
IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS 1

Fast Retraining of Approximate CNNs for High
Accuracy

Elias Trommer , Bernd Waschneck , Akash Kumar

Abstract—One technique for approximating neural networks
when deploying to resource-constrained systems is the use of
approximate multiplications. Giving up full mathematical accuracy
opens new opportunities for more efficient hardware implement-
ations. Modeling the effects of inaccurate hardware already
in the training stage improves performance but significantly
slows down the training due to expensive type conversions and
memory access operations. We propose a method to speed up
the simulation of inaccurate hardware by using a composition
of floating-point functions. Both an analytical and a data-driven
method for finding these functions are provided. We further
provide a study and implementation of per-channel quantization, a
scheme that enhances the granularity of converting neural network
parameters to integers. This helps boost the application’s accuracy.
In our evaluation, our floating-point models achieve up to a 4×
speed-up over the commonly-used lookup table implementation,
while providing a high fidelity simulation of the target function.
Extending quantization with per-channel granularity yields a
median accuracy improvement of 0.87 p.p. for ResNet8/CIFAR10
with 4-bit weight quantization in combination with hardware
using approximate multipliers. Our extended software toolkit
for the study of approximate multipliers in PyTorch is publicly
available and provides a variety of building blocks for applying
inaccurate product functions to neural networks.

Index Terms—neural networks, pruning, microcontrollers

I. INTRODUCTION

The success of deep learning is driven by vast amounts of
data and increasingly large neural network architectures [1].
As the demand outpaces hardware improvements, lowering the
resource consumption of a deployed neural network becomes
more and more important. Various approximation techniques
have been proposed to improve the trade-off between resource
consumption and performance. Both pruning and quantization
alter the network on the parameter level. Pruning [2] identifies
connections that disproportionately affect accuracy and retains
them, while other connections are eliminated, which leads to a
decrease in the number of active parameters. Quantization [3]
converts a network trained in a floating-point representation
into a lower bit-width fixed-point integer representation.

A different approach to approximation concerns the nu-
merical operations of the neural network algorithm. Because
multiplications are the main driver of hardware complexity in
a neural network, approximations of the arithmetic product
function circuitry itself have been proposed in the past [4].
Relaxing the requirement for mathematically exact results
leverages the error tolerance of neural networks to allow for
more efficient hardware designs.

Earlier work focuses on developing Approximate Multipliers
(AMs) that maximize accuracy when running neural networks
that were trained using accurate product functions. Later work
demonstrated that accuracy can be improved significantly if the

network is trained with awareness of the approximate product
function [5]. Since the induced error is an effect of the hardware
design, it is deterministic and predictable, allowing for it to
be accurately modeled. By incorporating the inaccuracy of
the approximate product function in the training stage, the
network’s parameters can converge to a configuration that
minimizes the approximation error that gets propagated during
inference.

Constructing an approximation-aware training pipeline is
complicated by the fact that the requirements of the training and
the inference stage vary widely: Training is carried out once at
design time on capable desktop or High-Performance Compute
(HPC) systems, typically employing graphics processing units
(GPUs). Due to better convergence on a smooth numerical sur-
face, floating-point numerical formats are the common choice
for neural network training, leading to GPUs being highly
optimized for floating-point operations. Inference, in contrast,
runs continuously and often on systems with minimal available
resources, making approximation techniques especially relevant
for this stage.

Several software solutions have been developed to integrate
AM simulation with deep learning training [6]–[8]. However,
these solutions rely on the same mechanism for AM simu-
lation: Assuming that approximate product implementations
are combined with low bit-width integer quantization allows
for pre-computing all AM results, and then storing them as a
2D array. During training, multiplication inputs are converted
to integers, which are used as indices to retrieve the pre-
computed output from this lookup table (LUT) of results.
Adapting the matrix multiplication—the fundamental operation
in neural networks—at this low level also entails that layer
implementations must be rewritten to incorporate AM. This
added complexity increases the cost of implementation and
decreases throughput, compared to standard neural network
training frameworks. So far, this has limited the study of
arithmetic approximation in neural network to very small
networks. Most available toolkits build on Tensorflow, while
submissions to machine learning conferences suggest that the
research community has come to prefer PyTorch [9]. Only one
publicly available implementation is based on PyTorch [7],
yet it lacks both GPU acceleration and advanced quantization
schemes.

The intersection of approximate computing and neural
network (NN) quantization remains underexplored. Most work
using AMs for NNs focuses on 8-Bit operands throughout the
network. A large body of work in the field of quantization,
however, suggests that fewer than eight Bits might be sufficient
to provide the same accuracy as the baseline model [10]. This
is important for resource-constrained NN accelerators, since

https://orcid.org/0000-0002-5671-3291
https://orcid.org/0000-0003-0294-8594
https://orcid.org/0000-0001-7125-1737

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS 2

smaller operands reduce the application’s need for expensive
memory accesses [11]. Especially for lower bit-widths, the
choice of quantization scheme becomes significant for the
application’s final accuracy. By providing flexible support for
more sophisticated quantization schemes, TorchApprox aims
to enable the study of low bit-width AMs in deep learning
pipelines.

We initially proposed TorchApprox [12], a feature-rich
toolkit for integrating AM into neural network training as
a solution to some of these issues. TorchApprox introduces
High-Throughput (HTP) models, a new type of approximate
multiplication operator during training: Instead of using a
LUT, HTP models emulate the approximation error using a
combination of primitive floating-point functions. We extend the
concept in this work by applying it to logarithmic multipliers, an
entirely different class of AMs. All HTP models are compared
to several other retraining methods reported in the literature in
terms of throughput and reproduction of the target function. We
further extend TorchApprox with more complex quantization
schemes that enhance the granularity of the conversion from
floating-point to integer. Through this higher granularity, it
may be possible to use smaller numerical representations while
achieving comparable accuracy.

In summary, this work provides the following novel contri-
butions:

• We extend the previously proposed HTP model approach
to the commonly used logarithmic AMs by deriving a
floating-point behavioral model from their algorithmic
description.

• All proposed HTP models are thoroughly benchmarked
for their throughput and accuracy on three different
Convolutional Neural Network (CNN) tasks. The results
are compared with other state-of the art methods that
aim to improve neural network performance when using
approximate product implementations.

• We provide a formal definition of an approximate matrix
multiplication that uses per-channel and affine quantization
and an experimental study of the achievable increase in ac-
curacy when CNN weights are quantized with per-channel
granularity instead of global per-tensor parameters.

With HTP models, we provide both fast and faithful modeling
of the effects of AM during retraining. Extending quantization
with increased granularity further boosts the accuracy of approx-
imate neural networks after retraining. Our library is publicly
available under www.github.com/etrommer/torch-approx.

II. BACKGROUND AND RELATED WORK

Using approximate multiplications to replace the resource-
intensive accurate multiplications in a neural network has
been discussed in several studies in the past. We provide
an overview of relevant AM architectures and the currently
available implementations of AMs in deep learning training
pipelines.

A. Approximate Multipliers
One of the first algorithms to use approximation to simplify

the implementation of multiplications on hardware was pro-
posed by John N. Mitchell in 1962 [14]. Mitchell’s algorithm is

based on the observation that a multiplication can be converted
to an addition by applying logarithmic and inverse logarithmic
transformations to the operands and the result, respectively.
We give a short summary of the algorithm as provided by Liu
et al. [15] which will help understand the concepts discussed
in Section III-C. Two unsigned fixed-point operands A and B
can be expressed as

A = 2k1(1 + x1), 0 ≤ x1 < 1 (1)

B = 2k2(1 + x2), 0 ≤ x2 < 1 (2)

which can be converted to the binary logarithm of A and B

log2(A) = k1 + log2(1 + x1) (3)
log2(B) = k2 + log2(1 + x2) (4)

for which the logarithm of the product P = A · B can be
rewritten to give

log2(P) = k1 + k2 + log2(1 + x1) + log2(1 + x2) (5)

Mitchell then applies the linear approximation x ≈ log2(1+x)
for 0 ≤ x < 1, which allows for the product to be calculated
using a simple addition:

log2(P) ≈ k1 + k2 + x1 + x2 (6)

This algorithm is only applicable to unsigned operands. The
most common approach to extending this method to signed
multiplication is an initial sign extraction for both operands,
calculating the product using absolute values and a re-insertion
of the appropriate sign into the result.

A whole class of approximate multiplication algorithms
build upon Mitchell’s early work and rely on the simplicity
of approximate multiplications in the logarithmic domain, but
provide additional simplifications. Hashemi et al. [4] propose
dynamic truncation of the log-transformed operands to their
most-significant bits, leading to reduced hardware complexity.
In the same work, the authors discuss how to modify the
truncation scheme so that the resulting error is unbiased—an
improvement on Mitchell’s original algorithm which always
underestimated the correct results. Truncation of operands in
the logarithmic domain for CNNs is also discussed by Kim et
al. [16], who conclude that they can help reduce the arithmetic
resource consumption of deep learning models.

