size
FPGA. The number of concurrent users (or tenants) who can have
access to the FPGAs becomes lower. In other words, if the number
of tenants is kept the same, the access requests from them will be
rejected more regularly. It results in low serviceability, the ratio
of the serviceable requests. Thus, the number, sizes of PRRs and
the mapping of PRMs to PRRs should be optimized to maximize the
serviceability of the system. As a result, the mapping of PRMs to
PRRs should be heterogeneous instead of homogeneous.

It is a common knowledge that having more PRRs will deliver
higher parallelism. Nevertheless, as the number of PRRs and PRMs
increase, it becomes harder and almost impossible to analyze and im-
plement the system manually. The vendor system architect (hereby
called architect) has to simultaneously determine the best number
of PRRs, the mapping of PRMs to PRRs while making sure that
they can physically fit in the designated FPGA. Regarding the last
task, the architect has to do actual floorplanning for the PRRs on
the FPGA based on the PRM-PRR mapping. However, the current
PR development flow requires him/her to do that manually [32]. It
is especially tedious at the design space exploration (DSE) stage
where the system architecture is not yet finalized. Therefore, in this
work, we propose a novel automation tool to consider all of these
aspects. Our contributions are as followed.

• An optimization algorithm to perform the DSE to find
the best possible number of PRRs and the mapping of the
PRMs to those PRRs (one PRM can be mapped to multiple
PRRs) based on the existing PRM pool.
• Anestimationmethod to quickly estimate the actual FPGA
resources occupied by the PRRs based on the requested re-
sources during the mapping process. We also integrate an
automatic floorplanner [19] after mapping to verify that the
resulting system can physically fit in the designated FPGA.
• A lightweight simulator to assess the serviceability of the
system under test during the DSE.

The contributions presented in this work are not limited to
microservice-based applications. They are applicable to all types of
PR-based dynamic systems such as [6, 16]. In these systems, the list
of hardware accelerators is known at design time. However, their
actual usage is only known and determined at runtime. The behav-
ior of those applications at runtime resembles the concurrent users
in the cloud environment. Our approach can be used as another
layer of optimization during the architectural design phase.

We focus primarily on studying the advantages of having more
PRRs and how to map the PRMs to them. Therefore, we need a
flexible PR-based system template that can be generated with vary-
ing numbers of PRRs. Besides, the relative resource requirements
of the PRMs to the FPGA should not be too high. It is to make
sure that a large number of PRRs that can be implemented. These
requirements are essential to assess the scalability of our mapper.

The experiments are carried out with the architecture template
taken from [20]. Since their target FPGA is Xilinx Virtex-6, we
assume the same chip throughout the article. We collect a set of 50
real-world hardware accelerators synthesized by Xilinx Vivado HLS
version 2016.3 and ISE version 14.7 from the different publicly avail-
able sources [9, 12, 21, 31]. The results show that the best system
we can find is the one with 11 PRRs. It can maintain a serviceabil-
ity of more than 91% for up to 12 concurrent users. On the other
hand, only 52% serviceability can be achieved for the homogeneous
system with 4 PRRs. The average time the tenants have to wait
to be served is reduced by 6.3X . Besides, the cumulative wasted
FPGA resources are reduced by 50%. It could potentially improve
the energy efficiency of the system. More importantly, during the
DSE process, we find that the serviceability only increases with
the number of PRRs up to a certain point; after that, it degrades.
Therefore, it is very important to perform our proposed DSE to find
that sweet spot for a specific system and usage scenarios.

The remaining paper is organized as follows. The recent works
on PR for shared FPGA in the cloud are discussed in Section 2. The
proposed approach is presented in Section 3, followed by exper-
imental results in Section 4. Finally, the conclusions and future
works are presented in Section 5.

2 RELATEDWORKS
The integration of FPGA in cloud computing to accelerate compu-
tation is becoming a major trend in both industry and academia. In
this section, the related works are discussed in more details.

Chen et al. [4] discuss four major issues in enabling FPGAs
into the cloud. They are abstraction layers, sharing of resources,
compatibility between FPGA tool chains and finally security. The
main contribution of [4], similar to [1, 18, 27, 34], is to propose a
general framework and guidelines to tackle those issues, focusing
on the high-level layer where the resource manager, scheduler and
hypervisor run. However, the authors overlook the partitioning
details of the accelerator slots, i.e, the PRRs, which also affect the
serviceability of the system when users request the resources.

Published at the same time as [4], the work by Byma et al. [3] also
proposes a general framework to integrate FPGA with PR hardware
accelerators into existing cloud computing models. The PRRs are
considered as generic cloud resources in OpenStack to provide
seamless FPGA virtualization similar to regular virtual machines.
Even though the authors acknowledge the need to have mixed size
PRRs to improve the flexibility of the system and propose it as
future work, no further analysis has been done.

The cloud management and hypervisor named RC3E developed
by Knodel et al. [14] offersmultiplemodels for utilizing FPGA, either
full access to the reconfigurable resource (entire FPGA), Reconfig-
urable Silicon as a Service; or only part of it with the introduction
of PR virtual-FPGAs, Reconfigurable Accelerators as a Service and
Background Acceleration as a Service. In the last two cases, an FPGA
can host up to 4 virtual-FPGAs. The work byWeerasinghe et al. [29]
takes an alternative approach by not only utilizing virtual FPGA
concept but also proposing an infrastructure to allow large-scale
deployment of FPGAs across the cloud. Nevertheless, as in the
case of [14], further information about the virtual FPGA physical
implementation is not provided.

Fahmy et al. [10] present a framework for cloud computing with
virtualized FPGA accelerators in a similar method as [14]. The
authors do suggest partitioning the FPGA into various-sized PRRs
and use a greedy approach to allocate the hardware accelerators to
PRRs. For each accelerator usage request, the smallest PRR that can
host it is reserved. The purpose is to maximize the possibility of
configuring the larger accelerators for the later requests. If there is
no such free PRR, the request is rejected and processed in software.
Unfortunately, the impact of the size and the number of PRRs on
the success rate of serving the requests is not analyzed. The authors
also do not discuss how the PRMs are mapped to the PRRs.

The hypervisor proposed in [30] provides insight into how the
PRMs/PRRs can bemanagedwith a similar approach to the software-
based system. The performance and operation of the hypervisor are
assessed on the PR system with 3 PRRs. These PRRs have different
sizes. Each of them can only host a subset of the PRMs used in the
experiments. Similar to [10], the authors do not study the impact
of the PRRs to the overall performance of the system.

Zhao et al. [33] introduce the hardware project management and
building tool called hCode2.0. It provides an easy-to-use framework
to map and generate partial bitstreams for the accelerators within
a shell. A shell is a system architecture with placeholders for PRRs.
When a new accelerator is imported to a particular shell, it will be
mapped to all of the available PRRs which have sufficient resources.
Unfortunately, the tool needs a pre-defined system architecture as
input with already-placed fixed number of PRRs.

