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Plasticine: A Cross-layer Approximation Methodology for
Multi-kernel Applications through Minimally Biased,
High-throughput, and Energy-efficient SIMD Soft
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The rapid evolution of error-resilient programs intertwined with their quest for high throughput has moti-

vated the use of Single Instruction, Multiple Data (SIMD) components in Field-Programmable Gate Arrays

(FPGAs). Particularly, to exploit the error-resiliency of such applications, Cross-layer approximation para-

digm has recently gained traction, the ultimate goal of which is to efficiently exploit approximation poten-

tials across layers of abstraction. From circuit- to application-level, valuable studies have proposed various

approximation techniques, albeit linked to four drawbacks: First, most of approximate multipliers and di-

viders operate only in SISD mode. Second, imprecise units are often substituted, merely in a single kernel of a

multi-kernel application, with an end-to-end analysis in Quality of Results (QoR) and not in the gained perfor-

mance. Third, state-of-the-art (SoA) strategies neglect the fact that each kernel contributes differently to the

end-to-end QoR and performance metrics. Therefore, they lack in adopting a generic methodology for adjust-

ing the approximation knobs to maximize performance gains for a user-defined quality constraint. Finally,

multi-level techniques lack in being efficiently supported, from application-, to architecture-, to circuit-level,

in a cohesive cross-layer hierarchy.

In this article, we propose Plasticine, a cross-layer methodology for multi-kernel applications, which ad-

dresses the aforementioned challenges by efficiently utilizing the synergistic effects of a chain of techniques

across layers of abstraction. To this end, we propose an application sensitivity analysis and a heuristic that

tailor the precision at constituent kernels of the application by finding the most tolerable degree of approx-

imations for each of consecutive kernels, while also satisfying the ultimate user-defined QoR. The chain of

approximations is also effectively enabled in a cross-layer hierarchy, from application- to architecture- to

circuit-level, through the plasticity of SIMD multiplier-dividers, each supporting dynamic precision variabil-

ity along with hybrid functionality. The end-to-end evaluations of Plasticine on three multi-kernel applica-

tions employed in bio-signal processing, image processing, and moving object tracking for Unmanned Air

Vehicles (UAV) demonstrate 41%–64%, 39%–62%, and 70%–86% improvements in area, latency, and Area-Delay-

Product (ADP), respectively, over 32-bit fixed precision, with negligible loss in QoR. To springboard future

research in reconfigurable and approximate computing communities, our implementations will be available

and open-sourced at https://cfaed.tu-dresden.de/pd-downloads.
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1 INTRODUCTION

The ever-rising quest for real-time processing at the edge is a common requirement in wide spec-
trum of applications from bio-signal to various cutting-edge image processing programs, e.g.,
self/object tracking in Unmanned Aerial Vehicles (UAVs). From proliferating use-cases of these
edge nodes are drones that are coming at the forefront of diverse domains, including search-and-
rescue missions, surveillance and crowd management, agricultural operations, and entertainment.
Wearable 24/7 health-monitoring gadgets are also from other widely used nodes, especially when
considering 47% of cardiac diseases—the major cause of death globally—occur outside the hospitals
[1, 2]. Although Application-Specific Integrated Circuits (ASICs) are highly power-efficient
platforms for implementation of the aforementioned programs, hardware flexibility is also of para-
mount concern, which is required to be addressed. For example, the hardware of health gadgets
should be flexible to adapt with different patients’ physiological traits and the heart’s changing ac-
tivity. Moreover, high-throughput is another requirement, as such parallelizable applications are
constantly fed with bulk of data. Finally, also by considering the application upgradability that
usually outpaces hardware updates, off-the-shelf Field-Programmable Gate Arrays (FPGAs)

are left as the commercially viable choices that also enjoy high throughput, rapid prototyping, and
post-fabrication datapath versatility [3–5].

FPGAs, rewarded by a high degree of parallelism, encompass hard-wired DSP blocks to acceler-
ate multiplication that is the atomic function in image or bio-signal processing workloads. In spite
of their advantages, hosting DSP blocks falls short on fulfilling design requirements in a variety of
programs: First, their limited number is insufficient for multiplication-intensive or concurrent pro-
grams. Second, their fixed locations in FPGAs poses routing overhead and often results in degraded
performance of some circuits [6–8]. Finally, they are unable to be efficiently utilized for multiplica-
tion with small precision (<18 × 18 bit) [9, 10] and, therefore, cannot render the expected energy
gain by precision scaling. Therefore, designers have been forced to also exploit soft Intellectual

Property (IP) versions of multipliers and dividers, provided by major FPGA vendors such as Xil-
inx and Intel [11, 12]. Utilizing soft IPs instead of DSPs, for low bit-width operations, has also been
recommended by industry and academia [13, 14]. However, the long latency and high resource
requirement of LUT-based IPs might still hinder their deployment, e.g., in wearable gadgets and
aerial platforms with stringent energy constraints. Moreover, the quest for high throughput is still
left unaddressed.

To alleviate resource footprint in the above-mentioned error-resilient programs, various
approximation techniques have been emerged at both circuit- (imprecise Add/Mul/Div) and
application-level (e.g., precision scaling). However, two main challenges are attributed to
circuit-level techniques: 1 Most of existing approximate multipliers and dividers operate only
in SISD mode while also customized for ASIC platforms. In fact, due to the different intrinsic
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Fig. 1. Comparing area, delay, and energy of 8-, 16-, and 32-bit addition, multiplication, and division opera-

tions, when implemented in Virtex-7 FPGA, via Look-up Table (LUT)-based accurate IPs.

architectural specifications, approximation approaches assessed in ASIC platforms have not
yielded comparable gains when directly synthesized and ported to FPGAs [7]. 2 While most
efforts were concentrated on multiplication, studies such as References [15, 16] and our analysis,
shown in Figure 1, exhibit the longer latency and higher energy of division compared to the
multiplication, which can confine the application speed. Therefore, the approximation of division
has recently become more pronounced as, although less frequent, this operation is inevitable in
bio-signal processing (heartbeat detection) as well as image processing and vision applications
(K-means for unsupervised clustering, JPEG compression, and Harris corner detection). Neverthe-
less, among the imprecise dividers in the literature, none was customized for either LUT-based or
a Single Instruction, Multiple Data (SIMD) design.

Literature studies that also consider application-level techniques are linked with two drawbacks.
First, they have applied approximations mostly, on a single kernel of a multi-kernel application, e.g.,
in Discrete Cosine Transform (DCT) stage of JPEG compression [16, 17]. Their performance
gain is also oftentimes appraised and reported for that single kernel and not in an end-to-end
implementation of the complete application. Second, kernel precision in most of such approaches
is fixed to 16-bits, and the effect of varying precision on resource-accuracy tradeoff has not been
analyzed. In fact, sticking to fixed-precision strategy ignores the fact that kernels’ significance
order might differ in the gained performance and lost Quality of Result (QoR).1

The paradigm of Cross-Layer approximation has emerged [19], the ultimate goal of which is
not only to exploit various approximation potentials across layers of abstraction, but also to effi-
ciently unlock the synergistic effects of such chain of techniques from application- to architecture-
to circuit-layer, in a cohesive cross-layer hierarchy. However, the valuable studies (e.g., Reference
[20] and its references) that have tried to enable cross-layer approximation are linked with two
main challenges. First, they mostly have leveraged circuit-level inexact Add/Mul/Div in tandem
with application-level precision scaling without exploiting SIMD potentials (at architecture-level),
which can also elegantly provide support for precision scaling. Second, they are hitherto restricted
to neural networks, and studies in other domains have not explored the effect of changing precision
along with utilizing inexact units.