A different technique that is commonly used for the
approximation of hardware multipliers is partial product
truncation [17]. A truncated multiplier omits the generation
and accumulation of the least significant partial products. The
technique decreases the result’s resolution, but can significantly
improve the multiplier’s area and power consumption.

EvoApproxlib, a popular implementation of approximate
hardware multipliers, was first proposed in [18]. The authors
present a library of 8-bit AMs that were designed from scratch
using a genetic algorithm. AMs are selected to target different
Pareto points of accuracy and resource consumption. The library
was later extended to include AMs in other integer formats [19].
No simple model of the error function is available for these
algorithmically generatedAMs.

www.github.com/etrommer/torch-approx

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS 3

Table I
APPROXIMATE NEURAL NETWORK LIBRARIES FEATURE COMPARISON

ProxSim [8] TFApprox [6] TFApprox4IL [13] AdaPT [7] TorchApprox
(this work)

Based on TF TF TF PyTorch PyTorch
GPU Acceleration ✓ ✓ ✓ — ✓
Grouped Convolutions — — ✓ (✓)∗ ✓
Open Source — ✓ — ✓ ✓
affine & per-channel quantization — affine only affine only — ✓

∗most common configuration

Fitting a linear regression model to the error function of an
AM in order to obtain a condensed representation was first
proposed by Ullah et al. [20]. In this work, the performance
of an AM on a task is predicted from its linear regression
coefficients using a Multi-Layer Perceptron (MLP). However,
the models are not used as a functional equivalent of the AM.
For a high-throughput simulation of the approximation error
during training, additive gaussian noise (AGN) is frequently
used as a low fidelity surrogate model [21]. Several other
error models discussed in the literature allow for characterizing
certain error properties, but not a full emulation of the output
function [22], [23].

B. Approximate Neural Network Training

The enormous complexity of recent neural network models
makes it infeasible to implement them from scratch for non-
trivial applications. This has given rise to deep learning
frameworks, which provide the building blocks required for
implementing and training a neural network. TensorFlow [24]
popularized the use of a dataflow graph representation to
describe and optimize neural network computations. Addi-
tionally, the authors emphasize parallel execution across large
numbers of GPU-enabled nodes. The more recent PyTorch [25]
addresses a similar set of problems but is primarily designed to
speed up research and experimentation through its accessible
programming interface.

Studying the effects of quantization and approximation on a
neural network is a task that is already supported by several
solutions which we compare in Table I. ProxSim [8] is built
around a GPU-accelerated implementation of matrix multiplic-
ations using an approximate product function (ApproxGeMM).
The ApproxGeMM implementation serves as a primitive that
is used to evaluate Convolutional layers (which are unfolded
to batched 2D matrices using the im2col operator) as well
as Fully-Connected (FC) layers. TFApprox [6] only supports
Convolutional layers but optimizes GPU throughput further;
to speed up memory accesses, the GPU’s texture memory
serves as a cache that holds the pre-computed LUT of the
AM’s output space. TFApprox has recently been expanded
to cover retraining and grouped convolutions [13]. Of these
libraries, only TFApprox is publicly available. ApproxTrain,
another toolkit based on Tensorflow, implements a simulation
of floating-point AMs with large operand bit-widths. As the
LUT size increases quadratically with the operand bit-width,
storing it in memory becomes infeasible for large operands.

The authors instead propose only storing the mantissa part
in a LUT, while performing sign and exponent computation
at runtime. Using this method, only AMs with floating-point
operands can be simulated during training. This is rarely useful
when the model is meant to be deployed to a constrained
accelerator where integer operands are standard practice, and
thus the simulation of integer AMs is required during training.

Currently, the only other implementation in PyTorch is
AdaPT [7]. The authors propose several optimizations for
inference on a central processing unit (CPU), including the
use of JIT-compiled kernels, loop unrolling to maximize the
use of SIMD capabilities, as well as multithreading. AdaPT
does, however, not provide GPU acceleration for approximate
layers.

All other frameworks only provide a fixed and limited
choice of simple quantization algorithms, with ProxSim and
AdaPT only providing symmetric quantization. TFApprox and
TFApprox4IL provide affine operand quantization, but can
only determine a single parameter pair for an entire operand
tensor. For all frameworks, the quantization is fused with the
LUT simulation kernel. TorchApprox, in contrast, has been
extended in this work to also support schemes that are able
to express quantization using a dedicated parameter pair for
each channel. These more complex schemes can help improve
accuracy, especially when the distribution of weight values
differs across channels [26]. TorchApprox also relies on the
high-level Quantization interface provided by PyTorch itself.
This enables further experimentation with different quantization
algorithms by the user without the need for adapting low-level
primitives.

III. PROPOSED METHODOLOGY

We derive an approximate neuron multiplication operator
with affine and per-channel quantization, starting from the
definition of the accurate operator. Moreover, we provide
a rationale for using floating-point models instead of the
commonly used LUT simulation of AMs. We show how
to derive these models analytically from the definition of
logarithmic multipliers and in a black-box fashion using a data-
driven approach for AMs that are algorithmically generated.

A. Affine and per-channel quantization

Converting a trained neural network model to a numerical
format of a lower bit-width than was used for training has
become standard practice for deploying to devices outside of

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS 4

data center environments [26]. A common choice of target
numerical format are 8-bit integers, since they provide decent
savings in memory and compute at virtually no accuracy loss.
The quantization scheme chosen determines how the neural
network parameters are converted to lower-precision integers,
using either Post-Training Quantization (PTQ) once the model
is fully-trained or iteratively during training, a technique known
as Quantization-Aware Training (QAT). The conversion has to
balance the added complexity during inference with minimizing
the error introduced by the quantization process. For the
remainder of this paper, two distinctions are important: First,
symmetric quantization and affine quantization; and second,
per-tensor and per-channel quantization. In both cases, the
former is a subset of the latter. The simplest case, per-tensor
symmetric quantization, scales all real numbers to integers
using the same scaling factor throughout an entire tensor, but
keeps the zero-point identical. Affine quantization, in contrast,
adds an additional offset Z, so that the mapping from quantized
integers q to real numbers r takes the form

r = S (q − Z) (7)

as discussed by Jacob et al. [27]. This representation is
beneficial if the distribution of values is not centered around
zero, as is often the case for activations. For approximate
implementations, this has the added benefit that it can map
neural network parameters to both signed and unsigned ranges.
While a detailed derivation can be found in the original work,
we will briefly reiterate the most important fact for this work,
namely that the resulting entry ri,k from multiplying two
quantized N ×N matrices can be expressed as

ri,k =SxSw

N∑
j=1

(x(i,j) − Zx) · (w(j,k) − Zw) (8)

from which the subtraction from the multiplicands can be
factored out to give

= SxSw

(
NZxZw (9)

− Zx

N∑
i=1

w(j,k) − Zw

N∑
j=1

x(i,j)

+

N∑
j=1

x(i,j)w(j,k)
)

Previous research suggests that ‘the multiplications in CNNs
can be approximated while the additions have to be accur-
ate’ [28]. In addition, the main driver of energy consumption
is multiplication hardware [29]. This work therefore follows
the commonly used approach of replacing multiplications with
an approximate operator while additions remain accurate [30],
[31]. We can replace the accurate product x(i,j) · w(j,k) with
an arbitrary integer operation f(x(i,j), w(j,k)) ≈ x(i,j) · w(j,k)

to obtain an approximate matrix multiplication operator with
affine input quantization. Implementing affine quantization,
as opposed to the simpler symmetric quantization, allows
us to natively support both signed and unsigned AMs while
maximizing the numerical range that is used by the quantized
values.

lut(1.95, 3.2)

htp(1.95, 3.2)

3

6

2

6.0

float ➝ int

float ➝ int

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

Figure 1. Schematic comparison of LUT (top) and HTP (bottom) approach to
simulation of approximate multiplications. Finding an HTP function h(x,w)
requires domain-specific knowledge of the underlying AM.

We hypothesize that optimizing quantization granularity is
highly important to achieve good accuracy when targeting a
combination of low bit-width quantization and approximate
multiplications. Optimizing the numerical range of parameters
is likely to help convergence by maximizing the amount of
information that can be conveyed in each operand. To this
end, we extend support to also cover per-channel quantization.
Per-channel quantization is a scheme in which the granularity
of the quantization process is increased so that each channel
in a weight tensor can be quantized with individual scale and
zero point parameters. This helps minimize the numerical error
introduced by the quantization process, particularly for lower
bit-widths. By substituting the scalars Sw, Zw with vectors
S⃗w ∈ RN , Z⃗w ∈ ZN , we can adapt Equation (10) to obtain
the formulation of an approximate matrix multiplication with
affine and per-channel quantization as:

ri,k ≈ SxS
(k)
w

(
NZxZ

(k)
w (10)

− Zx

N∑
i=1

w(j,k) − Z(k)
w

N∑
j=1

x(i,j)

+

N∑
j=1

f(x(i,j), w(j,k))
)

Our toolkit implements this scheme for all supported layer
types.