The work [13] approaches the problem from a different perspec-
tive. Instead of having multiple PRRs on one FPGA for the tenants
to share, they target the case where the tenants need one com-
mon accelerator. They propose a load balancing and monitoring
framework to manage the bandwidth and the request rates from
the tenants. However, this method is only suitable for the servers
with one dedicated acceleration service. It may not be applicable
for a general microservice environment.

In the embedded systems domain, there are several similar at-
tempts in trying to find a suitable system architecture for the appli-
cations [5, 7, 23]. These works start by analyzing the task graph of
the application. After that, they optimize the mapping and sched-
uling of those tasks (with the corresponding PRMs) on either soft-
ware/FPGA or FPGA-only systems with different numbers of PRRs.
However, their methods stop mapping the PRMs to PRRs once a
feasible schedule is found. Our method, on the other hand, does
not work at the task graph because it is not known at design time.
We instead optimize the distribution of PRMs to PRRs to maximize
the chance of finding a compatible PRR for a PRM at runtime.

All these works discuss many interesting high-level and system-
architecture aspects of integrating FPGAs as virtualized resources
into the existing cloud infrastructure. Still, the idea of improving the
success rate in allocating accelerators upon requests from users by
optimizing the number of PRRs as well as their sizes is untouched.

3 PROPOSED APPROACH
3.1 Design Space Exploration
The proposed DSE flow chart is illustrated in Figure2. There are six
major steps. It starts by obtaining the PRMs’ resources requirement
(Step 1). The requests from each tenant are generated randomly in

Step 1 - Pool of Accelerators Step 2 - Generate Requests

Increase the Number of PRRs

Stop

Step 3 -
Gen.&Synth.
PR System

Step 4 -
PRM-PRR

Mapper

Failed

Step 5 -
Floorplan the

Design

Failed

Step 6 -
Simulate the

System

Figure 2: Our proposed DSE flow used to find the optimal configura-
tions for PRRs from the accelerator pool and system template. Our
contributions are in light orange.

Step 2 (described in Section 3.4). The tenants in the cloud environ-
ment are independent of each other [30]. Thus, we can mimic the
behaviors of multiple tenants by simply combining their requests.

Thereafter, in Step 3, the PR-HMPSoC template provided by
Nguyen et al. [20] is used to create the PR systems with different
number of PRRs. The choice of PR-HMPSoC is for the experimental
purposes; it does not represent the actual cloud-based system. None
of the works in [3, 4, 10, 14, 29] is designed as a flexible template
to have systems with a varying number of PRRs. Therefore, we are
unable to use in the experiments. Nevertheless, our DSE approach
is agnostic to the underlying architecture.

Afterwards, each PR system is synthesized on Virtex 6 by Xilinx
ISE 14.7 to get the real resources requirement of each component
from Step 3. This information and the one obtained from Step 1
is fed to our PRM-PRR mapper presented in Section 3.2 and 3.3
to calculate the best mapping of PRMs to the PRRs (Step 4). The
tenants’ requests are not known a priori by the PRM-PRR mapper.

Next, we use PRFloor tool [19] to floorplan the system (Step
5). This step is required to make sure that the resulting system
can physically fit in the FPGA. It may happen that the PRM-PRR
mapper is not able to determine a proper mapping. The PRFloor
may also fail to find a feasible floorplan. In both cases, it is due to
the limited FPGA resource capacity. The PRM-PRR mapper always
tries to map at least 2 PRMs to each PRR. If the number of PRRs is
too high, the total resources required by the system may be larger
than the FPGA. In floorplanning, the more PRRs are requested, the
larger the system is with many more supporting static components.
It is more difficult for PRFloor to successfully find a floorplan.

Step 6 is executed when both PRM-PRR mapper and PRFloor
have run successfully. Our simulator takes the requests and system
specification (list of PRMs, PRRs and PRM-PRR mapping) generated
from Step 2 and 5 respectively to simulate the system. The quality
metrics (serviceability, waiting time and resource wastage) of the
current system are then recorded as one design point to compare
with the others. The simulator is presented in Section 3.4. Finally,
the requested number of PRRs is increased to go through another
iteration with a new system architecture.

When the system architecture and the PRM-PRR mapping are
finalized, a TCL script can be used to instruct Xilinx tool to generate
the partial bitstreams. This process may take a significantly long
time to complete. This problem can be alleviated by using bitstream-
relocation-aware PRM-PRR mapper, floorplanner and related low-
level techniques. However, it is not considered in this work.

There might be a concern about having too many processing
elements. It will affect the overall performance of the system. Specif-
ically, the memory/peripheral access contention may increase. Our
approach is made such that it does not concern about the internal
architecture. Since a system generator knows best about its archi-
tecture, it should have its own performance analysis. When those
metrics are worsen, an invalid system should be returned. Our DSE
flow will stop processing further. Those metrics can be combined
with ours to explore the Pareto multi-objective optimization.

3.2 PRM-PRR Mapper
The problem we are trying to solve in this work is to serve as many
hardware accelerator requests as possible. However, since the FPGA
resource is limited, it is impossible to implement all accelerators
on the FPGA. Conventionally, the architect tried to analyze the
application use-cases to generate a set of predefined FPGA configu-
rations; each contains a set of accelerators. When a request for the
accelerators is received, one bitstream is chosen to reconfigure the
whole device [15]. This method is impractical in the cloud environ-
ment where the behaviors of the tenants are nondeterministic [30];
even if they are, the number of use-cases will explode exponentially.
Furthermore, triggering the full reconfiguration will interrupt other
tenants who are sharing the same FPGA.

As a result, PR systems are the most suitable platforms in this
case. The FPGA is partitioned into multiple slots (called PRRs), the
accelerators (or PRMs) can be dynamically loaded into those slots
when needed. Unfortunately, there are several technical challenges.
The PRRs must be specified at design time [32]. The architect has
to decide which PRRs one PRM can run onto to define the sizes and
required resources of the PRRs appropriately. The mapping decision
is affected by many factors such as how often the PRMs are used,
how many PRRs that each PRM should be mapped to, what types of
resources that each PRM requires, how many resources are actually
occupied by the PRRs after floorplanning, etc. For this reason, we
propose the automatic PRM-PRR mapper. The optimization goal
of the mapper is to map one PRM to as many PRRs as possible
to maximize the chance of finding a suitable PRR when that PRM
is requested. Since the PRRs are heterogeneously mapped, there
are more PRRs compared to the homogeneous case. Hence, more
tenants can be served at the same time.

Based on the characteristics of the goal, we model it as an Inte-
ger Linear Programming (ILP) problem [28]. We define the func-
tion F (PRMi) = Fi to represent the number of PRRs that PRMi is
mapped to. The naive objective is to maximize the sum of these Fi
as shown in Equation 1.

n∑
i=1

F (PRMi) (n is the number of PRMs) (1)

There are three issues with this objective.

a) b)

PRR1 PRR2

PRR3 PRR4

PRR5

PRR1 PRR2

PRR3

PRR4

PRR5

PRM1

PRM2

PRM3

CLB BRAM DSP

Figure 3: The issue of one PRM is being mapped to too many PRRs
compared to the others. In a), PRM1 is mapped to PRR1-4 while
PRM3 is only mapped to PRR3. In b), a better mapping, PRM1 is
mapped to PRR1-3, PRM3 is mapped to PRR4-5.