Thus, to harvest architecture-level potentials, the concept of SIMD has been tailored by Intel
[21, 22] and Xilinx [23] to provide support for double multiplication within their FPGA DSPs. Such
SIMD designs not only harness data-level parallelism capability, but also bridge the gap between
circuit- and application-level approximations by supporting Dynamically Reconfigurable Approx-
imation [24] through allowing runtime precision-variability in a single unit. However, such SIMD
units are customized for ASIC implementation and not analyzed for a cross-layer approach. In
short, despite the great efforts of aforementioned studies, they are still faced with two challenges:

1Required precision varies not only between programs, but also among kernels of a single program, e.g., layers of NN [18].
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First, they lack a generic methodology for multi-kernel applications to adjust approximation knobs
in such a way that can maximize performance gains for a user-defined quality. Second, they have
overlooked the SIMD potentials at architecture-level.

To surmount foregoing circuit-level challenges, we have designed the LUT-based hybrid
multiplier-divider SIMDive [15], which not only enables the plasticity to switch between two func-
tionalities on-the-fly without the need for reconfiguration, but also can operate in SIMD mode.
SIMDive is an integer multiplier-divider, designed based on Mitchell’s algorithms [25], which
transforms the multiplication (division) operation to addition (subtraction) in the logarithmic rep-
resentation (Section 3.1 details this algorithm). Transforming the 2D structure of array multiplier
and divider to 1D adder and subtractor in the logarithmic representation significantly reduces de-
sign complexity, especially bridges the long latency/energy of an accurate divider, nearly to its
same-size multiplier. This translation also fits FPGAs and renders substantial gains, as they are
already equipped with fast carry chains hardened to accelerate addition. SIMDive is specialized
toward accelerating Mul/Div computations with a SIMD approach by probing the presence of
Leading One in parallel, in each 4-bit segments of the inputs. Moreover, the implementations of
our novel error-reduction schemes—which are also independent from Mul/Div size—are also cus-
tomized for LUT-based platforms. In fact, our light-weight error-reduction schemes use only one
LUT for generating one bit in 64 error-reduction terms (see Section 4). Afterwards, the addition
of these error-coefficients to the original Mitchell’s multiplier and divider are performed concur-
rently and within the same resources, used for the baseline designs [26]. Therefore, the latency
overhead in the overall critical path is minimized to only calculation of the error-coefficients, as
their addition via ternary adder uses nearly similar resources when using a binary adder (consid-
ering the fixed latency of LUT primitives). This is while in Reference [27], MBM [17], and INZeD
[16], a non-trivial circuitry is needed for addition of error-reduction terms to the original Mitchell’s
circuits.

In this article, we propose Plasticine, which sets out to enable a cross-layer approximation
methodology for multi-kernel applications. Through conducting a novel application-level sensi-
tivity analysis, we highlight four observations as key guidelines for our methodology: (1) It is un-
necessary to dedicate the high-precision of 32-bit uniformly to all kernels. (2) Kernels significance
order in lost QoR can differ from its order in the gained performance when approximated by the
same techniques. (3) Such multi-kernel applications show higher sensitivity to approximation of
addition operation. (4) Low error-bias has also a high impact on the final QoR: Errors with different
signs can nullify each other, provided that kernels have aggregation-based structure (i.e., mostly
Add/Mul). This last observation also has been hinted in recent NN-focused works [24, 28, 29], yet an-
alyzed herein for different domains of applications. Based on such observations, we have proposed

the ΔPerformance
ΔQoR as the saliency metric that appropriately reflects intensity of gained performance

over a possible accuracy loss when applying a chain of approximations. In fact, we have proposed
our cross-layer approximation strategy based on using this deciding metric in a greedy heuristic.
Our methodology tailors the precision at successive kernels by finding the most tolerable degree
of approximations for each kernel, while also meeting the user-defined accuracy in the ultimate
QoR. In short, we make the following novel and key technical research contributions:

• Minimally biased multiplier & divider with tunable accuracy. Our SISD designs, with
99.2% accuracy, achieve up to 80% less energy and >7× higher speed than accurate Vivado
IPs.
• First integrated approximate multiplier-divider. Our hybrid Mul/Div design can switch

between two functionalities on-the-fly, without the need of reconfiguration, while still out-
performing a single accurate multiplier in terms of area, latency, and energy.
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• FPGA-customized SIMD architectures for proposed Mul/Div. To adapt for SIMD archi-
tectures, we propose an LUT-oriented 4-bit Leading-One Detector (LOD), using only two
6-LUTs. Overall, 16- and 32-bit SIMD units are still smaller than the same-size accurate SISD
multiplier.
• Application-level cross-layer sensitivity analysis. It determines the relation between

gained performance and lost QoR, used to adjust the approximation knobs in our proposed
methodology.
• Cross-layer methodology for multi-kernel programs. Pareto/near-Pareto mixed-

precision configurations generated by our heuristic not only enable various performance-
accuracy tradeoffs, but also render higher gains over uniform-precision counterpart, in dif-
ferent accuracy-levels.
• End-to-end performance-QoR evaluation on three application domains. The efficacy

of the proposed cross-layer approximation is demonstrated on ubiquitously used applica-
tions: Pan-Tompkins heartbeat QRS detection [30] in bio-signal processing, JPEG compres-
sion in image processing, and Harris Corner Detection (HCD) in UAV/self tracking do-
main.
• Open-source model. To springboard future research for reconfigurable and approximate

computing communities, the implementations of our multipliers, dividers, and also FPGA-
customized applications will be available and open-sourced at https://cfaed.tu-dresden.de/
pd-downloads.

The rest of this article is organized as follows: Section 2 presents a brief survey on the related
studies w.r.t. the cross-layer approximation, imprecise multipliers, and dividers and distinguish
the contribution of this work from SoAs. Section 3 summarizes a background on Mitchell’s mul-
tiplication and division algorithms and the structure of multi-kernel applications. We elaborate
upon the proposed architectures and approximation methodology in Sections 4 and 5, respectively.
Experimental setup and results are detailed in Section 6. Finally, Section 7 draws the conclusion
with an outlook to interesting future tracks.

2 RELATED WORK

To enable cross-layer approximation, the utilized techniques are adopted from both circuit- and
application-level. Hence, the proper selection of inexact components w.r.t. the target platform ar-
chitecture is of great importance. In this context, although a substantial amount of effort has been
dedicated to ASIC-based imprecise multipliers and dividers (a quantitative evaluation of which can
be found in a recent study [31]), the FPGA-specialized designs have also gained traction recently.
Herein, we present a compendium of both landscapes and pinpoint SoA approaches in Table 1 and
the cross-layer approximation strategies in Table 2.

Partial product (PP) approximation: This class of works has applied approximation on:
(1) PP generation, e.g., truth table simplification in 2 × 2 and 4 × 4 multipliers and used them
in a hierarchical design [32]. (2) Accumulation or reduction of PP rows into two, using 3:2 and
4:2 simplified compressors [14, 33–38] in array- or Dadda-based multipliers. (3) Addition of the
generated two rows by, e.g., breaking the carry propagation path [7, 39]. The main shortcoming
attributed to these works is limited scalability when transported to larger hierarchical, i.e., sim-
plification of Karnaugh map or PP tree should start from scratch, otherwise error may drastically
increase as it becomes accumulated in a recursive design approach. Moreover, compressor-based
designs are usually heavy on the average relative error index or render moderate performance
gains when applied on few least significant PP columns.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 16. Pub. date: November 2021.

https://cfaed.tu-dresden.de/pd-downloads


16:6 Z. Ebrahimi et al.