B. From Fake-Quantization to Fake-Approximation

When running inference of neural networks on resource-
constrained embedded systems or accelerators, integer quant-
ization is the preferred representation for activations and
weights [32]. In contrast, floating-point formats dominate the
domain of neural network training. This is a natural fit for
GPUs, which are highly optimized for peak throughput when
performing floating-point operations, while integer performance
is typically poor in comparison. For the training of quantized
networks, this disparity can be alleviated through the use of
fake quantization: The desired quantization algorithm is applied
to the operands; the quantized values, however, remain in
a floating-point representation throughout the entire training
procedure [27]. This allows for an accurate modeling of the

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS 5

LUTGeMM

AM

LUT

~

Figure 2. Comparison of LUT (left) and HTP (right) approach to simulation
of approximate multiplications in the context of a neural network layer. Integer
operation domain is highlighted in green. Note that the quantization operation
Q is replaced with fake-quantization Q′ on the right side, leading to a
composition of only floating-point functions.

effects of quantization while keeping a fast floating-point
training pipeline. In contrast, a LUT-based ApproxGeMM
implementation must materialize the operands as integers
to carry out the array lookup operation that retrieves the
approximate multiplication result.

To incorporate AMs in a neural network layer during model
preparation, we must replace the accurate matrix product
in each neuron with a custom multiplication followed by
a summation of the results. Numerous optimizations have
been developed for the accurate matrix product, many of
which are specific to certain applications or target hardware.
Maintaining an equally large number of optimized approximate
matrix product implementations that target different platforms
and use cases is not a realistic option. Instead, the common
approach is to map the various neural network layer tasks to a
single ApproxGeMM primitive, leading to reduced throughput
compared to that of accurate neural networks. We propose
an alternative approach to this problem: Could the AM
simulation be carried out in the floating-point domain by a
function that matches the AM’s output but decomposes it
into a series of operand transformations and accurate matrix
products? Through this, highly-optimized neural network layer
implementations could serve as a building block instead of
having to resort to re-implementing them from scratch.

For an accurate neuron, the pre-activation output, denoted
as y, for activations x and weights w is defined as

y =

n∑
i=1

xi · wi (11)

while the inner product is replaced with some approximate
operation

f(x,w) ≈ x · w (12)

for an approximate neuron

ỹ =

n∑
i=1

f(xi, wi) (13)

We omit the neuron’s bias term in this derivation for brevity.
For a fast software simulation, the approximate product f(x,w)
is typically expressed as a 2D array lookup with integer indices
x and w. In contrast, an HTP model replaces the costly type
conversion of x and w and the subsequent memory access
with an HTP function h(x,w). A comparison of how LUT and
HTP operators differ fundamentally is provided in Figure 1.
Instead of a 2D array lookup, the HTP function expresses
the target function as a weighted sum of transformations
applied to x and w. Each of these transformations gx, gw
is a simple real-valued function R → R that might help the
overall HTP model R×R → R;x,w 7→ h(x,w) in recreating
the AM’s original inaccuracy. The weight coefficient cj then
determines the amount with which each transformation pair
(gx,j , gw,j) contributes to the HTP model. It is important to
note that picking an appropriate set of transformations requires
some insight into the internal function of the AM. Finding
the specific combination of transformations as determined
by the values of cj can, however, partially be automated
as we will demonstrate in Section III-D. This gives us the
formulation of an HTP function h(x,w), composed of a set of
k input transformations and their respective weight coefficients
{(c1, gw,1, gx,1), (c2, gw,2, gx,2), . . . , (ck, gw,k, gx,k)} as:

h(x,w) ≈ f(x,w)

=

k∑
j=1

cj · gw,j(w) · gx,j(x) (14)

which we can insert into Equation (13) to obtain

ỹ ≈
n∑

i=1

k∑
j=1

cj · gw,j(wi) · gx,j(xi) (15)

Importantly, this equation can be rephrased as

ỹ ≈
k∑

j=1

cj ·
n∑

i=1

gw,j(wi) · gx,j(xi) (16)

The inner sum is then simply the operation of the accurate
neuron from Equation (11) with transformations gx,j and gw,j

applied to its operands. Achieving AM simulation through
repeated transformation of the input operands alone allows us
to treat the underlying implementation of the neural network
layer as a black box. We achieve the output simulation of the
AM by repeatedly performing the layer operation with different
transformations applied to its inputs. The output tensors are
then aggregated by forming the weighted sum to give the
operation’s result. The approach is compared to the regular
LUT operation in Figure 2.

We leverage a certain property of many AM designs for the
discovery of HTP models: A large number of hardware imple-
mentations approximate the product function by truncating the
least-significant Bit positions [33], [34]. This process happens
early on in the multiplication algorithm, which means that
subsequent logic can be omitted. Because the least-significant
positions have the lowest impact on the magnitude of the result,
the resulting hardware can be simplified significantly while
maintaining a result close to that of an accurate multiplication.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS 6

The truncation of these Bit positions leads to a mapping
of several different operand values onto a single value. The
resulting product is then a piecewise constant function of the
transformed multiplicands multiplied together. By capturing
the dynamics of the operand truncation, the HTP model can
retain an accurate product implementation with transformed
operands.

In the remainder of this section, we demonstrate the
application of this principle to two different AM designs.

C. Logarithmic Multipliers

With Equation (16), we have obtained a basis that allows
us to use existing layer implementations in order to simulate
the inaccuracy produced by an AM. However, it is not yet
clear how to determine the transformations gw,j and gx,j for a
specific hardware implementation. We illustrate the process of
deriving an HTP model by hand using an analytical method
in this subsection. In the following subsection, we describe a
data-driven method that partially automates model discovery
when analytical methods are not applicable.

We model the truncated Mitchell AM [4], [16] as an
important representative of the wider class of logarithmic AMs.
Past studies have discussed several variants of logarithmic
AMs that specifically target NNs [35], [36]. The aim of this
section is to provide a description of how these AM models
can be efficiently simulated in the floating-point domain. With
the provided derivation, we hope that researchers will be able
to quickly adapt the proposed methodology for similar use
cases. An advantage of logarithmic AMs is the availability of
a full algorithmic description. We can use this description as a
basis for our implementation. From a high-level perspective, a
logarithmic AM transforms the operands x,w to their base-2
logarithms

X = log2(x), W = log2(w) (17)

which are subsequently added and transformed back to the
original domain using an exponential function:

x · w = 2(X+W) (18)

This is simply a reformulation of an accurate product, without
approximation. It is not immediately obvious how a sum
followed by exponentiation of the result can be transformed to
allow applying the equality between Equation (15) and Equa-
tion (16). Indeed, our previous work on this topic concludes
with the remark that this is likely not possible at all and
instead requires a custom kernel implementation [12]. However,
an important detail is that implementations typically consist
of applying a deterministic approximation to the logarithm
conversion process, such that X ′ ≈ log2(x), W ′ ≈ log2(w).
It is therefore sufficient to capture the effects of the conversion
process and then convert the operands back to the original
domain, before performing a regular multiplication. Given this,
we can rewrite Equation (18) in the desired format to yield

w · x ≈ 2(X
′+W ′) (19)

= 2X
′
· 2W

′
(20)

which leaves the task of finding transformations gx(x) =
2X

′
, gw(w) = 2W

′
. For all logarithmic multipliers in our study,

the applied approximation of the logarithm transformation is
the same for both operands. This allows us to further use
the equality gx = gw. Extending the model for gx ̸= gw
is, however, trivial in general since both transformations are
applied independently of each other.

An approximation technique used by both the truncated
Mitchell multiplier [16], [36] and DRUM [4] is the truncation
of the operand’s lowermost bits. Our goal is to emulate this
binary integer operation in the floating-point domain for x′ ∈
R+. In principle, truncating an n-bit binary number to the
leading k bits (thus setting the lowest n − k bits to zero)
is equivalent to rounding down to the nearest multiple of
2(n−k) in the floating-point domain. While n is derived from
binary integers and thus not well-defined in the floating-point
domain, it represents the same numerical range in both domains.
Consequently, the value of n is not directly accessible in the
floating-point representation. However, we know that if the
leading one is in the n-th position of the unsigned binary
integer representation, x′ must satisfy 2n ≤ x′ < 2n+1. We
can therefore use the equality n = ⌊log2(x′)⌋. Using this
identity, we can emulate the k-leading bit truncation ⌊x⌋k by
subtracting the modulus of x and 2(n−k). This gives us the
emulated truncation of the lowermost bits in the floating-point
domain as:

g(x) :=

{
x if x < 2k

x− x mod 2⌊log2(x)⌋−k+1 otherwise
(21)

DRUM [4] applies an additional correction by setting the
(n−k)-th bit of the operand to one when truncating. Following
the same logic as above, this correction factor can be simulated
by truncating to k bits and then adding a constant 2⌊log2(x)⌋−k

to the operand.
When translating this to parallel code, there are two branches

that need to be considered. First the decision of whether
an operand is truncated, and second the sign extraction
that is omitted here for brevity. Furthermore, the base-2
logarithm is an expensive function to evaluate, even with
GPU acceleration. However, keeping values as floating-point
throughout saves two type conversion to and from integer
and the LUT memory access that retrieves the pre-computed
result. For Convolutional layers, a potentially sub-optimal
im2col/GeMM implementation is avoided in favor of the
optimized implementation maintained by the framework itself.
We expect that, despite some added overhead through operand
transformations, these savings will overall be larger and speed
up the entire training pipeline.