• Issue 1: the architect, after analyzing the tenant usage be-
haviors, may observe that several PRMs are more common
than the others. It would be better to increase their Fi .
• Issue 2: some PRMs can be mapped to too many PRRs com-
pared to others, affecting the fair share between PRMs to
FPGA resource as illustrated in Figure3. In Figure3a, PRR1–4
can host PRM1 and PRM2; PRR5 can host PRM2 and PRM3.
If PRM1 is mapped to PRR5, there will not be enough DSP be-
cause PRR5 must cover a larger region. Here, F (PRM1) = 4,
F (PRM2) = 5, F (PRM3) = 1. In Figure3b, PRR1–3 can host
PRM1 and PRM2, PRR4–5 can host PRM2 and PRM3; there-
fore F (PRM1) = 3, F (PRM2) = 5, F (PRM3) = 2. The total
number of F (PRMi) in both cases is 10. However, in Figure3b,
PRM3 has more chance of finding a suitable PRR to load to.
• Issue 3: if the numbers of PRMs mapped to each PRR are not
balanced, some PRRs will become hot-spots where they are
used more frequently than others. It will potentially cause
more resource contentions.

Consequently, the final ILP program is built as follows. The
objective function is presented in Equation 2. The most important
part of the ILP constraint section is described by Equations 3 to 5.
Minimize:

− α ∗
n∑
i=1

F (PRMi)

priorityi
+ β ∗

n−1∑
i=1

n∑
j=i+1

DEVPRMi j+

γ ∗
m−1∑
i=1

m∑
j=i+1

DEVPRRi j (2)

Subject to:

F (PRMi) =

m∑
j=1

MAP_PRMiPRRj >= 1 (3)

G(PRRj) =
n∑
i=1

MAP_PRMiPRRj >= 2 (4)

ALL_PRRCLB =
m∑
i=1

PRRiCLB <= MAXCLB (5)

The first term of Eqn. 2 introduces a new measure of priority
for each PRM, priorityi , to solve the aforementioned Issue 1. The
highest possible priorityi is 1. Therefore, the lower the priority
(higher number) is, the smaller the impact of the corresponding
PRM on the summation of F (PRMi).

The second and third terms of Eqn. 2 address the last two issues
respectively. The DEVPRMi j measures the difference, or deviation,
between the number of PRRs that PRMi and PRMj are mapped
to. The intrinsic idea is that, minimizing DEVPRMi j (∀i , j, i, j =
1 → n) will balance the values of F () between all PRMs. By this
way, the second issue can be avoided. For instance, in Figure3, the
total deviation of PRMs in example a is 8 while being just 6 in b.
The same method is applied to the third issue related to PRRs by
using DEVPRRi j (∀i , j, i, j = 1 → m,m is the number of PRRs).
Equations 6 to 9 illustrate how to compute these deviations as
constraints in the ILP program.

DEVPRMi j − F (PRMi) + F (PRMj)) >= 0 (6)
DEVPRMi j − F (PRMj) + F (PRMi)) >= 0 (7)
DEVPRRi j −G(PRRi) +G(PRRj) >= 0 (8)
DEVPRRi j −G(PRRj) +G(PRRi) >= 0 (9)

Eqn. 3 shows the calculation of the number of PRRs that PRMi
is mapped to. The number of PRMs that PRRj can host is de-
scribed in Eqn. 4. The set of binary variablesMAP_PRMiPRRj (∀i =
1 → n, j = 1 → m) indicates the mapping of PRM to PRR. If
MAP_PRMiPRRj = 1, then PRMi is mapped to PRRj . We rely on
these variables to determine the final PRM-PRR mapping.

Eqn. 5 is used to restrict the total number of CLBs occupied by all
PRRs from exceeding the available CLBs (after deducting the static
modules). The requested number of CLBs of PRRi , PRRiCLB , is the
largest requested number of CLBs among all PRMs that are mapped
to PRRi . Eqn. 10 – 11 present the computation of PRRiCLB from
two representative PRMs, PRMj and PRMk . The same computation
is applied for CLBM, BRAM and DSP.

PRRiCLB − PRMjCLB ∗MAP_PRMjPRRi >= 0 (10)
PRRiCLB − PRMkCLB ∗MAP_PRMkPRRi >= 0 (11)

In Eqn. 2, there are three weight parameters, α, β and γ . They
are used to balance the preference of the architect over three objec-
tives. To make it easier to adjust these parameters, each objective
should be normalized to its corresponding maximum possible value.
The first objective, maximizing all F (PRMi), reaches its maximum
when each PRMs can be mapped to all PRRs, hence the value is

m
n∑
i=1

priority−1
i .

Calculating the maximum values for the deviation metrics is not
as straight forward. Eqn. 12 – 13 are the simplified functions used
to calculate the total deviations of DEVPRMi j and DEVPRRi j . It is
assumed that F (PRMi) is sorted in the decreasing order of value
when i = 1→ n. The same assumption is applied for G(PRRi).

n−1∑
i=1

n∑
j=i+1

DEVPRMi j =

(n + 1) ∗
n∑
i=1

F (PRMi) − 2 ∗
n∑
i=1

i ∗ F (PRMi) (12)

m−1∑
i=1

m∑
j=i+1

DEVPRRi j =

(m + 1) ∗
m∑
i=1

G(PRRi) − 2 ∗
m∑
i=1

i ∗G(PRRi) (13)

In our emperical analysis, the total deviations of all PRMs get its
maximum value when half of the PRMs is mapped to all PRRs; and
the other half is mapped to only 1 PRR. A similar observation can
be drawn for DEVPRRi j . Therefore, Eqn. 12 – 13 are simplified to
Eqn. 14 and 15.

MAX (Eq. 12) =

{
0.25n2(m − 1), n is even
0.25n′(n′ + 2)(m − 1), n is odd, n′ = n − 1

(14)

MAX (Eq. 13) =

{
0.25m2(n − 1),m is even
0.25m′(m′ + 2)(n − 1),m is odd,m′ =m − 1

(15)

After calculating the maximum values for three objectives, the
parameters α, β and γ are then adjusted as in Eqn. 16. The architect
balances the weights via α′, β′ and γ ′.

α =
α′

m
n∑
i=1

priority−1
i

; β =
β′

Eq. 14
;γ =

γ ′

Eq. 15
(16)

3.3 Estimate Occupied Resources
In PRFloor work [19], the authors explain that the actual FPGA
resources occupation of the PRRs can be very different from the
initial requirements. It is due to the heterogeneity and non-uniform
distribution of the FPGA resources. If the PRM-PRR mapper does
not have the notion of this issue, it may unknowingly over-assign
(assign more than it should be) the PRMs to the PRRs. Consequently,
the floorplanner will fail to find a feasible floorplan for the system
because the PRRs become too big. The DSE process described in
Section 3.1 may terminate prematurely. As a result, the potential
optimal design points later are lost.