Table 1. Summary of SoA Approximation Approaches for ASIC- and FPGA-based Multipliers and Dividers

Approach Mul/Div SIMD
ARE1

up to (%)
Description Platform

Reported

Mul/Div Gain2

Cross-Layer3/

End-to-end4

Partial

Product

Generation/

Addition/

Accumulation

✓/✗ ✗

7.6 Inexact 4:2 compressor in Dadda Mul [33–36, 38]

ASIC

{A, D, P} + ✗/ Partly [35]

1.7 Asymmetrically utilize inexact compressor in 3/4 of LSB columns [37] {A, P} ++, D +

✗/✗

8.4 Simplified Karnaugh map of 4:2 compressor in Booth Mul [56] A +, E ++

Config. Library of larger multiplier and adders using 2x2 instances [32, 57] {A, D, P} ++

0.3 Cutting the carry propagation path in 4-, 8-bit array multiplier [7, 39]

FPGA

{A, D, P} +

8.5 Truth table simplification 3:2/4:2 compressor for Dadda multiplication [14] {A, P} +

Conf. Library of 4x4 and 8x8 with approximate partial products [53] {A, P, D} +

Truncated

Mul/Div

✓/ ✗
✗

10.9 Leading one based: with error compensation [49], with rounding [48, 51]

ASIC

{A, P} ++

✗/✗✗/ ✓ 6.7 Leading-one position based 2k+2/k+1 Div plus error reduction circuit [44, 45] {A, D} +, E ++

✓/ ✗ ✓ 1.2-4.7 Variable-precision multiplier based on 8-bit truncated instances [44, 45] {A, E} +

Multiplicative

Dividers
✗/✓ ✗

2.9 Piecewise linear approximation and rounding of reciprocal of divisor [46]

ASIC

{D, E} ++

✗/✗6.4 Approximating reciprocal by bit manipulation [47], with truncation [47] {A, D, E} +++

16.3 Approximating reciprocal using a table indexed by upper bits of divisor [58] {A, D} +, E ++

4.9 Incremental approximation of reciprocal of divisor using Taylor series [59, 60] {D, E} +++ Partly / ✗

Mitchell’s

Multiplication

and Division

Algorithms

[25]

✓/ ✗
✗

2.9 Enhance Log accuracy: round rather truncation in piecewise approximation [61]

ASIC

{A, P} ++, D +

✗/ ✗

> 3.9 Use different approximate adders in Mitchell’s multiplier [62] {A, P} +++

2.7 Improving accuracy of Mitchell’s Mul with adding one error-correction [17] {A, P} ++

2.7 Adding up to 256 error-coefficient to Mitchell’s muliplier [27] {A, P} +

✗/ ✓ 3.0 Add one error-correction (with a similar approach to [17]) [16] A +, {D, E} ++

✓/ ✗ ✗ 1-1.6 Adding one to five error-coefficient to Mitchell’s multiplier [54]

FPGA

{A, E} ++, T +
✗/ ✗

✓/ ✓ ✓ 0.8 Adding 64 error-coefficients to Mitchell’s multiplier and divider [15] {A, E, T} ++

✓/✓ ✓ Conf. Cross-layer methodology for multi-kernel applications via SIMD Mul/Div {A, E} ++, T +++ ✓/✓

1Average of Absolute Relative Error (a.k.a. MRED).
2Area/Delay/Energy/Power/Throughput.
3Cross-layer: adopt application-level beside circuit (Mul/Div) approximation.
4Analyze end-to-end performance gain in the entire application.

Table 2. Summary of Cross-layer Approximation Approaches1 in Multi-layer/Kernel Applications

Techniques Description Strategy Constraint

Quant. (no cross-layer) Layer-wise quant. via greedy heuristic [63], used, in many SoAs Greedy Layers significance only determined by accuracy loss

Inexact Mul, Quant. Assign Muls w.r.t. layer/weight significance, uniform 8-bit quant. NN [29] Greedy Layers significance determined only by accuracy loss

Inexact Mul, Quant. Layer-wise weight tuning w.r.t. few Mul structure, in 8-bit quant. NN [20] Genetic Alg. Significant exploration time

Inexact Mul, Pruning Neuron/layer pruning followed by weight tuning, uniform quant. NN [64] Undefined No detail for semi-greedy approach is discussed

Mul, Pruning, Quant. Replacing Muls in half of neurons, uniform quant. NN [65] L2 norm No justification for L2 norm/selection of Mul

Add/Mul, Prec. Scaling Replacing LSBs’ Add/Mul in ECG kernels, fixed to 16-bit precision - Approximate kernels aggressively, in appearance order

Mul/Div, Prec. Scaling Minimally biased Mul/Div, followed by (mixed) precision scaling of kernels Greedy Greedy heuristic→ no guarantee for an optimal solution

1Valuable works like Reference [66] assess voltage scaling instead of inexact units (not in a cross-layer approach), hence,

are not in the scope of this paper.

Division with inexact subtractor: This family of dividers [40–43] has replaced the precise
subtractors with imprecise counterparts. Generally, such array-based dividers offer high accuracy,
however, the resource savings delivered by them are not significant due to maintaining the array
structure [44, 45]. Furthermore, they do not gain significantly on delay index (remains notably
larger than its peer-sized multiplier).

Multiplicative dividers: In this branch of studies, approximation is applied on the recipro-
cal of divisor, using, e.g., linear piecewise approximation [46]. In some studies, operands are also
truncated/rounded [47]. Moreover, when the truncation of divisor goes beyond a relatively small
length, say, four bits, the accuracy of its corresponding reciprocal starts to degrade significantly
[46].

Resizing to smaller multiplier/divider: More recent truncation-based approaches; they dy-
namically determine the position of leading one and then utilize a narrower-width accurate in-
stance of the unit (References [48, 51] for multiplier and References [44, 45, 52] for divider). Albeit
they offer notable resource improvements, these truncation techniques suffer from error cases
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equal to 100%. In addition, the latency of such dividers still remains significantly higher than a
same-sized multiplier.

FPGA-customized multipliers: Truncating carry propagation and LUTs at LSBs of 4 × 4 mul-
tipliers have been customized for FPGAs [7, 39, 53]. Furthermore, an approximate compressor has
been recently proposed in Reference [14], geared toward an LUT-oriented implementation. Despite
the specialized customization in these schemes, their resource savings have not been significant.
This has accentuated the demand for exploring other techniques that can enable higher savings
with an acceptable accuracy.