D. Truncated Multipliers

An analytical design of HTP models falls short when
there is no explicit description of the underlying algorithm
available. This limitation applies to AMs that were designed
algorithmically. For selecting the appropriate transformations
g and their corresponding weights c for algorithmic designs of
truncated AMs, we propose the use of an equally algorithmic
search procedure. Our method relies on selecting a superset

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS 7

gx,1(x) ⋅ gw,1(w)
gx,2(x) ⋅ gw,1(w)

... ⋅ ...
gx,j-1(x) ⋅ gw,j(w)
gx,j(x) ⋅ gw,j(w)

Inputs

X×W

Labels

Behavioral
Simulation

Candidate
Functions

gw,j

gw,1

gx,1

gx,j

...

HTP Model

⋅1.0

⋅4.0

+

Wrapped Layer

Model Pruning
T gx,1 , gw,1

gx,2 , gw,1
... , ...

gx,j-1 , gw,j
gx,j , gw,j

0.0

4.0

...
1.0

0.0
0.99 0.02 0.01 3.99...
c1 c2 c... ck-1 ck

Dense Coefficients

GX×GW

Linear Regression

Features

Wrapped Layer

Figure 3. Construction of High-Throughput Model from a set of a candidate
functions. A Linear Regression determines the weighting coefficients for
the candidate functions that best describe the functional simulation of an
Approximate Multiplier. The resulting coefficients are rounded and low-impact
transformations are removed from the final model.

of potentially useful operand transformations G. The relevant
subset of these candidate functions, respective hyperparameters
and coefficients are determined using a data-driven approach.

The approximate multiplication output function z̃ ≈ x · w
for a truncated multiplier that omits the l least significant
partial products from one operand can be expressed as z̃ = x ·(
w − w mod 2l

)
[37]. Note that a similar transformation might

also be applied to the other operand x, which is omitted here
for simplicity. As previously, the rationale remains the same
when applying these transformations to both operands, because
both operands are transformed independently of each other. z̃
is a piecewise-constant function with uniform interval length 2l.
Accurately modeling these patterns using only polynomial input
transformations is not possible. Instead, we require an additional
transformation to capture the piecewise component of the output
function. From the model of the truncated multiplication, we
can see that a modulo function is a suitable choice. Adding
a transformation of mod 2l to our set of candidate functions
allows the model to capture the effects of partial product
truncation in the floating-point domain. Our basis functions,
applied to the inputs x,w, therefore are:

Gx =
{
1, x, x mod 2l

}
, Gw = {1, w, w mod 2m}

where l,m ∈ N+ correspond to the partial product truncation
for each operand. The user is not required to supply these
parameters because the range of values for l,m can be covered
exhaustively by a grid search. For most practical designs, it
is reasonable to assume that l,m are of similar magnitude,
allowing a further shrinking of the search space.

Rather than creating each model by hand, we propose using
a linear regression that optimizes the selection of g and c over
the set of candidate functions for each AM. Using a data-
driven approach makes the method independent of knowledge
of the approximate product error function and generalizes
to AM designs that extend partial product elimination with
error correction schemes [37], [38] or other approximation
techniques.

To identify the relevant subset of the candidate function
space Gx ×Gw and the corresponding coefficients cj , we fit a
regression model to the output space of each target approximate

multiplier. For each combination of input operands (x,w) ∈
X ×W , we obtain:

• a feature vector described by the multiplication of all
possible combinations of the input transformations in Sec-
tion III-D gx(x) · gw(w); (gx, gw) ∈ Gx ×Gw applied to
x,w.

• a label containing the result of a behavioral simulation
of the approximate multiplier’s output f(x,w)

The task of the regression is to optimize the weight cj for each
input transformation to best capture the behavior of the target
AM. For AMs with an input space that is too large to cover
exhaustively (16-bit multipliers), a randomly sampled subset
of the input space X ×W can be used instead.

Different from classical regression problems, the inputs and
expected outputs of the model are entirely known beforehand.
The goal of the regression model is to find a condensed
function that maps inputs to the expected outputs, rather
than generalizing to unseen data. After fitting the model, the
coefficients are rounded to one decimal place. This helps the
model account for coefficients that have not fully converged.
Transformations with near-zero coefficients are omitted from
the final model as shown in Figure 3. Reducing the model to
only the most relevant features eliminates the need to compute
feature transformations with little influence on the overall result
later on.

E. Generalization

In principle, any Boolean function can be expressed as a
composition of functions in the floating-point domain using the
same logic that was applied in Section III-C. For a functionally
complete logic system, it is sufficient to define only a NAND
operator. For two numbers A,B ∈ R+, the NAND operation of
their bit position k can be expressed as

A ∧Bk := 1−
(
A mod 2k −A mod 2(k−1)

)
·
(
B mod 2k −B mod 2(k−1)

)
· 1

22(k−1)

(22)

with this equivalence, any logic circuit can—in theory—be
expressed as an HTP model. It is important to note that this is
not necessarily always practical. Actual gains in performance
can only be expected when the model can be reduced to
a handful of input transformation. A property that enables
this—and that both the studied logarithmic and truncated AM
designs possess—is that the output surface of the approximated
product function gives the same result for a large number of
operand combinations. Input candidate functions then need to
be selected in a way that they (partially) replicate this constant
dynamic when their transformed inputs gx(x) and gw(w) are
multiplied together.

IV. RESULTS AND DISCUSSION

In this section, we provide an experimental evaluation of the
effects of a per-channel quantization scheme on the accuracy
of the combination of AMs and low bit-width neural networks.
We also compare both versions of the HTP operator in end-to-
end training scenarios for various CNNs. Finally, we evaluate

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS 8

the throughput of both LUT-based kernels and HTP models
provided by TorchApprox with the LUT-based kernels from
two other AM retraining toolkits.

A. Quantization Schemes

TorchApprox introduces support for per-channel quantiza-
tion in combination with AMs. Providing a more complex
quantization scheme is based on the assumption that increasing
the granularity of the quantization process will decrease the
numerical error introduced by the integer conversion, leading
to higher accuracy for the same AM designs, since it can
make better use of the available numerical range for a given
quantization bit-width. Because per-channel quantization adds
complexity to training and inference which has to be justified,
we conduct an experimental analysis of how performance is
impacted by each scheme. We assess the effects of per-channel
and per-tensor quantization on quantized neural networks on
the LeNet-5 architecture and the MNIST dataset [39] as well as
ResNet8 [40] and the CIFAR10 [41] image classification task.
For both test cases, a baseline model is trained in FP32. From
this, both a model with per-channel and per-tensor quantization
are fine-tuned using QAT for each bit-width. To produce a
single data point, an AM design is applied to every layer of
each quantized model. The resulting network is then retrained
with simulated approximation and the resulting model’s Top-1
accuracy is reported. This is repeated for all 8 × n-Bit AM
instances in the EvoApprox library, where n = {2, 3, 4} for
LeNet-5, since it is a very simple problem, and n = {4, 5, 6, 7}
for ResNet8/CIFAR10, because it is more complex. We show

Table II
NUMBER OF CONVERGED MULTIPLIER CONFIGURATIONS AND MEDIAN
ACCURACY FOR DIFFERENT BIT-WIDTHS AND QUANTIZATION SCHEMES

M
od

el Quantization Multipliers Median
Top-1 Acc.

[%]bit-width Granularity Total Converged

L
eN

et
-5

&
M

N
IS

T 2
tensor 13 11 94.67
channel 13 11 99.13

3
tensor 29 24 99.14
channel 29 26 99.22

4
tensor 29 26 99.24
channel 29 25 99.25

R
es

N
et

8
&

C
IF

A
R

10

4
tensor 29 19 84.62
channel 29 19 86.10

5
tensor 34 24 86.65
channel 34 26 86.81

6
tensor 25 15 87.00
channel 25 16 87.06

7
tensor 34 25 87.01
channel 34 26 87.25

the comparison of the achieved Top-1 accuracy for every
combination of test case, quantization scheme, bit-width and
AM used throughout the network’s layers along with a box
plot that visualizes the aggregate statistics for each bit-width
and quantization scheme in Figure 4. We notice that some

combinations—particularly those employing AMs with very
low precision—do not converge at all during the approximate
retraining phase, but remain at an accuracy that is close to
randomly guessing the output prediction. The reason for this is
that some AM designs simply do not provide sufficient accuracy
for the training process to produce gradients that would allow
for the model parameters to converge at all. Both MNIST and
CIFAR10 distinguish between ten target classes, putting the
accuracy of randomly guessing at 10% for both. We define a
Top-1 Accuracy of 15% as a threshold for convergence. To gain
a better insight into the behavior of models that produce useful
accuracy, the non-converged cases below the threshold are
excluded in Figure 4. The number of non-converged networks
for each experimental setup is, however, reported in Table II.