We propose a method to estimate the actual occupied resources
for PRRs based on the initial requirements. The pseudo-code used to
estimate the resources occupation of a PRR is shown in Algorithm
1. This algorithm is only run once for each type of FPGA. The basic
idea is to apply the curve fitting algorithms to determine the best-fit
functions whose the inputs are the number of requested resources.
In line 4, a placement of a PRR is the smallest rectangle region
(starts from any location of FPGA) that covers at least the same
amount of resources requested by that PRR. The algorithm finds all
placements for the PRR from every possible location of the FPGA.
In this work, the fitting functions found from line 9—12 are obtained
by using the Matlab Curve Fitting Toolbox [17]. These estimations
are used in constraint section of the PRM-PRR mapper (Eqn. 10 –
11) for the PRMs instead of the resources from the synthesis reports.
The reason we can use the estimation directly to the PRMs instead
of PRRs is explained as follows. The required CLB resource for the
PRR in which PRMi , (i = 1→ k) are mapped to, is: PRRr eqCLB =
max PRMir eqCLB . The estimated resource occupation of PRR is:
estPRRiCLB = est(max PRMir eqCLB) = max est(PRMir eqCLB). The
accuracy of the algorithm is discussed in Section 4.3.

Algorithm 1 Estimate the actual resources occupation
Require: F PGAclb , F PGAclbm , F PGAbram , F PGAdsp
1: for all rsrc ∈ {clb, clbm, bram, dsp} do
2: generate PRRs which require numr src = 1 → F PGAr src ,

numr emaininд_r srcs = 0
3: for all PRR do
4: find all possible placements on the FPGA
5: got mean: mean_clb(numr src), mean_clbm(numr src),

mean_bram(numr src),mean_dsp(numr src)

6: end for
7: end for
8: determine 4 fitting functions to estimate the occupied CLB
9: got: est_clb_f rom_clb(numclb) ≈mean_clbnumclb
10: got: est_clb_f rom_clbm(numclbm) ≈mean_clbnumclbm
11: got: est_clb_f rom_bram(numbram) ≈mean_clbnumbram
12: got: est_clb_f rom_dsp(numdsp) ≈mean_clbnumdsp
13: // estimate the CLB from r eqclb , r eqclbm , r eqbram , r eqdsp
14: est_clb(r eqclb , r eqbram , r eqdsp)

= max(est_clb_f rom_clb(r eqclb),
est_clb_f rom_clbm(r eqclbm),
est_clb_f rom_bram(r eqbram),
est_clb_f rom_dsp(r eqdsp), r eqclb)

15: similar calculation is used to compute the other resources est_clbm,
est_bram and est_dsp

3.4 Request Generator and Simulator
In the microservice-based environment, when the tenants request
for services with a specified workload, performance requirement
and cost preference, the hypervisor takes responsibility to process
the requests. It decides whether to scale out horizontally, allocat-
ing conventional virtual machines (VMs) to serve the requests, or
to scale out vertically, choosing a VM with a suitable processing
elements such as FPGA (Figure1). This process is transparent to
the tenants. Each tenant works independently of each other. The
hypervisor can assign multiple FPGA slots (PRRs) to the tenants.
It may happen that there is no available PRR left. The hypervisor
has to either wait for the other tenants to release the PRRs within
a predefined timeout period, or allocate the conventional VMs [10].
These behaviors of the tenants and hypervisor are considered here.

3.4.1 Request Generator. We propose a request generator shown
in Algorithm 2to mimic the behaviors of the tenants. The requests
from each tenant are generated independently of the others. For
each request, the required service (or PRM), the start time when
the request must be served and the duration that the tenant will
use the service upon successful allocation are randomly generated.
Additionally, the generator can specify the timeout period during
which the hypervisor is allowed to postpone the request to wait
for a suitable PRR. The maximum number of PRMs that one tenant
is allowed to ask for at any particular time is configurable (the
concur_prm parameter in line 4).

The requests parameters are uniformly generated. However, in
practice, it is uncommon for the tenants to use all kinds of services
from different application domains. Each tenant is only primarily
interested in a particular domain. Our request generator takes that
into account by offering an option to specify the primary domain
for each tenant. In that case, most of the services requested by the
tenant will be from that domain (line 10 of Algorithm 2).

Algorithm 2 The Request Generator
Require: num_r eq, pr ior ity , pr imary_domain, durationmin ,

durationmax , t imeoutmax , concur_prm, windowlenдth
1: i = 0; windowstar t = 1; star t_t imeprev = 1
2: while i < num_r eq do
3: latest_end_t ime = 0
4: for j = 1 to concur_prm do
5: // gen_req() randomly decides whether to generate a new request
6: if дen_r eq() == 0 then continue
7: дen_star t_t ime(r eqi ,windowstar t , star t_t imeprev)
8: // star t_t ime >= max(windowstar t , star t_t imeprev)
9: generate duration, t imeout
10: generate app_domain
11: generate r eq_prm ∈ app_domain
12: expected_end = star t_t ime + duration + t imeout
13: if latest_end_t ime < expected_end then update it
14: i = i + 1
15: star t_t imeprev = star t_t ime
16: end for
17: windowstar t = windowstar t +windowlenдth
18: if windowstar t < latest_end_t ime + 1 then update it
19: end while

Algorithm 3 The Simulator
Require: l ist_of _tenants , l ist_of _prm, l ist_of _f pдa
1: дlobal_t ick = 0; queuecur_r eq ← ∅
2: while all requests are not served do
3: advance дlobal_t ick
4: r emove_all_t imed_out_r equests(queue_cur_r eq)
5: for all cur_tenant ∈ l ist_of _tenants do
6: f r ee_completed_r equests(cur_tenant)
7: while (r eq = pop_next_r eq(cur_tenant , дlobal_t ick)) do
8: push_to_queue(queue_cur_r eq, r eq)
9: end while
10: end for
11: serve_r equests(queue_cur_r eq)
12: end while
13: report quality metrics

3.4.2 Simulator. Our simulator is developed to act as a simplified
hypervisor serving the requests from the tenants. Algorithm 3
describes how it works. One simulation time is called a tick.

The list_o f _tenants and the corresponding requests are pro-
vided by the request generator. The list_o f _f pдa and the PRRs de-
tailed information and the PRM-PRRmapping are obtained from the
previous steps of theDSE flow. The remove_all_timed_out_requests()
in line 4 removes all timed-out requests that the hypervisor defers
to serve because there was no suitable PRR at the time they arrived.
The provided timeout periods are generated randomly by the re-
quest generator. The function serve_requests() serves the requests
in the following order of (1) increasing start_time and (2) tenant’s
priority (the list_o f _tenants is sorted based on the priority). On
the mapping aspect, the PRR assigned to the request is chosen such
that (1) it can host the requested service and (2) it is the smallest
available PRR. The mapper and scheduler could be developed fur-
ther with a more sophisticated strategy to take other metrics into
account such as application performance or energy efficiency.