Logarithmic multiplier and dividers: In a more recent trend of studies, studies have adopted
Mitchell’s algorithms, which translate multiplication (division) into logarithm and addition (sub-
traction) in the logarithmic representation. Such transformations generally offer higher perfor-
mance gains, especially in terms of division latency, which is bridged to that of a same-sized multi-
plier. Such improvements albeit come with the cost of relatively high error (average relative error
of 3.8% for multiplication and 4.1% for division). In this context, various schemes have been re-
cently proposed to reduce the error, customized for both ASIC and FPGA. Targeting ASIC, authors
in MBM [17] have proposed a single error-reduction term for multiplication, and they employed
a similar scheme, later on, for division (INZeD [16]). However, as a single error-reduction term
weakly fits all input combinations, it eventuated in many output overflow cases when added to the
original designs. To alleviate such problem and also targeting FPGAs, we have recently proposed
two FPGA-specialized designs, LeAp [54] and SIMDive [15]. While in LeAp three error-reduction
schemes have been presented to reduce ARE of multiplication to ∼1%, a more generic approach
has been proposed in SIMDive for both multiplication and division that resulted in improving
all accuracy metrics (its approach can be further expanded to deliver higher accuracy). SIMDive,
REALM multiplier [27], and CADE floating point divider [55] all employ the similar idea of divid-
ing the power-of-two intervals for each operand to 2F segments (based on F MSBs of fractional
parts) and apply a coefficient for each pair of segments to minimize the average relative error in
each of sub-regions. SIMDive [15] has enabled further architectural features: first is the plasticity
to switch between hybrid functionality of Mul/Div on-the-fly, without the need for reconfigura-
tion. Moreover, its architecture is customized for FPGAs: The LUT-specialized implementation of
error-reduction circuit and the addition of it through ternary adder altogether has negligible over-
head over Mitchell’s baseline (see Table 4). Finally, it enables the ability to operate in SIMD mode,
therefore, it is an appropriate candidate to be utilized for dynamic precision scaling techniques
and a variety of applications featuring SIMD potentials, e.g, NNs.

Sensitivity analysis strategies for error-resilient applications: In general, the adopted ap-
proaches are either application-specific or based on error-injection. For example, ARC, presented
initially in Reference [67] and further improved in ASAM [68], distinguishes the error resiliency
of applications’ innermost loops (considering they consume ∼70% of overall time in recognition,
data mining, and search applications) by injecting random errors to the internal variables of loops
and monitor the fluctuations at the application output. ASAC [69] discovers the amenability of
variables to approximation through randomly applying bit-flips on 16 LSBs of the target variable.
PAC [70] has upgraded ASAC methodology through assigning a Degree of Accuracy, translated to
the number of bits that can be approximated as far as the pre-defined quality threshold is satisfied.
Targeting multi-kernel applications, most of the researches have focused on the domain of Neu-

ral Networks (NNs). Hanif et al. [71] have evaluated the effects of quantization and imprecise
Add/Mul in convolutional layers, individually, and observed the effects on the image classification
accuracy. This is while works such as References [72–74] and their references identify less critical
neurons based on, e.g., Taylor decomposition [75] or partial derivative on the loss function at the
output of each neuron. In short, the random error injection mechanisms cannot comprehensively
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characterize the error-resiliency. Furthermore, the above-mentioned methods mostly categorize
the variables either as approximable or sensitive without showing the end-to-end performance-
quality tradeoff of each kernel individually in the multi-kernel application. This can also highlight
the priority of kernel for approximation.

QoR-Performance optimization strategies: in brief, mainly three classes of heuristics have
been utilized for Design Space Exploration (DSE) problems: (1) Genetic Algorithm (GA) ap-
proaches [76–79] expand the search space by generating a population of configurations in each
iteration based on crossover and mutation actions. Besides having high computational complexity,
the quality of later configurations in this class of heuristics depends heavily on the initial genera-
tions. (2) Simulated annealing [80, 81] randomly samples an action that improves the target metric,
while other actions are also accepted based on a predefined probability. Such algorithms are known
to be time-consuming due to the large number of generated configurations. (3) Greedy strategies
have less complexity and usually better runtime than multi-objective GAs, but they have mostly
considered ΔQoR (not the relation between ΔQoR and ΔPerformance) as their saliency metric
[29, 63, 66, 110] for their selection strategy.

Precision-tuning strategies: literature studies that target (mixed-)precision tuning can be di-
vided into two categories. Either they adjust the precision of the individual operations (intra-kernel
granularity) or adjust precision of a group of operations as a kernel (inter-kernel granularity) in
a multi-kernel application. As an example for the former, the study of Reference [82] also con-
siders SIMDization in its Word-Length Optimization (WLO) algorithm. The priority of blocks
for SIMDization is based on their contribution to the overall execution time when evaluated in
individual CONV, FIR, and IIR kernels. However, the efforts for enabling efficient mixed-precision
configurations of multi-kernel applications has been limited. The recent work of Reference [83]
tackles the problem of WLO in cascaded image processing kernels. The adopted search strategy
of this study is based on a greedy gradient descent that again targets the quality constraint and
later on a local search has been performed to minimize the cost. Therefore, a low-cost method-
ology is required to adjust approximation knobs of multi-kernel applications in such a way that
can maximize performance gains for a user-defined quality. This would be particularly beneficial
for programs running on edge devices, as it can efficiently address the on-the-fly accuracy-energy
requirements w.r.t. the dynamic changes of, e.g., environment. In this context, the methodology of
Plasticine first performs an offline sensitivity analysis followed by the proposed greedy heuristic
that considers the ΔADP

ΔQoR
as its saliency metric. When evaluated on three multi-kernel case stud-

ies from different application domains (see Section 6), the adopted strategy of Plasticine has been
able to improve performance-gain over existing greedy approaches and generate the Pareto- or
near-Pareto results.

Cross-layer approximation for multi-kernel applications: Studies in this branch usually
have applied precision scaling along with imprecise multipliers. It should be noted that orches-
trating an adaptable precision scaling methodology is an application-level technique [65, 84–87]
(such as Plasticine and SoA IBM RAPID chip [88, 89], both of which support precision scaling
technique in a multi-precision, SIMDized fashion), and different from non-adaptable truncation of
operands (architecture/circuit level as in studies such as Reference [90]. Nevertheless, the focus of
cross-layer designs has been almost all targeted for NNs [20, 64, 65, 91]. In their adopted layer-wise
approaches, ranking the layers for quantization is determined merely based on their robustness to
precision scaling [20, 63]. Such a strategy neglects the significance order of layers on the end-to-
end gained performance (when approximated by the same technique), or in general, the relation
between performance gain and QoR loss. Besides NN studies, there exists another work, XBioSip

[92], that has applied a kernel-wise approximation on a multi-kernel application (Pan-Tompkins
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algorithm for QRS complex detection). This cutting-edge work also serves as the pioneer of bio-
signal processing approximation and has shown remarkable savings by deploying inexact Add/Mul
in all kernels. In this work, the precision of kernels is uniform, fixed to 16-bit, and each kernel uses
different numbers of 2 × 2 simplified Muls for its LSB computations. Therefore, beside having
a fully customized ASIC implementation, the effect of changing precision is not investigated in
this study. Moreover, the approximation strategy of this work is neither cross-layer nor based on
a comprehensive sensitivity analysis. In fact, XBioSip has aggressively approximated kernels in
their normal appearance order without providing a saliency measure to rank the significance of
kernels, as discussed above.2 The remainder of works have replaced an arithmetic unit with the
inexact one, mostly in a single kernel of multi-kernel application, without exploring the effects
of changing kernel’s precision for a cross-layer approach. In short, to the best of our knowledge,
no work has proposed a generic cross-layer methodology to appropriately adjust the knobs while
also utilizing SIMD potentials to more efficiently support a cohesive three-tiered hierarchy. Such
an adaptable approximation can be served as a viable energy-efficient and high-throughput solution,
highly desirable for ubiquitously used image processing and health monitoring edge nodes.

3 PRELIMINARIES AND BACKGROUND

3.1 Mitchell’s Multiplication and Division Algorithm

As shown in Equation (1), Mitchell’s algorithms perform imprecise multiplication and division in
the logarithmic representation of numbers. Consider the binary representation for N -bit unsigned
input A, which can be written as Equation (2), where k reveals the position of the leading one. The
rest of the bits (starting from position k − 1 to 0) are considered as the fractional part and fall in
the range of 0 ≤ x < 1.