The results show that per-channel quantization helps with
both accuracy and convergence. The number of AMs above the
convergence threshold is the same or higher, when per-channel
quantization is used in all cases except for one. Similarly,
the median Top-1 accuracy that was achieved across the
converged networks is above that of the models using per-
tensor quantization for all test cases. This suggests that using
per-channel quantization also helps boost accuracy. The effect
is particularly pronounced for smaller bit-widths, while it tends
to disappear for weight quantization with larger bit-widths. This
can be explained by the fact that per-channel quantization can
help reduce the numerical error introduced by the quantization
process. The initial quantization error, however, is largest for
small bit-widths, making higher granularity most effective in
these scenarios, as was reasoned in Section III-A.

These experimental results show that there is a general
tendency towards higher accuracy for approximate neural
networks with per-channel quantization, but the evaluation
so far does not allow for assessing the impact on individual
approximate neural networks. To compare the effect on each
individual AM, we further analyze the achieved accuracy for
the 8×4-bit configurations in Figure 5. We limit this evaluation
to the results of 14 out of the initial 29 AMs that achieve an
accuracy of more than 80%, since models with an accuracy
close to that of the baseline model are most relevant for real-
world applications. In the chosen representation in Figure 5,
the accuracy of the approximate neural network variant that
uses per-channel quantization is on the y-axis, while the x-
axis corresponds to the variant using per-tensor quantization.
If a point lies below the main diagonal, it indicates that per-
tensor quantization led to higher accuracy than per-channel
quantization. Every point above the main diagonal shows that
the per-channel configuration has converged to higher accuracy.
From the fact that only a single point is marginally below the
main diagonal, we can infer that switching from per-tensor to
per-channel quantization yields an improvement in accuracy for
almost every case in our evaluation. The mean improvement
for the surveyed models is 1.09 percentage points, while the
median improvement is 0.87 percentage points for the reported
models with more than 80% accuracy.

B. HTP Model Fidelity
HTP models themselves are not necessarily a faithful

representation of the AM they were constructed for. This makes

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS 9

tensor channel tensor channel tensor channel

20%

40%

60%

80%

100%

T
op

-1
 A

cc
ur

ac
y

LeNet5 & MNIST

tensor channel tensor channel tensor channel tensor channel

20%

40%

60%

80%

T
op

-1
 A

cc
ur

ac
y

ResNet8 & CIFAR10

2-Bit 3-Bit 4-Bit 4-Bit 5-Bit 6-Bit 7-Bit

Figure 4. Comparison of per-tensor and per-channel quantization on LeNet-5/MNIST and ResNet8/CIFAR10 for different weight quantization bit-widths.
Evaluation is carried out across all 8× n-bit unsigned EvoApprox multipliers.

80% 82% 84% 86% 88%
Top-1 Accuracy

per-tensor quantization

80%

82%

84%

86%

88%

T
op

-1
 A

cc
ur

ac
y

pe
r-

ch
an

ne
l q

ua
nt

iz
at

io
n

FP32 Accuracy

Figure 5. Comparison of per-tensor and per-channel quantization on Res-
Net/CIFAR10 across 8× 4-bit unsigned EvoApprox multipliers. Results below
80% accuracy are omitted. Main diagonal marks equivalent performance for
per-tensor and per-channel quantization. Points above main diagonal mark
improvement through per-channel quantization.

Table III
APPROXIMATE NEURAL NETWORK RETRAINING METHODS

Format Description

Baseline Accurate Product Function
Noise Accurate Product Function with AGN that is characterized by

the mean and standard deviation of the target AM’s error
distribution [42]

Linear Linear regression model with polynomial feature expansion to
five regression coefficients [43]

HTP High-throughput model of the target AM (this work)
LUT Faithful simulation of the target AM using a LUT of

pre-computed results

it important to confirm that they recreate the target function
sufficiently well. The aim of the experiment is to evaluate how
closely each method tracks the results of behavioral simulation.

To establish the fidelity of HTP models in a training pipeline,
we retrain several common neural network models for approx-
imate inference using a number of different retraining methods

and compare the results of each. The retraining methodology
for all networks is described in detail in Appendix A.

For every architecture, we take a pre-trained and quantized
model as a starting point. A copy of this baseline model is
then retrained using a variety of methods that are described
in detail in Table III. Optimizer configuration, epochs and
all other hyperparameters are identical for all methods in
the evaluation. By retraining the accurate baseline using the
same hyperparameters, we ensure that all evaluated models
have received the same amount of training. This procedure
is repeated for a wide range of AMs. All combinations of
experimental setup and retraining method are retrained for
each of the 13 signed 8-bit AMs in the EvoApprox library as
well as the DRUM [4] and Mitchell truncated [16] logarithmic
multipliers for truncation bit-widths of 3, 4 and 5 bits
respectively (thus totaling six logarithmic AM configurations).
The principle of logarithmic AMs is independent of the operand
bit-width. For the experiments, 12-bit quantization of weights
and activations is used for all logarithmic AMs.

Behavioral simulation of the target AM is used to evaluate
and compare retrained models on the test set, as it accurately
reproduces the behavior seen after deployment to the target
system. The top-k accuracy (with k = 1 for LeNet-5 and
ResNet8 and k = 5 for VGG16) of the model trained using
behavioral simulation is used as the ground truth, to which
all operators are compared. The results of the MAE between
ground truth accuracy and the respective method’s achieved
accuracy for each population of AM are shown in Figure 6.
The exact numerical value of the MAE varies between models
depending on the architecture, complexity of the task, etc. Since
the aim of the evaluation is a relative comparison between the
different methods, we normalize the MAE to one across all
experiments in order to allow for a side-by-side comparison.

The evaluation shows that the HTP approach reproduces
behavioral simulation with high fidelity. Despite the HTP model
of the logarithmic AM being mathematically equivalent to the
simulation, it does not achieve perfect replication of its behavior.
This is explained by the lack of conversion between floating-
point and integer representations in the HTP model, which uses

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS 10

101 102 103

Retraining Duration [s]

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 T
op

-k
 A

cc
ur

ac
y

M
A

E
Logarithmic Multipliers

101 102 103

Retraining Duration [s]

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 T
op

-k
 A

cc
ur

ac
y

M
A

E

EvoApprox 8-Bit
Method

Baseline
LUT
HTP
Linear
Noise

Experiment
LeNet5

ResNet8

VGG16

Figure 6. Pareto Front of retraining method fidelity compared to behavioral simulation and throughput for various retraining methods. Methods are compared
for three different CNN experimental setups and two populations of AMs. The MAE between retrained model and behavioral simulation of the Top-k accuracy
is aggregated across the evaluated AM population and normalized to one to make the values comparable across experiments. An ideal method would be found
on the lower left corner, i.e. it would minimize both the Top-k accuracy error and the training time.

a floating-point numerical representation throughout the entire
pipeline, causing a slightly different numerical behavior. The
absolute numerical values of the MAE in Table VI reveal that
the HTP models of EvoApprox AMs, which were generated
using a data-driven linear regression, show a significantly
higher deviation from the ground-truth because they can only
partially capture the target AM’s behavior. Of all retraining
methods HTP, however, consistently provides the highest
fidelity simulation of target AMs. In terms of throughput, HTP
models are close to the baseline in all experiments, yielding
an up to 4× speedup over behavioral simulation for VGG16
and the simpler truncated multiplier models. HTP models of
logarithmic multipliers are more time-consuming, due to their
reliance on an expensive log transformation of operands in the
floating-point domain. Nevertheless, the approach still provides
nearly a 2.5× speedup over behavioral simulation in the case
of VGG16. For all experiments, HTP models achieve a Pareto-
optimal balance between faithful recreation of the target AM
and a minimal penalty on throughput in the retraining pipeline.

C. Throughput

Benchmarking is carried out on a system equipped with
an AMD Ryzen 9 3900X CPU and an nVidia RTX 2080Ti
GPU. The 24 logical cores available on the CPU are used
for parallelizing CPU-based computations. We compare the
performance of both our GPU-based LUT kernels and our HTP
simulation models of the 8-bit EvoApprox AMs to AdaPT’s
accelerated CPU kernels. When using a LUT-based approach,
throughput is independent of the chosen AM. Conversely, the
computational complexity of HTP models varies depending on
their number of coefficients and required input transformations.
We also include 12-bit and 16-bit EvoApprox HTP models to
evaluate the impact of simulating AMs with larger input spaces.
A network that does not simulate any AM but only performs
fake quantization is included as a baseline. The quantized
network does not model the error from approximate hardware

but serves as a reference for the overhead of such product
implementations. The inference time for a single batch of
ImageNet-sized data (224× 224 pixels, 3 channels, batch size
of 32) for several common CNNs is measured over 50 runs,
with the median reported.