4 RESULTS
4.1 Experiment setup
All of our experiments are run on a computer with CPU Intel
CoreTM i5, 2.5 GHz x4 (2 physical cores with hyper-threading) and
12GB of memory. The operating system is Ubuntu 14.04 LTS 64-bit.
The PR-HMPSoC template and PRFloor are provided by [19, 20].
Even though our method is made general enough for all kinds of
Xilinx FPGA, the one we are experimenting with (due to the restric-
tion of [20]) is Virtex-6 XC6VLX240T. Gurobi Solver [11] is used
to solve the PRM-PRR mapper with default settings. The weight
parameters in the PRM-PRR mapper objective function are α′ = 5,
β′ = γ ′ = 1 (unless stated otherwise).

The request generator generates the requests from tenants based
solely on the information of the PRMs, or the IP pool, and the ten-
ants’ configuration as discussed in Section 3.4.1. In our experiments,
all PRMs have equal priority unless stated otherwise. Each tenant
issues 10000 requests and can use up to 3 PRRs at any one time. The
PRMs are chosen randomly with uniform distribution, regardless
of the application domain. The usage duration of each PRM upon
successful allocation is randomly generated between 10 and 400
simulation ticks. Thewindow_lenдth parameter in Algorithm 2 is
set to 500 ticks. The number of tenants in each simulation is from 2
to 12 in the increment of 2. We have two sets of tenant requests, the
first one disables the timeout mechanism for the requests that can-
not be served immediately as discussed in Section 3.4.2; the second
one enables that with the random timeouts of upto 200 ticks.

4.2 IP Pool
We collect 50 real-world hardware accelerators, or PRMs, from CH-
Stone [12], Opencores [21], EPFL [9] and Xilinx XPS IP core library
[31]. These PRMs are categorized into 8 application domains: digital
signal processing (DSP), cryptography, arithmetic, communication,
soft-core processing unit, image processing, video processing and
others. Figure4 depicts the resources requirements of the PRMs.
As seen, the sizes and types of resources of the PRMs vary quite
significantly which reflect microservice scenarios.

4.3 Accuracy of the Resource Estimation
In this section, the accuracy of the resource estimation method
presented in Algorithm 1 is assessed. We randomly generate 10000
PRRs whose sizes can be up to 80% of the device. Afterwards, the
mean resources occupied by each PRR are computed by the floor-
planner. The error histogram of the requested resources compared
against the actual occupation on the device is provided in Figure5a.
The Algorithm 1 is then used to estimate the occupied resources.
The corresponding error histogram is illustrated in Figure5b. The
results in two figures indicate that our algorithm does offer a highly-
accurate estimation on the final resource occupations. The error of
the CLB and CLBM estimations are mostly within the 5% range, at
most 10%. In the case of BRAM and DSP, there is a small amount
of outliners that are more than 20% off from the expected values.
This high error is due to the irregular distribution of the resources,
especially BRAM and DSP, on the FPGA. This irregularity causes
large variations in the size of the placements.

0
30
60
90
120
150100000

10000
1000

100
10

1
0 10 20 30 40 50

N
um

 o
f B

RA
M

/D
SP

DS
P

N
um

 o
f L

U
T

(L
og

 S
ca

le
)

PRMs

LUT BRAM DSP

Figure 4: The resources distribution of 50 PRMs in the experiments.

REQ_CLB

-1 -0.5 0
0

2000

4000 REQ_CLBM

-1 -0.5 0
0

5000

REQ_DSP

-1 -0.5 0
0

5000

10000
REQ_BRAM

-1 -0.5 0
0

5000

10000

(a) Requested resources vs. actual occupied resources

EST_CLB

-0.2 -0.1 0 0.1 0.2
0

1000

2000
EST_CLBM

-0.2 -0.1 0 0.1 0.2
0

2000

4000

EST_DSP

-0.4 -0.2 0 0.2 0.4
0

5000
EST_BRAM

-0.2 0 0.2 0.4
0

5000

(b) Estimated resources vs. actual occupied resources

Figure 5: The error histograms of the requested and estimated re-
sources compared against the actual mean resources occupied by
PRRs after floorplanning.

4.4 Design Space Exploration
4.4.1 PRM-PRR Mapper. During the DSE process, the PR systems
with heterogeneous PRRs are compared against the baseline. The
PRRs in this baseline system are homogeneous. Each of them can
host any of the PRMs presented in Section 4.2. The architecture
of the baseline system is obtained naturally by just executing the
DSE flow. If it is possible to fully map all PRMs to every PRR in the
system, the PRM-PRR mapper will converge to that point, thanks
to the formulation of the objective function shown in Eqn. 2. The
baseline system returns the best possible objective value among
the systems with the same number of PRRs. It is −m ∗n in which m
and n are the number of PRRs and PRMs respectively. All generated
systems are later simulated with the same set of tenant requests.

We generate the PR system from the PR-HMPSoC template start-
ing with 3 PRRs. In these experiments, the PRM-PRR mapper re-
stricts the CLB (including CLBM), BRAM and DSP utilization of
both PRRs and static modules to 85% of the Virtex 6. We keep in-
creasing the number of PRRs until PRM-PRR mapper or PRFloor

Table 1: Themapping and floorplanning results obtained for the PR
systems after the DSE.

Num
PRRs

Map
Time (s)

Floorplan
Time (s) Optimal F̄ (PRM) Ḡ(PRR)

3 0.05 16 ✓ 3.0 50.0
4 (base) 0.04 17 ✓ 4.0 50.0

5 0.87 85 ✓ 4.9 48.6
6 1.91 29 ✓ 5.6 46.8
7 2.27 44 ✓ 6.4 45.7
8 5.01 46 ✓ 7.2 44.8
9 43.67 59 ✓ 7.6 42.4
10 101.47 175 ✓ 8.1 40.7
11 119.72 85 ✓ 8.6 39.1
12 122.84 103 ✓ 8.9 37.0
13 300.00 95 ✗ 9.2 35.2
14 300.00 108 ✗ 9.4 33.7
15 300.00 104 ✗ 9.1 30.5

fails to find a feasible floorplan. However, during the DSE, we notice
a decline in the serviceability of the systems and decide to stop the
DSE sooner. At this point, we have already obtained the system
with up to 15 PRRs. Table 1 presents the time the PRM-PRR mapper
takes for each system. The floorplanning time, the average values
of F (PRM) and G(PRR) are also given. From the table, the baseline
system has 4 PRRs. This baseline system has the same number of
PRRs as our most similar related work [10]. During the DSE, there
are only a few cases where the final resources occupation after
floorplanning exceed the 85% constraint.