Mitchell ′sAlдorithms =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

P = A × B
Approx.
−−−−−−→

Log
�LoдP =�LoдA +�LoдB

Approx.
−−−−−−→
Anti-Log

P̃ = 2
�LoдP

D = A ÷ B
Approx.
−−−−−−→

Log
�LoдD =�LoдA −�LoдB

Approx.
−−−−−−→
Anti-Log

D̃ = 2
�LoдD

(1)

A = 2k +

k−1∑
i=0

2ibi = 2k (1 + x )
e .д .
−−−→ 43 = 25 (1 + 0.01011)2, 10 = 23 (1 + 0.01)2 (2)

In linear mathematics, Loд(1 + x ) is approximated to x for this range of 0 ≤ x < 13; therefore,
the approximate logarithm of input A is:

Loд(A) � k + x → Loд(43) � (101.01011)2,Loд(10) � (11.01)2. (3)

After applying the same step on the second input to get its approximate Log, the summation
(subtraction) of two parts is obtained in Equation (4) (Equation (5)).

L̃oд(P̃ ) = (k1 + k2) + (x1 + x2) → Ks = (1000)2,Xs = (0.10011)2, (4)

L̃oд(D̃) = (k1 − k2) + (x1 − x2) → Ks = (10)2,Xs = (0.00011)2. (5)

2Although XBioSip tries to tackle this problem (search for higher gain with less QoR loss) by reducing approximately LSBs

of LPF by 2 and increase in HPF by 2 (their so-called diagonal search), this strategy still lacks generality for a multi-kernel

program.
3Throughout this article, Log stands for Log2.
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Fig. 2. Kernel structure of Pan-Tompkins QRS detection application.

Finally, by adding the SIMDive coefficient and applying anti-log (a shift operation), binary rep-
resentation of approximate product (quotient) are derived by Equation (6) (Equation (7)):

P̃ =

{
2k1+k2 (1 + x1 + x2), x1 + x2 < 1

2k1+k2+1 (x1 + x2), x1 + x2 ≥ 1
→
{
P̃ = (110011000)2 = 409

Paccur ate = 430,
(6)

D̃ =

{
2k1−k2−1 (2 + x1 − x2), x1 − x2 < 0

2k1−k2 (1 + x1 − x2), x1 − x2 ≥ 0
→
{
D̃ = (100)2 = 4
Daccur ate = 4.

(7)

3.2 Heartbeat QRS Detection with Pan-Tompkins Algorithm

It has been shown that processing stage consumes 70% of total energy in wearable health nodes.
Interestingly, both sensing and the processing algorithms in bio-signal analysis exhibit error-
resiliency [92, 93], making them potential candidates that can benefit from approximation. The
widely used Pan-Tompkins algorithm [30] detects the main heartbeat peak (QRS) in a Electrocar-

diogram (ECG) signal (cardiac arrhythmia results in incorrect ECG wave). Pan-Tompkins appli-
cation, shown in Figure 2, serves as the main standard of QRS detection in wearable devices. This
algorithm determines the number of QRS peaks in the samples, through five stages, being: ECG sig-
nals are first passed through an 11-tap low-pass followed by a 32-tap high-pass filter to attenuate
high- and low-frequency noises. The filtered stream is fed to a 5-tap digital differentiator to extract
the QRS slope information. Squaring is applied to amplify the signal strength and emphasize the
higher-frequencies, i.e., QRS points in the complete P-QRS-T complex [92]. Finally, by screening
the signal (averaging samples to the width of the moving window), R peaks are detected.

3.3 JPEG Compression

This compression technique is used in many image/video processing programs. JPEG algorithm,
shown in Figure 3, is initiated by RGB to YCbCr color conversion, which separates brightness-
from color-information of the image (human eye is more sensitive to light than colors). This is
followed by applying 8 × 8 2D-DCT to identify and remove insignificant portions of information
in the image, without a significant loss in the visual effect. The main compression takes place
via quantization, in which each DCT-converted data is divided to the user-defined compression
ratio (a.k.a. quality factor). In this article, we have adopted the normal compression ratio of 20:1,
which lies in the range of acceptable compression rates for aerial applications [94]. Afterwards,
the quantized coefficients are sorted in a zigzag sequence pattern with a frequency-ascending
order (low-frequency components, which are more important to the human visual system will be
retained through this re-arrangement and others will be discarded). Finally, Huffman scheme is
applied for encoding the image.
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Fig. 3. Kernel structure of JPEG Compression application.

Fig. 4. Kernel structure of Harris Corner Detection application.

3.4 Harris Corner Detection Algorithm

HCD is ubiquitously utilized in tracking algorithms and as a feature extraction algorithm in many
vision-based programs such as indoor localization, self-estimation, or object tracking in UAV, due
to its robustness in detecting corners in noisy images, captured from on-board camera [95]. This
technique locates the corners, i.e., pixels having strong intensity variations with their local neigh-
borhood, in both vertical and horizontal directions. The extracted corners are then joined in con-
secutive frames, forming a vector in the direction of movement. As illustrated in Figure 4, this
algorithm includes six steps: The image is first converted from RGB to grayscale to reduce the
load of computations. Then a 3 × 3 Gaussian filter is applied to remove noise of images taken from
on-board camera. It is reported that this pre-processing step remarkably improves the quality of
corner detection [96]. Afterwards, the gradient of the image in both horizontal and vertical di-
rections is computed using Sobel operators. These derivatives are then multiplied to each other to
construct the so-called auto-correlation matrix. Then the corner strength (a.k.a. Harris response) is
calculated, which reveals the intensity of changes to surrounding pixels: Negative response value
means the pixel probably belongs to an edge, while small and large positive, empirically chosen,
values imply that the pixel belongs to a flat region and corner, respectively. Finally, the corners
represented by the highest-value responses are determined via Non-Maximum Suppression, which
finds the maxima in windows of 5 × 5 pixels.

4 PROPOSED SISD AND SIMD MULTIPLIER-DIVIDER ARCHITECTURE WITH
HYBRID FUNCTIONALITY

In this section, we elaborate upon our proposed SISD/SIMD multiplier/divider architecture, SIM-
Dive [15]. Afterwards, we present our generic error-reduction approach, which is applicable to
both multiplication and division, that are used in this manuscript as circuit-level techniques.