The benchmark results in Figure 7 suggest that there is
indeed a performance degradation for all approximate hardware
simulations compared to an accurate model that only uses
fake quantization. For TorchApprox’ LUT-based approach,
this performance penalty ranges from 1.9× to 16.7× with
EfficientNetB0 and MobileNetV2 showing the lowest overhead
due to their use of the dedicated Approximate Depthwise
Convolution operator. TorchApprox’ dedicated Depthwise
Convolution operator also outperforms the lower bound of
the throughput achievable with HTP floating-point models.
Across the different networks, the geometric mean of the
speedup achieved by the 8-bit HTP models over the LUT-based
kernels is 2.7×. Some performance penalty is unavoidable
when comparing HTP models to the quantized baseline; HTP
models must perform each layer’s operation multiple times with
different transformations applied to the inputs, and the results
have to be scaled and accumulated. All TorchApprox inference
modes outperform the CPU-based AdaPT with a geometric
mean speedup of 96× for the HTP models, and 36× for the
LUT-based approach, demonstrating that GPU acceleration is
essential for modern neural network applications. Because the
HTP operator is unique to TorchApprox, there is no equivalent
operator available in AdaPT that would allow for a direct
comparison. The performance of the LUT operator which, in
terms of algorithm, is identical in both AdaPT and TorchApprox
does, however allow for an indirect comparison. Thanks to a
CPU’s more sophisticated cache hierarchy and instruction-level
support for array lookups, the difference between HTP models
and an optimized LUT-implementation would likely be smaller
when run on a CPU, compared to a GPU. The avoidance of
expensive type conversions and handwritten kernels when using

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS 11

AlexNet EfficientNetB0 MobileNetV2 ResNet18 ResNet50 VGG16

101

102

103

104

M
ed

ia
n

Ex
ec

ut
io

n
T

im
e

[m
s]

HTP, 8-Bit HTP, 12-Bit HTP, 16-Bit LUT, TorchApprox LUT, adaPT Quant. only

Figure 7. ImageNet inference single batch execution time (batch size 32) for several CNN models.

2 4 8 16 32 64
Number of Channels

100

101

102

M
ed

ia
n

Ex
ec

ut
io

n
T

im
e

[m
s] LUT, TorchApprox

LUT, TFApprox
HTP, EvoApp. 8-Bit

Figure 8. 2D Convolution inference single batch execution time for NCHW
tensor with a varying number of channels Cin = Cout and N = 64, H =
W = 128.

HTP models would, however, still be beneficial, regardless of
the compute device. In terms of absolute performance, it is
highly unlikely that HTP models on a CPU be able to close
the large performance gap between a CPU and a GPU.

The performance of HTP models with 12-bit and 16-bit
operands is on par with those derived from 8-bit AMs. HTP
models targeting larger bit-width AMs are slightly ahead in
terms of throughput, compared to 8-Bit HTP models. This is
explained by the fact these models are a simulation, where
the input format is the same floating-point representation,
regardless of the specific AM being simulated. The complexity
and throughput of these models is entirely determined by the
number and complexity of their required input transformations
gx(x), gw(w). Coincidentally, 16-Bit HTP models are slightly
less complex, allowing for higher average throughput. The HTP
model’s independence of the operand bit-width of the AM being
simulated is an important benefit for the study of AMs with
larger operand bit-widths, since LUTs of more than 8×8-bit are
typically not used due to impractical memory consumption and
poor cache utilization. HTP models, in contrast, are applicable
to AMs of any bit-width.

We also compare the performance of our ApproxGeMM
kernels to those from TFApprox [6]. A full comparison of

both libraries on a complete neural network task is difficult.
The lack of a Depth-wise Convolution operator in TFApprox
limits any benchmark to using outdated CNN architectures.
Furthermore, both libraries are built on different frameworks,
which could significantly impact end-to-end measurements.
To mitigate this effect, we analyze the inference throughput
of a single 2D Convolution layer while varying the number
of input and output channels in Figure 8. For LUT-based
implementations, TFApprox shows higher throughput for all
configurations, which might be explained by the larger number
of handwritten and optimized kernels in TFApprox. We would
like to point out that our more modular approach reduces
throughput, but simplifies maintenance and experimentation.
The HTP models provide a geometric mean speedup of 2×
when compared to TFApprox’s 2D Convolution.

V. CONCLUSION AND OUTLOOK

In this work, we discussed and evaluated several novel tech-
niques that help improve the speed and performance of neural
networks using operators with approximate multiplications.
By replacing expensive type conversion and memory lookup
operations for the simulation of AMs with primitive floating-
point functions, we achieved up to a 4× improvement in
throughput for the largest evaluated benchmark model. Unlike
a LUT-based simulation, our HTP approach does not depend
on input operand bit-width, making it particularly attractive
for AMs with higher-bit-width inputs where a LUT becomes
infeasible due to the quadratic growth in memory usage. This
operator has also been extended to cover logarithmic AMs. With
this extension, we demonstrate that the concept is applicable
to a wider range of AM designs. Despite relying on expensive
operations like a floating-point logarithm and modulus, HTP
models still provide significant speedups over commonly used
AM simulation approaches with throughput approaching that
of a training pipeline using accurate operations. A faster
simulation of AMs during the retraining of NN applications
can help in studying the effects of approximate hardware
implementations on neural networks after deployment quicker
and in more detail, increasing the accessibility of AM as another
parameter for NN optimization to the more widely used pruning
and quantization.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS 12

A remaining limitation is the process of deriving HTP
models. While some model parameters can be discovered in
a partially automated fashion, at least the search space still
needs to be designed by hand, based on insights into the
function of the respective subclass of AMs. Furthermore, the
use of a composition of input transformations relies on AMs
having an output space that is constant for large numbers
of operand combinations and does not trivially generalize to
other AM designs while still providing useful acceleration.
While a generalization to any Boolean function is theoretically
possible, how these generalized models can be simplified
to the extent that they are faster than LUT operations has
not been discussed in this work. Similarly, our evaluation
finds that a retraining with simulated AMs might lead to non-
convergence in a larger number of cases. In this study, only
a relatively simple retraining scenario was evaluated. More
complex retraining methods that provide better convergence
are a promising direction for future research.

We also provided the theoretical background for combining
AMs and integer quantization, both for affine per-tensor and
per-channel schemes. Comparing weight quantization with
per-channel and per-tensor granularity showed that increased
granularity of quantization parameters provides a significant
boost in accuracy over the commonly used per-tensor quant-
ization scheme. This is especially true when combining AMs
and quantization to very low bit-widths.

By improving support for AM operators during neural
network training, we provide tools that improve the perform-
ance of deep learning models when they are deployed on
inaccurate hardware. We hope our results will inspire future
research into the representation of simple logic operations using
optimized surrogate models that take advantage of modern
GPUs’s advanced floating-point capabilities.

ACKNOWLEDGMENTS

The project on which this report is based was funded by the
German Ministry of Education and Research (BMBF) under
the project number 16ME0542K. The responsibility for the
content of this publication lies with the author.

APPENDIX

A. Network Training Setup

To improve reproducibility, we discuss in detail the model
training process that was used for the experiments in Sec-
tion IV-A and Section IV-B. An overview of the most important
hyperparameters is given in Table IV. All experiments start
from a baseline model in FP32, without any approximation or
quantization. For LeNet-5 and ResNet8, this model is trained
from scratch, while a pre-trained model is used and fine-tuned
in the case of VGG16. A quantized version is then fine-tuned
using QAT. Because Section IV-B considers 8×8-Bit AMs, the
simpler symmetric per-tensor scheme is used in this experiment.