All mappings except the systems with more than 12 PRRs given
by PRM-PRR mapper are proved optimal, i.e, the objective func-
tions are mathematically proved by Gurobi that they get the lowest
possible values. For the first 6 systems, it takes less than 5 seconds
for PRM-PRR mapper to find an optimal solution. However, in the
subsequent cases with 9 to 12 PRRs, the mapper has to spend nearly
2 minutes. For the system with 13 to 15 PRRs, the ILP solver stops
exploring to find the optimal solutions because the timeout is set to
5 minutes. The thorough investigation of this issue is left for future
work to optimize the ILP program.

We also run the experiments in which the resource estimation
is turned off. However, PRFloor fails to floorplan the design with
only 6 PRRs because the PRM-PRR mapper over-assigns the PRMs
to PRRs. From our empirical results, even though each PRR can
host more PRMs in these experiments, the serviceability of these
systems is almost identical to the system with the same amount of
PRRs with resource estimation turned on. The PRM-PRR mapper
only over-assigns one or two PRMs to some PRRs. This does not
have much impact on the overall serviceability.

4.4.2 The Serviceability - Without Request Timeout. The service-
ability values of the systems after running the simulation are shown
in Figure6. The results are for the first set of tenant request (time-
out is not allowed). It can be easily drawn from the figure that
increasing the number of PRRs does improve the serviceability

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

3 4 5 6 7 8 9 10 11 12 13 14 15

Se
rv

ic
ea

bi
lit

y

Num PRRs
2 Tenants 4 Tenants 6 Tenants 8 Tenants 10 Tenants 12 Tenants Avg.

Figure 6: The serviceability of all systemswith the different number
of PRRs and tenants (no timeout).

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2 4 6 10 12
Se

rv
ic

ea
bi

lit
y

8
Num Tenants

3 PRRs 4 PRRs 5 PRRs 6 PRRs 7 PRRs 8 PRRs 9 PRRs
10 PRRs 11 PRRs 12 PRRs 13 PRRs 14 PRRs 15 PRRs

Figure 7: The serviceability of all systems shown in Figure6 but are
grouped into the number of tenants.

of the systems significantly. For instance, comparing the baseline
system in Figure6 with the 11-PRR system, the average service-
ability increases from 0.74 to 0.95, which is 28% improvement. If
we only consider the case of 12 tenants, the improvement is much
higher, 75%. Additionally, having more tenants will decrease the
serviceability of the baseline system drastically, about 11% for every
increment of 2 tenants. With the 11-PRR system, it is just 1% .

Another interesting observation from Figure6 is the decrease in
serviceability when we have more than 11 PRRs. This behavior is
better observed in Figure7. In this graph, the systems are rearranged
based on the number of tenants. The serviceabilities of the systems
with more than 11 PRRs are even worse than the baseline when
there are 2 and 4 tenants. It can be explained as follows. As the
number of PRRs increases, the resources left for PRRs become
smaller. Therefore, each PRR now hosts a fewer number of PRMs
(Table 1). Some PRRs become hot-spots where multiple tenants
try to request for the PRMs that can only be configured into those
regions. As a result, the overall serviceability of these systems goes
down. Figure7 also assists the architect on how to choose the best
configuration based on the expected number of tenants. If there
are less than 8 tenants, then the 9-PRR system delivers the best
serviceability. If more tenants are needed to be served, then the
11-PRR system is the best all-around.

We also have an extended experiment to evaluate the chosen
system under unknown conditions. It is to make sure that after the
DSE, the system of interest can still maintain its quality of service
as long as the distributions of the requested accelerators are the
same. Figure8 illustrates the average serviceability offered by the
same set of systems with three other different sets of requests from

0
0.2
0.4
0.6
0.8
1

Se
rv
ic
ea

bi
lit
y

3 4 5 6 7 8 9 10 11 12 13 14 1 5
Num PRRs

Normal More PRM usage time More PRMs/tenant

Figure 8: The serviceability of the same 11-PRR system with the
other three different sets of requests from 12 tenants.

-0.01

-0.02

-0.03

0

0.01

0.02

0.03

0 8 2416
Wait Time (tick)

2 Tenants

4 Tenants

6 Tenants

8 Tenants

10 Tenants

12 Tenants

Figure 9: The serviceability differences when the reconfiguration
overhead is considered versus the cases without that overhead. The
requests are kept in the queue for at most “wait time" ticks.

12 tenants. The first one is created with the same configuration as
stated in Section 4.1. In the second set, each tenant uses the PRMs
for a longer duration, up to 800 ticks instead of 400. The third one
allows the tenants to request up to 5 PRMs at any time instead
of 3. Each request set is generated 5 times with different random
seeds. The reported results are the average of these. As shown in
the figure, the 11-PRR system still outperforms others across three
new sets of requests.

4.4.3 The Serviceability - With Request Timeout. In PR systems,
when a PRM is requested, there is a small reconfiguration overhead
as presented in [2]. In their experiments, this overhead is about 4%
of the execution of the PRM. It depends on how big the PRRs are and
how long the PRMs are in use. However, the bigger PRMs tend to be
used longer than the smaller ones. It also takes longer to reconfigure
them. These assumption may not be entirely true in general cases;
but it adequately reflects how big the latency is. Therefore, we run
another set of experiments in which the reconfiguration overhead
is 8 ticks, i.e. 4% of the average 200 ticks execution time of the PRMs.
The requests from tenants are kept the same. We also allow the
requests to stay longer in the queue for 0, 8, 16, or 24 ticks while
waiting for their turn to be served. The ratio of the differences in
the average serviceability of the systems is shown in Figure9. As
expected, the serviceability decreases when the requests are only
allowed to wait for a small amount of time. However, the change is
very subtle, at most 2.7%. When the requests wait for a longer time,
the systems indeed gain better serviceability. Thus, if the tenants
do not strictly require their requests to be processed immediately,
they will be able to have more requests served.

To assess our observation, we run the second set of tenant re-
quests in which the larger timeout is enabled. In this time, we
measure the average wait time, i.e, the time that each request has to
wait to be served. The reconfiguration overhead is still 8 ticks. The

0.4
0.5
0.6
0.7
0.8
0.9
1

0
20
40
60
80

100
120

Se
rv

ic
ea

bi
lit

y

Si
m

ul
at

io
n

Ti
ck

3 4 5 6 7 8 9 10 11 12 13 14 15
Num PRRs

Average
Wait Time

Standard
Deviation

Service-
ability

Figure 10: The average wait time for the requests and the respective
serviceability of the systems with 12 tenants and a larger timeout.

0.8

1
1.2

0.00

2.00

4.00

6.00

8.00
10.00

0.6

0.4

0.2
5:1:1 5:2:2 5:3:3 5:4:4 5:5:5 5:6:6 5:7:7 5:8:8 5:9:9 5:10:10

Ra
tio

N
o.

 o
f P

RR
s

F̅(PRM) σ(F)
α':β':γ'

Normalized σ(usage time) Normalized Service.