4.1 SIMDive: LUT-Oriented Approximate SISD and SIMD Multiplier/Divider

The overall structure of proposed SIMDive is illustrated in Figure 5(a). Controlling signals, precision
and Mul/Div mode, shown in Figure 5(a), serve to establish diverse sub-word size and functionali-
ties of each module, respectively. We used one-hot encoding preferred by FPGA manufacturers, as
proven to be more resource-efficient than binary encoding for reconfigurable fabrics [15, 97]. In
SIMDive, leading one detection is calculated separately for each 8-bit on top of 4-bit LODs (imple-
mented by directly configuring LUTs). The structure of 8-LOD is as follows: Detecting the presence
of a bit with value “1” is orchestrated in parallel for each 4-bit segment of the input by directly
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utilizing one 6-LUT. The LUT is configured to logical OR function, acts as a zero-detection flag,
and detects whether all four bits are zero (Flag-LUT). In parallel, a second 6-LUT is configured
two 5-LUTs in such a way to reveal the position of leading-one in the 4-bit segment (LOD4-LUT).
Finally, based on the resulting bits from the output of these 6-LUTs, the position of leading one in
8-bit LOD is found via a priority logic. In the 8-bit LOD, the position of leading one equals to the
concatenation of {Location index of most significant segment, Leading one position in that segment},
e.g., leading one position in “00110101” = {{1},{01} = {101}} in binary (5 in decimal). The first part ({1})
is the output of Flag-LUT that has been applied on upper 4-bit segment, the second part ({01}) is
also the result of LOD4-LUTs on the upper segment. A similar method has been also adopted for
16- and 32-bit LODs. For example, in 16-LOD, if the upper half of the operand is zero (obtainable by
applying logical-OR function on the outputs of Flag-LUTs on the 4-bit segments of the upper-half
(bit 15 downto 8), the 16-bit LOD is equal to lower 8-bit LOD. Else, the position of leading-one is
8+leading-one position in upper-half 8-LOD. Afterwards, addition of integer and fractional parts
shown in Figure 5(b) are fulfilled by connecting Virtex-7 slices, each of which can implement a
4-bit addition. As shown in part (c) of this figure, each slice includes four 6-LUTs and its associ-
ated fast carry chains, together implement a Carry Look-Ahead Adder (CLA). Extending the
8-bit addition to 16- and 32-bits in our SIMD architecture is easily achieved by connecting the
Cout from previous adder to the Cin of next adder, handled by yellow multiplexers in part (a) of
this figure. Division is also performed by altering additions to subtractions (recalling Equation (6)
and Equation (7)), using 2’s complement modules. SIMDive enables two features: (1) supporting
mixed-precision and mixed-functionality: the proposed SIMD Mul/Div can either operate as a sin-
gle 32 × 32 unit or be decomposed into a twin 16 × 16, one 16 × 16 and two 8 × 8, or quad 8 × 8
units, each of which can act separately as a multiplier or divider. Moreover, in case of sub-word
parallel processing, a complete 32-bit unit is not occupied for a division and it can also orchestrate
multiplication if needed. (2) The dynamic hybrid-functionality in our design eliminates the need
of reconfiguration and is of great interest, especially in multiplication-intensive workloads with
fewer division (appealing for variety of application domains). The separate data-size signals can
also be employed in fine-grained power-gating techniques.

It is worth noting that to avoid overflow in 2N-by-N bit standard division, the condition of
dividend < 2N × divisor should be satisfied [98], meaning that scaling in the divider lies in the
range of 20 to 2N−1 (similar to Reference [16]). Thus, for the output, only N−1 bits are used from

subtractors and N LSBs from l̃ogdividend is omitted. This approach reduces the logic size for sub-
tractor and barrel shifter, while it does not affect the accuracy. However, supporting SIMD adds on
to the complexity of sub-modules. For example, 4× 3 = 12 bit is used for LOD in 32-bit SIMDive or 2-
and 4-MUX units are used to select the functionality and sub-word length in intermediate adders.

4.2 Proposed Lightweight Error-reduction Scheme, Specialized for FPGA
Architectures

Mitchell’s error for 8-bit multiplication and division operations (formulated in Equations (8) and
(9)) is plotted as a heat map in Figure 6. Through this figure, the following points can be observed,
which are also noted and endorsed by SoAs [16, 17, 27, 55], as detailed below:

• Figures 6(a) and (d) show different error magnitude in each power-of-two interval. This
means that adding a single correction term to the output cannot fit for all multiplier/divider
sizes [27, 55].
• Figures 6(b) and (e), illustrated based on Equation (8) and Equation (9), prove proportional

replication of error in each power-of-two: Irrespective of k1 and k2, unique schemes for each
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Fig. 5. (a) SIMDive structure, (b) proposed 8-bit multiplier/divider, (c) Virtex-7 slice (used for addition/

subtraction of integer/fractional parts).

of Mul/Div may fit all sizes, and they can be added to fractional parts before scaling to save
more resources [16, 17]).
• Figures 6(c) and (f) exhibit the non-uniform but symmetrical error distribution: Errors tend

to be the same at the beginning and end of each power-of-two interval, encouraging the
same reduction approach for all multiplier or divider sizes [16, 17].
• Finally, parts (c) and (f) of the figure also show diverse change in relative error. This means

employing a single error-coefficient to the whole interval cannot significantly improve the
multiplication error [27]. Moreover, by analyzing the behavior of error in integer division
in this article, we further expand the idea behind References [15, 27] (for multiplication) to
reduce average and peak of absolute error and also better handle overflow cases, compared
with References [16, 17].

EP = P − P̃ =
{

2k1+k2 (x1x2), x1 + x2 < 1

2k1+k2 (1 − x1 − x2 + x1x2), x1 + x2 ≥ 1,
(8)

ED = D − D̃ =
⎧⎪⎨
⎪
⎩

2k1−k2 (x1 (x2−1)+x2−(x2 )2 )
2(1+x2 ) , x1 − x2 < 0

2k1−k2 (x1x2−(x2 )2 )
1+x2

, x1 − x2 ≥ 0.
(9)

Coalescing the insights from above points incentivizes using multiple error-reduction terms,
appropriately opted based on fractional parts. In our error-reduction scheme, we attempted to
optimize two factors: (1) error magnitude× error distribution in each region (can be estimated as
the integral of error-magnitude in that region). (2) Partitioning overhead, which depends on the
number of MSBs checked in fractional parts. Therefore, as illustrated in Figures 6(c) and (f), the
squarish region for all combination of inputs is subdivided to 23 × 23 = 64 sub-regions by merely
using 3 MSBs of inputs. Hence, we assign a distinctive coefficient to each of these regions, rep-
resenting their average error for each sub-interval. For deriving the error-reduction coefficients
that minimize the average relative error in each sub-region, we have followed the mathematical
approach that is detailed in REALM multiplier [27]. For the sake of reproducible results, the final
INIT hexadecimal value for the 16-bit coefficients for both multiplier and divider are also shown
in Table 3.

To achieve a lightweight implementation of the proposed error-reduction scheme and also to
benefit from the underlying FPGA structure, we have proposed the following approach that effi-
ciently utilizes 6-LUTs: We assign 3 MSBs of each fractional part to inputs of the LUTs, each of
which is responsible for calculating one bit of the 64 error-coefficient. In fact, 64 output entries
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Fig. 6. Mitchell’s error: 8 × 8 multiplier (top), 16/8 divider (down). Parts (b) and (e) show error repeats the

same behavior in each power-of-two interval (i.e., each multiplier or divider size). Parts (c) and (f) show the

proposed error-reduction scheme: Dividing squarish zone of fractional-parts to 64 regions, each has a specific

coefficient.

Table 3. Configuration INIT Value (Hexadecimal) for Error-reduction LUTs in Multiplier and Divider

Multiplier Divider

Coeff [15] 0000000000000000 Coeff [7] 7AC120E9148D9AD2 Coeff [15] 0000000000000000 Coeff [7] 04AD3A5428BA3D06

Coeff [14] 0000000000000000 Coeff [6] 43012121852990E8 Coeff [14] 0000000000000000 Coeff [6] D4D18E4EA73F3994

Coeff [13] 0000000000000000 Coeff [5] D592D1A2C0A5336B Coeff [13] 0000000000000000 Coeff [5] F6661C4A32DB3527

Coeff [12] 0000000C18100000 Coeff [4] 94190083448C1259 Coeff [12] 0000018181810000 Coeff [4] 4243DC139C9718A2

Coeff [11] 00061E32266C7800 Coeff [3] 0018123B00013397 Coeff [11] 000386466262E100 Coeff [3] 542DDC1C0C97AC12

Coeff [10] 00396D566C2A2460 Coeff [2] 0102021082046913 Coeff [10] 008C482AD6D0D8E0 Coeff [2] 22B2367E87019850

Coeff [9] 0F4A2401C5B6F69C Coeff [1] 1551008100820650 Coeff [9] 0E90D2614478D498 Coeff [1] DA48B05937950D5A

Coeff [8] 361C90D046999F12 Coeff [0] 9500000100010103 Coeff [8] B375AAD2693CB34C Coeff [0] B8427A22AF76B33F

of ith LUT determine ith bit of the 64 coefficients (in binary representation). Therefore, by using
only 8, 16, and 32 LUTs, we can efficiently determine 64 error-coefficients for the target 8-, 16-,
and 32-bit operation, respectively. Having 64 coefficients appropriately calculated based on the
combination of both operands addresses both drawbacks discussed in Section 2, i.e., neglecting
magnitude of error due to separately approximating each operand and overflow cases (in fact, the
overhead of separately handling such overflow cases is not clearly discussed in MBM [17] and
INZeD [16].)