Section IV-A aims to establish whether quantization with
per-channel granularity improves over a per-tensor scheme (and
if so, by how much). Because the quantization error grows for
smaller bit-widths, the effect is expected to be largest when
quantizing to small bit-widths. To quickly evaluate a large

Table IV
EXPERIMENTAL SETUPS USED IN SECTIONS IV-A TO IV-B

Mode Parameters

L
eN

et
5

M
N

IS
T

Baseline 10 epochs, SGD, L2 Reg. = 1 · 10−4, Initial LR = 0.1,
γ = 0.75 epochs (3,6,9), momentum = 0.9

QAT 6 epochs, SGD, Initial LR = 5 · 10−3, γ = 0.9 (epochs
4,5)

Approx. 6 epochs, SGD, Initial LR = 5 · 10−3, γ = 0.9 (epochs
4,5)

R
es

N
et

8
C

IF
A

R
10

Baseline 180 epochs, SGD, L2 Regularization = 1 · 10−4, Initial
LR = 0.1, γ = 0.9 epochs (90,130,160), momentum =
0.9

QAT 12 epochs, SGD, Initial LR = 1 · 10−2, γ = 0.9 (epochs
6,9), momentum = 0.9

Approx. 8 epochs, SGD, Initial LR = 1 · 10−2, γ = 0.9 (epochs
5,7), momentum = 0.9

V
G

G
16

-B
N

Ti
ny

Im
ag

eN
et Baseline from pretrained, 30 epochs, SGD,

L2 Regularization = 1 · 10−4, Initial LR = 1 · 10−2,
γ = 0.8 (Val. Acc Top-5 Plateau Scheduler w. patience =
3 epochs), momentum = 0.9

QAT 2 epochs, SGD, Initial LR = 5 · 10−4

Approx. Linear layers only, 1 epoch, SGD, Initial LR = 1 · 10−3

space of AMs, an LeNet-5 instance is used. From the baseline
model, weights are quantized to 2, 3 and 4 bits using both per-
tensor and per-channel quantization, while activations remain
in an 8-bit per-tensor quantization for all experiments. For
each combination of bit-width and granularity, we generate a
quantized baseline model using QAT. Each quantized model is
then retrained with simulated approximate multiplications in all
convolutional and FC layers for all 2-, 3-, and 4-bit AMs from
the EvoApprox library in PyTorch, using the TorchApprox
simulation library with LUTs. The quantization parameters are
updated alongside other network parameters to produce neural
network configurations with the highest accuracy.

For ResNet8, the range of quantization bit-widths is set to be
higher, encompassing 4-, 5-, 6- and 7-bit AM designs, because
of the higher complexity for ResNet8

In addition to the LeNet-5 and ResNet8 models described
above, a more complex task is added and evaluated in Sec-
tion IV-B. To gain insights into model performance on larger
CNNs, the VGG16 architecture [44] is evaluated on the
TinyImageNet dataset [45]. For VGG16, we apply approximate
computation only to the three FC layers at the end of the
network, rather than the full network because we find that full
approximation leads to non-convergence in many instances.
This is not directly representative of any real-world workload
but serves as a synthetic test case that allows us to evaluate
the retraining performance of the various AM simulations on
a much larger number of models than if we applied AMs
to all layers. Due to the complex task, VGG16 is retrained
for a single epoch with a learning rate of 1 · 10−3. In line
with previous work [23], [46], we find that most accuracy is
either recovered very early on in the fine-tuning process, or
that the model does not converge at all. This is especially true
for architectures without residual branches like VGG16. The
experiment conducted Section IV-B also does not necessarily
require full convergence of the evaluated network, since the
aim of the experiment is to examine how well different models
follow the convergence of behavioral simulation in a training

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS 13

Table V
RETRAINING DURATION FOR EXPERIMENTS IN FIGURE 6

Experiment Baseline Behavioral HTP Linear Noise

L
og

ar
ith

m
ic

M
ul

tip
lie

rs LeNet5 13.2s 16.3s 14.5s 14.5s 14.0s
ResNet8 31.2s 50.3s 37.3s 36.6s 34.4s
VGG16 224.0s 1084.0s 429.0s 287.0s 231.0s

E
vo

ap
pr

ox
8-

B
it

LeNet5 12.5s 15.6s 13.2s 14.0s 13.7s
Resnet8 32.6s 54.6s 36.0s 38.5s 36.8s
VGG16 213.7s 997.7s 248.6s 271.8s 218.6s

Table VI
MEAN ABSOLUTE ERROR OF TOP-k ACCURACY IN PERCENTAGE POINTS

AFTER RETRAINING WITH VARIOUS METHODS FOR EXPERIMENTS
IN FIGURE 6

Experiment Baseline Behavioral HTP Linear Noise

L
og

ar
ith

m
ic

M
ul

tip
lie

rs LeNet5 3.85e-01 0.00e+00 1.00e-02 5.50e-02 7.85e-01
ResNet8 9.91e+00 0.00e+00 1.42e-01 3.26e+00 1.11e+01
VGG16 6.33e-02 0.00e+00 1.17e-02 3.67e-02 1.08e-01

E
vo

ap
pr

ox
8-

B
it

LeNet5 8.53e+00 0.00e+00 1.15e-02 6.32e+00 6.61e+00
ResNet8 1.23e+01 0.00e+00 2.10e-01 4.76e+00 7.42e+00
VGG16 9.24e-01 0.00e+00 1.18e-01 6.06e-01 1.05e+00

Table VII
MEDIAN SINGLE BATCH INFERENCE TIME IN MILLISECONDS FOR

DIFFERENT CNN MODELS AND AM RETRAINING METHODS AS SHOWN
IN FIGURE 7.

Experiment HTP
8-Bit

HTP
12-Bit

HTP
16-Bit

LUT,
TA

LUT,
adaPT

Quant.

AlexNet 17±4 17±4 16±5 90 1682 9
EfficientNetB0 82±18 80±18 79±21 86 4062 45
MobileNetV2 58±13 57±13 56±15 62 3300 31
ResNet18 34±8 33±8 32±10 118 3925 16
ResNet50 103±26 101±26 99±31 272 10110 49
VGG16 126±36 124±36 121±43 884 31467 53

Table VIII
SINGLE BATCH INFERENCE TIME IN MILLISECONDS FOR DIFFERENT 2D

CONVOLUTION CHANNEL COUNTS AS SHOWN IN FIGURE 8.

Channels HTP, 8-Bit TorchApprox, LUT TFApprox, LUT

2 1.097±0.303 2.538 1.991
4 1.687±0.475 4.171 2.774
8 2.977±0.852 7.780 5.200
16 5.634±1.629 17.376 10.854
32 11.292±3.297 47.935 26.159
64 30.001±9.094 152.319 106.572

pipeline scenario.
For the evaluation of throughput in Section IV-C, the model’s

accuracy is not considered at all, because the inference process
is not influenced by the model’s parameters. For this reason,
all evaluated models are taken directly from the TorchVision
model zoo, without further adaptation.

B. Experimental results

The exact values of the experimental results from Sec-
tions IV-A to IV-C are provided in Tables V to VIII. Note that
HTP model values in Table VII and Table VIII are aggregated
across all HTP models of the given bit-width, with mean and
standard deviation reported.

REFERENCES

[1] N. Maslej, L. Fattorini, E. Brynjolfsson, J. Etchemendy, K. Ligett,
T. Lyons, J. Manyika, H. Ngo, J. C. Niebles, V. Parli, Y. Shoham,
R. Wald, J. Clark, and R. Perrault, “Artificial Intelligence Index Report
2023,” Oct. 2023.

[2] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in NIPS
Conference, Denver, Colorado, USA, November 27-30, 1989. Morgan
Kaufmann, 1989, pp. 598–605.

[3] D. Lin, S. Talathi, and S. Annapureddy, “Fixed Point Quantization of
Deep Convolutional Networks,” in Proceedings of The 33rd International
Conference on Machine Learning. PMLR, Jun. 2016, pp. 2849–2858.

[4] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A dynamic range
unbiased multiplier for approximate applications,” in Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, ICCAD
2015, Austin, TX, USA, November 2-6, 2015. IEEE, 2015, pp. 418–425.

[5] Y. Fan, X. Wu, J. Dong, and Z. Qi, “AxDNN: Towards the cross-layer
design of approximate DNNs,” Proceedings of the 24th Asia and South
Pacific Design Automation Conference, pp. 317–322, Jan. 2019.

[6] F. Vaverka, V. Mrazek, Z. Vasicek, and L. Sekanina, “TFApprox: Towards
a Fast Emulation of DNN Approximate Hardware Accelerators on GPU,”
2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 294–297, Mar. 2020.

[7] D. Danopoulos, G. Zervakis, K. Siozios, D. Soudris, and J. Henkel,
“AdaPT: Fast Emulation of Approximate DNN Accelerators in PyTorch,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 42, no. 6, pp. 2074–2078, Jun. 2023.

[8] C. De La Parra, A. Guntoro, and A. Kumar, “ProxSim: GPU-based
Simulation Framework for Cross-Layer Approximate DNN Optimization,”
in 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE). Grenoble, France: IEEE, Mar. 2020, pp. 1193–1198.

[9] H. He, “The state of machine learning frameworks in 2019,” The Gradient,
2019.

[10] B. Rokh, A. Azarpeyvand, and A. Khanteymoori, “A Comprehensive
Survey on Model Quantization for Deep Neural Networks in Image
Classification,” ACM Transactions on Intelligent Systems and Technology,
vol. 14, no. 6, pp. 1–50, Dec. 2023.

[11] M. Horowitz, “Computing’s energy problem (and what we can do
about it),” 2014 {IEEE} International Conference on Solid-State Circuits
Conference, {ISSCC} 2014, Digest of Technical Papers, San Francisco,
CA, USA, February 9-13, 2014, pp. 10–14, Feb. 2014.

[12] E. Trommer, B. Waschneck, and A. Kumar, “High-Throughput Ap-
proximate Multiplication Models in PyTorch,” 2023 26th International
Symposium on Design and Diagnostics of Electronic Circuits and Systems
(DDECS), pp. 79–82, May 2023.