Figure 11: The effect of α ′, β ′, γ ′ on the average F (PRMi), its stan-
dard deviation, the standard deviation of the usage time and the ser-
viceability of the 11-PRR system with 12 tenants. The standard de-
viations are normalized to when α ′ : β ′ : γ ′ = 5 : 1 : 1

average wait time, as well as the corresponding serviceability of
the systems with 12 tenants, are illustrated in Figure10. The graph
shows that the more PRRs we have, the better wait time that the
systems can deliver. The gain in the serviceability of all systems
ranges from 4.8% to 17.7%. The average gain is 10%. The standard
deviation of the wait time in the systems with the larger number
of PRRs is also small. It means that these systems maintain good
wait times for most of the requests.

4.4.4 The effect of α′, β′ and γ ′. In this section, the effect of α′, β′
andγ ′on F (PRM) is analyzed. Figure11 shows themean of F (PRMi),
F̄ (PRM), in various configurations of the weights. The standard
deviation,σ (F), of all F (PRMi) is presented. The standard deviations
of the PRRs’ usuage time and the respective serviceablity are also
reported. They are normalized to the case of α′ : β′ : γ ′ = 5 : 1 : 1.
The number of PRRs is 11. All PRMs have the same priority. Each
system obtained is then simulated with 12 tenants, using the same
set of requests as the experiment presented in Figure10.

As expected, F̄ (PRM) decreases when α′ decreases (with respect
to β′ andγ ′). When PRM-PRRmapper tries to even out the F (PRMi)

in favor of high β′ and γ ′, it has to lower the F (PRM) of some PRMs
significantly to increase the F (PRM) of larger PRMs. As a result, the
standard deviation becomes smaller as shown in the figure. β′ andγ ′
also have an impact on the serviceability. As mentioned earlier, we
include theDEVPRM calculation in the objective function to provide
a means to increase the chance of finding a compatible PRR for
some PRMs. These PRMs initially can only be mapped to a smaller
number of PRRs even though all of them have the same priority.
As seen, when we increase β′:γ ′ to up to 4:4, the serviceability is
improved slightly, around 1.5%. After this point, the serviceability
is reduced upto 8%. In this case, on average, each PRM has only 2

0.6
0.65
0.7

0.75
0.8

0.85
0.9

0.95

No Priority Priority Arith Priority Crypto Priority Image

Arith Crypto Image Others

Figure 12: The average ratio of the number of PRRs assigned to
PRMs in each domain (with different priority) versus the total num-
ber of PRRs.

compatible PRRs. This number is too small considering that there
are 12 tenants sharing the FPGA and each tenant can request for up
to 3 PRMs at a time. The DEVPRR also helps reducing the hot-spot
issue when too many PRMs are mapped to only a few number of
PRRs. The downward trend of the normalized standard deviation
of the PRRs’ usage time illustrates that the PRRs are being utilized
more fairly. The aforementioned effects of α′, β′ and γ ′) emphasize
the ability of PRM-PRR maper in controlling the behavior of the
system. The architect can tune the weights to suit the requirements.

4.4.5 Assigning priorities to PRMs. In our PRM-PRR mapper ob-
jective function, we consider the situation where some PRMs are
used more often than the others. These common PRMs should be
mapped to more PRRs. In this section, we present the effect of as-
signing a higher priority to some specific groups of PRMs. Our pool
of PRMs is classified into application domains. These are Arithmetic
(multiplication, addition, sine, division), Cryptography (SHA, MD5,
AES, RC4), Image/Video Processing (JPEG decoder, image statistics,
color filtering array, stream scaler), and many more. The experi-
ment is set up such that, first, all PRMs under each of the three
aforementioned domains will be assigned higher priority than the
others. Then, the PRM-PRR mapper is executed for each case to find
out the optimal mapping in the systems with 3 to 15 PRRs. Finally,
the ratio of F (PRMi) over the available PRRs in each system are
calculated and averaged based on the application domain across all
systems. Figure12 presents the results.

It can be seen that the corresponding Fi is improved for each of
the application domain (arithmetic, cryptography and image/video
processing) when their priorities parameter are set higher. The Fi
values of the other PRMs are automatically reduced to compen-
sate for the PRMs under consideration. This flexibility gives the
architect a freedom to adjust the mapping based on the statistics
of the applications. Each system in the server farms can be tuned
individually to offer even better performance for tenants with a
suitable runtime mapping/scheduling strategy.

4.4.6 Wasted resources. We introduce the wasted resource cost met-
ric to further inspect the usefulness of having a larger number
of PRRs. If all PRRs must be large enough to accommodate the
largest PRMs, which may not be used regularly, the valuable FPGA
resources will be wasted. During the simulation, we compute the
wasted resource cost by accumulating the difference in the resources
of the requested PRMs with their allocated PRRs. Each type of re-
source – CLB, BRAM or DSP – is assigned different weight similar
to [19]. The results are reported in Figure13. The state of the sys-
tem is sampled 100 times at fixed intervals. As shown, the wasted

0
1000000
2000000
3000000
4000000
5000000
6000000

FP
G

A
W

as
ta

ge

Time

4-PRR 11-PRR

Figure 13: The weighted-sum of the wasted FPGA resource (CLB,
BRAM, DSP) throughout the simulation.

0
1
2
3
4
5
6
7
8
9
10

0
1
2
3

a) 11-PRR system

b) Baseline system with 4 PRRs

The usage of PRRs during simulationPRRs

Figure 14: The utilization of each PRR throughout the simulation.
For each PRR, the red/blue boxes mean that it is occupied/free.

resources in the 11-PRR system are almost half of the baseline. It
implies that the 11-PRR system uses the FPGA resources much
more efficiently than the baseline.

The number of PRRs and how they are being utilized during
the simulation is captured in Figure14. In this experiment, α′ : β′ :
γ ′ = 5 : 1 : 1. The result suggests that utilizing the 11-PRR system
could also improve the energy efficiency. In the figure, there are
more blue gaps in the 11-PRR system compared to the baseline.
It is possible to disable the PRRs during the free periods to save
dynamic power. In the baseline system, all PRRs are active most of
the time. But it can only serve half of the requests from tenants as
discussed in Section 4.4.2.

5 CONCLUSION AND FUTUREWORKS

In this work, we propose a DSE process to find the best possible
PR system configuration to optimize for the serviceability. The DSE
process is composed of our novel ILP-based PRM-PRR mapper, the
resource estimation method, request/simulator engines and the
integration with an automatic floorplanner.

In the future, wewill extend the ILP program and the DSE process
to determine the best number of not only the PRRs, but also the
FPGAs for the specific QoS requirements. The bitstream-relocation-
aware approach will be explored to generate partial bitstreamsmore
efficiently. The real-world cloud applications will also be examined.

Acknowledgments — This work is supported by the German Research Foundation
(DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden"
(cfaed) at the Technische Universität Dresden..

REFERENCES
[1] H. Artail, M. A. R. Saghir, M. Sharafeddin, H. Hajj, A. Kaitoua, R. Morcel, and

H. Akkary. 2019. Speedy Cloud: Cloud Computing with Support for Hardware
Acceleration Services. IEEE Transactions on Cloud Computing 7, 3 (July 2019),
850–865. https://doi.org/10.1109/TCC.2017.2665493

[2] Mikhail Asiatici, Nithin George, Kizheppatt Vipin, Suhaib A Fahmy, and Paolo
Ienne. 2016. Designing a virtual runtime for FPGA accelerators in the cloud. IEEE
26th FPL (2016).