Our approach is highly suited for LUT-oriented platforms as well: LUTs and their associated
fast carry chain in Xilinx UNISIM library [99] can be configured to implement a ternary adder.
This perfectly suits our error-healing approach, as we are able to combine the process of adding
error-reduction term with fractional parts within the same resources in a single step. Regardless of
adder size, only one more bit at MSB is needed in ternary addition (compared to binary version),
since frac1i +frac2i +error_coefficienti +Cin (Cout from previous bit) may result in 3 bits, utilization
of one more LUT at the end of the chain [26]. Moreover, the delay of FPGA primitives is fixed and,
therefore, adding error-reduction term at the same time when fractional parts does not impose
additional overhead to the design. This is while in REALM [27], MBM [17], and INZeD [16] a non-
trivial circuitry is needed for addition of error-reduction terms to the original Mitchell’s circuits.
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Shared modules in Hybrid/SIMD designs4: Besides the two’s complement modules, integration
of multiplier and divider into a hybrid marginally affects the complexity of the circuit through
including 2-MUX units to select the mode in sub-modules (except LOD/final barrel shifter that are
equal in both modes). However, to support simultaneous scalings for sub-word length in SIMD
mode, the LOD, error-reduction, and final shifter become more complex. For example, in 32-bit
LOD, instead of 5 for SISD mode, 4 × 3 = 12 bit is used to also support simultaneous 8-bit leading
one detection in SIMD mode (this is similar for integer part adder). However, the complexity of
larger adder that is employed for fractional parts is not increased significantly, as the carry out of
consequent 8-bit are used as carry-in in the following 8-bit for 16- and 32-bit modes. It is worth
noting that there is also a small similarity between SIMDive error-coefficients, as 3 and 4 MSBs
are similar in each of multiplier and divider. In short, although the overall overhead of additional
circuitry for managing hybrid and SIMD modes is not negligible in 8-bit hybrid design, it gets
dwarfed in larger SIMD designs (see Table 5), thanks to transforming the 2D structure of array
multiplier (divider) to 1D adder (subtractor) in the logarithmic representation.

SIMDive is highly suitable to be utilized in a cross-layer approximation methodology, the ra-
tional behind which is multi-fold: 1 Such resource-efficient SIMD architecture bodes well for a
cross-layer approach, as it enables a chain of techniques, i.e., precision scaling on top of Mitchell-
based Mul/Div (detailed results are presented in Table 4 and Table 5 of Section 6). Especially in
case of division, SIMDive reduces the drastically high latency of accurate divider, nearly to la-
tency of same-size multiplier. 2 It yields high accuracy, especially negligible error-bias, which
as mentioned earlier can play a pivotal role in approximation of consecutive kernels having an
aggregation-based structure. 3 The plasticity provided by SIMDive hybrid mode enables on-the-
fly switching between two functionalities and without the need for reconfiguration.

Thus, henceforth, we continue our cross-layer methodology with SIMDive (we have further de-
signed 8-bit hybrid SISD Mul/Div and 16/8 SIMD Mul/Div, which are of utilized configurations for
the experiments of applications in this manuscript). Nevertheless, other resource-efficient designs
having small error index can also be utilized in our cross-layer methodology.

5 PROPOSED KERNEL-WISE SENSITIVITY ANALYSIS AND CROSS-LAYER
APPROXIMATION STRATEGY

The main goal is to apply cross-layer approximation on multi-kernel applications. The tech-
niques are from different levels of abstraction and applied in a cross-layer hierarchy: precision
scaling (application-level) on top of inexact multiplication and division (circuit-level). Achieving
this, we first perform a kernel-wise sensitivity analysis to determine error-resiliency of individ-
ual kernels to approximation techniques. The result of this analysis is inputted to the proposed
heuristic.

5.1 End-to-end Kernel-wise Sensitivity Analysis

This analysis is motivated by the facts that not only kernels contribute differently to each of per-
formance metrics, but also their significance order might differ in the gained performance and lost
QoR. Therefore, the main goal of this analysis is to find 1 the sensitivity of final QoR to approx-
imation of each kernel individually, and 2 the end-to-end performance improvements, obtained
from each technique. Achieving this, the performance-QoR tradeoff is measured by approximat-
ing one kernel at a time, when that kernel is subjected to each of n techniques and the rest of
kernels are 32-bit accurate. The output of the analysis includes n lists, each list contains a pair of

4Please note, considering the default transformation/optimization during synthesis and implementation, the percentage of

overhead for each of modules does not remain similar after combining the modules in the final integrated design.
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{ΔADP,ΔQoR} for each of kernels, subjected to that technique. This pair thus demonstrates the
end-to-end performance-QoR tradeoff for the application when only that kernel is approximated.
We have refrained from approximating Add/Sub operations, due to two reasons. The first is the
small area and energy of Add/sub versus multiplier and divider (recalling Figure 1). The second
is motivated by the experiments conducted in previous studies such as Reference [31]. Such ex-
periments have shown that JPEG compression and other matrix multiplication-based applications
show higher accuracy fluctuation to approximation of additions rather than multiplication (we
have also evaluated the effect of truncation on addition operations, discussed in Section 6). In fact,
as discussed earlier, for the applications having aggregation-based structure, low error-bias plays
a pivotal role for the imprecise component. Nevertheless, the analysis of different inexact adders
could be further investigated in the future tracks.

5.2 Greedy-based Cross-layer Approximation Heuristic

We propose a generic heuristic approach to generate near-optimal mixed-precision
configurations—in short amount of time—that can maximize performance gain for different
user-defined accuracy thresholds. As discussed earlier, ΔQoR has been considered as the saliency
metric in SoA greedy heuristics for their selection strategies. This neglects the effect of Δ
Performance (here, Area-Delay Product-ADP), or in general, relation between these two. There-
fore, we propose ΔADP

ΔQoR in our heuristic, as the saliency measure that appropriately reflects the

potential end-to-end performance improvements over a possible accuracy degradation, when
approximating a kernel.

The inputs of our proposed design generation methodology are the user QoR constraint and
the information gathered from the sensitivity analysis, resulting in four list L1 − L4, are for ap-
proximating multiplication, division, or down-scaling the precision of the kernel to either 16- or
8-bit. Each list contains a pair of {ΔADP,ΔQoR} for each kernel, which demonstrates the end-to-
end performance-QoR tradeoff of the application, when only that kernel is subjected to the target
approximate technique and the rest are intact. As discussed, for performance gain, we have opted
ADP improvement. Nevertheless, other metrics such as area or delay can also be considered, based
on the designer’s objective.