[13] M. Pinos, V. Mrazek, F. Vaverka, Z. Vasicek, and L. Sekanina, “Acceler-
ation Techniques for Automated Design of Approximate Convolutional
Neural Networks,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 13, no. 1, pp. 212–224, Mar. 2023.

[14] J. N. Mitchell, “Computer Multiplication and Division Using Binary
Logarithms,” IEEE Transactions on Electronic Computers, vol. EC-11,
no. 4, pp. 512–517, Aug. 1962.

[15] W. Liu, J. Xu, D. Wang, C. Wang, P. Montuschi, and F. Lombardi,
“Design and Evaluation of Approximate Logarithmic Multipliers for Low
Power Error-Tolerant Applications,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 65, no. 9, pp. 2856–2868, Sep. 2018.

[16] M. S. Kim, A. A. D. Barrio, L. T. Oliveira, R. Hermida, and N. Bagherza-
deh, “Efficient Mitchell’s Approximate Log Multipliers for Convolutional
Neural Networks,” IEEE Transactions on Computers, vol. 68, no. 5, pp.
660–675, May 2019.

[17] G. Zervakis, K. Tsoumanis, S. Xydis, N. Axelos, and K. Pekmestzi,
“Approximate Multiplier Architectures Through Partial Product Perfora-
tion: Power-Area Tradeoffs Analysis,” Proceedings of the 25th edition
on Great Lakes Symposium on VLSI, pp. 229–232, May 2015.

[18] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “EvoApprox8b:
Library of Approximate Adders and Multipliers for Circuit Design and
Benchmarking of Approximation Methods,” Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017, pp. 258–261, Mar.
2017.

[19] V. Mrazek, L. Sekanina, and Z. Vasicek, “Libraries of Approximate
Circuits: Automated Design and Application in CNN Accelerators,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 10,
no. 4, pp. 406–418, Dec. 2020.

[20] S. Ullah, S. S. Murthy, and A. Kumar, “SMApproxlib: Library of FPGA-
based approximate multipliers,” Proceedings of the 55th Annual Design
Automation Conference, pp. 1–6, Jun. 2018.

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS 14

[21] X. He, L. Ke, W. Lu, G. Yan, and X. Zhang, “AxTrain: Hardware-oriented
neural network training for approximate inference,” in Proceedings of
the International Symposium on Low Power Electronics and Design,
ISLPED 2018, Seattle, WA, USA, July 23-25, 2018. ACM, 2018, pp.
20:1–20:6.

[22] S. Mazahir, M. K. Ayub, O. Hasan, and M. Shafique, “Probabilistic
Error Analysis of Approximate Adders and Multipliers,” in Approximate
Circuits. Cham: Springer International Publishing, 2019, pp. 99–120.

[23] E. Trommer, B. Waschneck, and A. Kumar, “Combining Gradients and
Probabilities for Heterogeneous Approximation of Neural Networks,” Pro-
ceedings of the 41st IEEE/ACM International Conference on Computer-
Aided Design, pp. 1–8, Oct. 2022.

[24] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA, November
2-4, 2016. USENIX Association, 2016, pp. 265–283.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, 2019, pp. 8024–8035.

[26] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van Baalen,
and T. Blankevoort, “A White Paper on Neural Network Quantization,”
Jun. 2021.

[27] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE
Computer Society, 2018, pp. 2704–2713.

[28] M. S. Kim, A. A. Del Barrio, H. Kim, and N. Bagherzadeh, “The Effects
of Approximate Multiplication on Convolutional Neural Networks,” IEEE
Transactions on Emerging Topics in Computing, vol. 10, no. 2, pp. 904–
916, Apr. 2022.

[29] G. Zervakis, H. Saadat, H. Amrouch, A. Gerstlauer, S. Parameswaran, and
J. Henkel, “Approximate Computing for ML: State-of-the-art, Challenges
and Visions,” in Proceedings of the 26th Asia and South Pacific Design
Automation Conference. Tokyo Japan: ACM, Jan. 2021, pp. 189–196.

[30] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan, and K. Roy,
“Energy-Efficient Neural Computing with Approximate Multipliers,” ACM
Journal on Emerging Technologies in Computing Systems, vol. 14, no. 2,
pp. 1–23, Apr. 2018.

[31] C. De La Parra, A. Guntoro, and A. Kumar, “Full Approximation of
Deep Neural Networks through Efficient Optimization,” 2020 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–5, Oct.
2020.

[32] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” in 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

[33] M. Ahmadinejad and M. H. Moaiyeri, “Energy- and Quality-Efficient
Approximate Multipliers for Neural Network and Image Processing
Applications,” IEEE Transactions on Emerging Topics in Computing, pp.
1–1, 2021.

[34] F.-Y. Gu, I.-C. Lin, and J.-W. Lin, “A Low-Power and High-Accuracy
Approximate Multiplier With Reconfigurable Truncation,” IEEE Access,
vol. 10, pp. 60 447–60 458, 2022.

[35] M. S. Ansari, B. F. Cockburn, and J. Han, “An Improved Logarithmic
Multiplier for Energy-Efficient Neural Computing,” IEEE Transactions
on Computers, vol. 70, no. 4, pp. 614–625, Apr. 2021.

[36] M. S. Kim, A. A. Del Barrio, R. Hermida, and N. Bagherzadeh,
“Low-power implementation of Mitchell’s approximate logarithmic
multiplication for convolutional neural networks,” 2018 23rd Asia and
South Pacific Design Automation Conference (ASP-DAC), pp. 617–622,
Jan. 2018.

[37] G. Zervakis, O. Spantidi, I. Anagnostopoulos, H. Amrouch, and J. Henkel,
“Control Variate Approximation for DNN Accelerators,” 2021 58th
ACM/IEEE Design Automation Conference (DAC), pp. 481–486, Dec.
2021.

[38] O. Spantidi, G. Zervakis, I. Anagnostopoulos, H. Amrouch, and J. Henkel,
“Positive/Negative Approximate Multipliers for DNN Accelerators,”
2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), pp. 1–9, Nov. 2021.

[39] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 2016, pp. 770–778.

[41] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,”
2009.

[42] M. A. Hanif, R. Hafiz, and M. Shafique, “Error resilience analysis for
systematically employing approximate computing in convolutional neural
networks,” in 2018 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2018, Dresden, Germany, March 19-23, 2018. IEEE,
2018, pp. 913–916.

[43] S. Ullah, S. S. Sahoo, and A. Kumar, “CLAppED: A Design Framework
for Implementing Cross-Layer Approximation in FPGA-based Embedded
Systems,” 2021 58th ACM/IEEE Design Automation Conference (DAC),
pp. 475–480, Dec. 2021.

[44] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

[45] Y. Le and X. S. Yang, “Tiny ImageNet Visual Recognition Challenge,”
Tech. Rep., 2015.

[46] C. De La Parra, A. Guntoro, and A. Kumar, “Improving approximate
neural networks for perception tasks through specialized optimization,”
Future Generation Computer Systems, vol. 113, pp. 597–606, Dec. 2020.

Elias Trommer received an M.Sc. in Computer
Engineering from Technische Universität Berlin in
2020. He is currently pursuing a Ph.D. degree at
Technische Universität Dresden, in cooperation with
Infineon Technologies Dresden. His research interests
include the application of gradient-based optimization
techniques and the inference of neural networks on
resource-constrained devices like microcontrollers.

Bernd Waschneck received an M.Sc. in semicon-
ductor physics from Ludwig-Maximilians-Universität
Munich in 2013 and a Ph.D. in manufacturing
engineering from the University of Stuttgart in 2020.
Since 2014, he works at the semiconductor company
Infineon Technologies in the fields of data science and
artificial intelligence. He currently works as Director
of System Innovation & Software in the Infineon
Development Center Dresden, where he leads the
System Innovation team. His research interests in-
clude hardware and software AI acceleration and

embedded AI on microcontrollers for smart sensors.

Akash Kumar received the joint PhD degree in
electrical engineering and embedded systems from
the Eindhoven University of Technology and the
National University of Singapore (NUS) in 2009.
From 2009 to 2015, he was with NUS. He is
currently a Professor with Technische Universität
Dresden, where he is directing the Chair for Processor
Design. His current research interests include the
Design, Analysis, and Resource Management of Low-
Power and Fault-Tolerant Embedded Multiprocessor
Systems.

	Introduction
	Background and Related Work
	Approximate Multipliers
	Approximate Neural Network Training

	Proposed Methodology
	Affine and per-channel quantization
	From Fake-Quantization to Fake-Approximation
	Logarithmic Multipliers
	Truncated Multipliers
	Generalization

	Results and Discussion
	Quantization Schemes
	HTP Model Fidelity
	Throughput

	Conclusion and Outlook
	Appendix
	Network Training Setup
	Experimental results

	References
	Biographies
	Elias Trommer
	Bernd Waschneck
	Akash Kumar