[3] Stuart Byma, J Gregory Steffan, Hadi Bannazadeh, Alberto Leon Garcia, and Paul
Chow. 2014. FPGAs in the cloud: Booting virtualized hardware accelerators with
OpenStack. IEEE 22nd FCCM (2014).

[4] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao Chang, and
Kun Wang. 2014. Enabling FPGAs in the cloud. ACM Computing Frontiers (2014).

[5] S. Chen, J. Huang, X. Xu, B. Ding, and Q. Xu. 2018. Integrated Optimization of
Partitioning, Scheduling, and Floorplanning for Partially Dynamically Recon-
figurable Systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2018).

[6] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn
Reinman. 2014. Architecture Support for Domain-Specific Accelerator-Rich
CMPs. ACM Transactions on Embedded Computing Systems (2014).

[7] E. A. Deiana, M. Rabozzi, R. Cattaneo, and M. D. Santambrogio. 2015. A multiob-
jective reconfiguration-aware scheduler for FPGA-based heterogeneous architec-
tures. In 2015 International Conference on ReConFigurable Computing and FPGAs
(ReConFig). 1–6.

[8] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2016. Microservices: yes-
terday, today, and tomorrow. arXiv preprint arXiv:1606.04036 (2016).

[9] EPFL. 2017. Combinational Benchmark Suite. lsi.epfl.ch/benchmarks.
[10] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. 2015. Virtualized

FPGA accelerators for efficient cloud computing. IEEE 7th CloudCom (2015).
[11] Gurobi. 2017. Gurobi Optimization version 6.0.2. www.gurobi.com.
[12] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki Takada. 2009. Pro-

posal and quantitative analysis of the CHStone benchmark program suite for
practical C-based high-level synthesis. Journal of Information Processing (2009).

[13] Z. István, G. Alonso, and A. Singla. 2018. Providing Multi-tenant Services with
FPGAs: Case Study on a Key-Value Store. In 2018 28th International Conference
on Field Programmable Logic and Applications (FPL). 119–1195. https://doi.org/
10.1109/FPL.2018.00029

[14] Oliver Knodel and Rainer G Spallek. 2015. Computing framework for dynamic
integration of reconfigurable resources in a cloud. DSD (2015).

[15] Akash Kumar, Shakith Fernando, Yajun Ha, Bart Mesman, and Henk Corpo-
raal. 2008. Multiprocessor systems synthesis for multiple use-cases of multiple
applications on FPGA. ACM TODAES (2008).

[16] Sen Ma, Zeyad Aklah, and David Andrews. 2016. Just In Time Assembly of
Accelerators. ACM/SIGDA FPGA (2016).

[17] Mathworks. 2017. Matlab 2016b Curve Fitting Toolbox TM .
www.mathworks.com.

[18] Joel Mandebi Mbongue, Festus Hategekimana, Danielle Tchuinkou Kwadjo, David
Andrews, and Christophe Bobda. 2018. FPGAVirt : A Novel Virtualization Frame-
work for FPGAs in the Cloud. 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD) (2018), 862–865. https://doi.org/10.1109/CLOUD.2018.00122

[19] Tuan D.A. Nguyen and Akash Kumar. 2016. PRFloor: An Automatic Floorplanner
for Partially Reconfigurable FPGA Systems. ACM/SIGDA FPGA (2016).

[20] Tuan D A Nguyen and Akash Kumar. 2014. PR-HMPSoC: A versatile partially re-
configurable heterogeneous Multiprocessor System-on-Chip for dynamic FPGA-
based embedded systems. IEEE FPL (2014).

[21] OpenCores. 2017. www.opencores.org.
[22] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Con-

stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, et al. 2014. A reconfigurable fabric for accelerating large-scale
datacenter services. Computer Architecture, ACM/IEEE 41st International Sympo-
sium on (2014).

[23] S.S. Sahoo, T.D.A. Nguyen, B. Veeravalli, and A. Kumar. 2019. Multi-objective de-
sign space exploration for system partitioning of FPGA-based Dynamic Partially
Reconfigurable Systems. Integration 67 (2019), 95 – 107.

[24] Amazon Web Service. 2017. AWS FPGA Development Kit. github.com/aws/aws-
fpga.git.

[25] Alan Sill. 2016. The Design and Architecture of Microservices. IEEE Cloud
Computing (2016).

[26] Andy Singleton. 2016. The Economics of Microservices. IEEE Cloud Computing
(2016).

[27] Naif Tarafdar, Thomas Lin, Daniel Ly-Ma, Daniel Rozhko, Alberto Leon-Garcia,
and Paul Chow. 2019. Building the Infrastructure for Deploying FPGAs in the Cloud.
Springer International Publishing, Cham, 9–33.

[28] Robert J Vanderbei. 2015. Linear programming. Springer.
[29] Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and Andreas Herk-

ersdorf. 2015. Enabling FPGAs in hyperscale data centers. IEEE 12th UIC-ATC-
ScalCom (2015).

[30] T. Xia, J. C. Prevotet, and F. Nouvel. [n.d.]. Hypervisor mechanisms to manage
FPGA reconfigurable accelerators. FPT 2016 ([n. d.]).

[31] Xilinx. [n.d.]. Platform Studio (XPS). www.xilinx.com.
[32] Xilinx. 2013. Partial Reconfiguration - UG702. (2013).
[33] Q. Zhao, Hendarmawan, M. Amagasaki, M. Iida, M. Kuga, and T. Sueyoshi. 2017.

hCODE 2.0: An open-source toolkit for building efficient FPGA-enabled clouds. In
2017 International Conference on Field Programmable Technology (ICFPT). 267–270.
https://doi.org/10.1109/FPT.2017.8280157

[34] Z. Zhu, A. X. Liu, F. Zhang, and F. Chen. 2018. FPGA Resource Pooling in
Cloud Computing. IEEE Transactions on Cloud Computing (2018), 1–1. https:
//doi.org/10.1109/TCC.2018.2874011

https://doi.org/10.1109/TCC.2017.2665493
https://doi.org/10.1109/FPL.2018.00029
https://doi.org/10.1109/FPL.2018.00029
https://doi.org/10.1109/CLOUD.2018.00122
https://doi.org/10.1109/FPT.2017.8280157
https://doi.org/10.1109/TCC.2018.2874011
https://doi.org/10.1109/TCC.2018.2874011

	Abstract
	1 Introduction
	2 Related Works
	3 Proposed Approach
	3.1 Design Space Exploration
	3.2 PRM-PRR Mapper
	3.3 Estimate Occupied Resources
	3.4 Request Generator and Simulator

	4 Results
	4.1 Experiment setup
	4.2 IP Pool
	4.3 Accuracy of the Resource Estimation
	4.4 Design Space Exploration

	5 Conclusion and Future Works
	References