The pseudo-code of our methodology, presented in Algorithm 1, is elaborated as follows: Ini-
tially, all application kernels are uniformly set to the highest precision, i.e., 32-bit with accurate
operations. In the first step, the Significance List is formed by calculating the ΔADP

ΔQoR for each pair of

{kernel, technique}. After merging the lists, it is sorted in a descending order, showing the signif-
icance order of techniques that resulted in providing higher performance improvement and less
fluctuations in QoR, when considered individually. Then, the approximation is applied on kernels
with an iterative approach: In each iteration, the heuristic applies approximation that is placed
on top of the significance list. It is projected that the primary-applied techniques are replacing
original multiplication and division with SIMDive versions, owing to their very low error metrics
and high performance gain potentials. Especially in case of division, significant latency improve-
ments are achieved by switching to 32-bit SIMDive divider (46.1 ns in 32-bit accurate to 6.3 in
32-bit approximate, referring to Table 4) than down-scaling the precision with an accurate divider
core (46.1 to 21.6 ns). The generated configuration is then appraised on miscellaneous samples
to verify whether the end-to-end user-defined accuracy threshold is satisfied.5 Achieving credible
results, the heuristic is evaluated on miscellaneous ECG samples from MIT-BIH [100] and images

5Note, error estimation formulation in multi-kernel programs (rather than applying a heuristic) is an open-research prob-

lem and not a claimed contribution. Rather, proposed ΔADP
ΔQoR factor enables a good vision to navigate toward near-optimal

configurations in short amount of time.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 16. Pub. date: November 2021.



Plasticine: A Cross-layer Approximation Methodology for Multi-kernel Applications 16:17

ALGORITHM 1: Cross-Layer Approximation Methodology for Multi-Kernel Applications

Input: L1: {End-to-end ADP Saving ApproxMul, QoR-Loss} ∀ 32-bit Kernel

Input: L2: {End-to-end ADP Saving ApproxDiv, QoR-Loss} ∀ 32-bit Kernel

Input: L3: {End-to-end ADP Saving PresScale, QoR-Loss} ∀ Kernel, 16-bit Precision

Input: L4: {End-to-end ADP Saving PresScale, QoR-Loss} ∀ Kernel, 8-bit Precision

Input: User-QoR-Const, Kernel-List

Output: Kernels [Architecture] /* Precision & Mul/Div Structure */

1 Significance-List = Array [];

/* Compute the effect of imprecise Mul, Div, and precision scaling, on each kernel, individually */

2 for i in Kernel-List do

3 Significance-List← L1 [i] �ΔADP
ΔQoR (Mul ); /* All multipliers of this 32-bit kernel are approximated */

4 Significance-List← L2 [i] �ΔADP
ΔQoR (Div ); /* All dividers of this 32-bit kernel are approximated */

5 Significance-List← L3 [i] �ΔADP
ΔQoR (16); /* This kernel is scaled to 16-bit, others are 32-bit */

6 Significance-List← L4 [i] �ΔADP
ΔQoR (8); /* This kernel is scaled to 8-bit, others are 32-bit */

7 end

8 Descending Sort (Significance-List);

9 while (not timeout) do

10 for i in Significance-List do

11 DesignApprox = Kernels[Significance-Listi ]; /* Approximate in descending order of ΔADP
ΔQoR */

12 Output-QoR = Evaluate (DesignApprox);

13 if Output-QoR ≥ 0.95 × User-QoR-Const then /* Also explore temporary configs */

14 if Output-QoR ≥ User-QoR-Const then

15 Designtemp ← DesignApprox; /* Update the Potential Configuration */

16 end

17 i ← i + 1;

18 go to 10;

19 else

20 Break;

21 end

22 end

23 end

from UAV123 [101], VisDrone [102], and UAVid [103] databases. In our methodology, we slightly
increase the freedom to explore temporary configurations, having a negligible accuracy difference
with the pre-defined threshold (1%–5%). This freedom has enabled the heuristic to provide final
QoR-satisfied solutions with also higher resource savings. The reason behind this lies in following
interesting observation: Sometimes by combining approximated kernels, the accuracy slightly in-
creases. Our profiling has revealed that it is partly due to the near-zero biased errors of SIMDive
units, which are able to neutralize each other in consecutive kernels, thereby slightly increasing
approximation opportunities, when combined. In this iterative approach, whenever the accuracy
of the generated configuration crosses our threshold (with 1%–5% difference with the user-defined
threshold), the heuristic backtracks to the prior user-satisfied configuration and follows the search
by evaluating the next candidate that has highest priority. It is worth mentioning that the proposed
cross-layer methodology for multi-kernel applications is agnostic to both the underlying architec-
ture and the chain of techniques. Our intuition behind adopting the precision scaling is three-fold:

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 16. Pub. date: November 2021.



16:18 Z. Ebrahimi et al.

Table 4. Accuracy-resource Tradeoff of SISD Approximate Multipliers and

Dividers in the FPGA Implementation

Multiplier Divider

8 × 8
Area

(LUT)

Latency

(ns)

Power

(mW)

Energy

(uJ)

ARE

(%)

PRE2

(%)

Error

Bias (%)
8/4

Area

(LUT)

Latency

(ns)

Power

(mW)

Energy

(uJ)

ARE

(%)

PRE

(%)

Error

Bias (%)

Acc-IP NP [15] 72 5.2 15.10 79.06 Acc-IP NP [12] 51 10.74 11.82 128.44

DRUM-4 [50] 53 4.57 15.15 69.37 5.82 25.35 1.84 AAXD 6/3 [44] 38 6.06 12.21 75.65 2.08 100 1.49

AFM1 [39] 69 5.5 14.68 76.60 0.23 16.52 0.23 AAXD 4/2 [44] 30 4.28 10.06 51.72 3.74 100 2.58

Mitchell [25] 51 4.81 13.21 66.03 3.77 11.11 3.77 Mitchell [25] 36 5.1 11.45 59.3 3.9 13 3.9

MBM [17] 64 5.16 13.36 71.54 2.60 8.59 0.09 INZeD [16] 47 6.12 14.53 81.03 2.93 9.53 0.02

LeAp-52 [54] 56 4.93 14.82 73.67 0.99 4.96 0.06 SAADI-EC [59] 103 12.8 17.50 214.50 2.37 8.82 1.92

SIMDive 57 5.08 13.72 74.72 0.82 4.76 0.05 SIMDive 44 5.33 12.24 67.60 0.77 5.2 0.01

16 × 16
Area

(LUT)

Latency

(ns)

Power

(mW)

Energy

(uJ)

ARE

(%)

PRE

(%)

Error

Bias (%)
16/8

Area

(LUT)

Latency

(ns)

Power

(mW)

Energy

(uJ)

ARE

(%)

PRE

(%)

Error

Bias (%)

Acc-IP NP [15] 287 7.04 45.20 311.90 Acc-IP NP [12] 169 21.67 24.11 537.6

DRUM-6 [50] 233 5.34 42.59 232.24 1.47 6.31 0.04 AAXD 12/6 [44] 207 18.87 21.26 443.94 0.74 100 0.3

AFM1 [39] 261 7.32 37.98 257.20 1.34 17.80 1.34 AAXD 8/4 [44] 151 12.51 19.53 286.09 2.99 100 0.9

Mitchell [25] 187 4.9 34.15 177.2 3.85 11.11 3.85 Mitchell [25] 122 5.38 21.7 112.5 4.11 13 4.11

MBM [17] 204 6.59 35.92 214.76 2.63 8.83 0.09 INZeD [16] 165 6.28 23.41 145.05 2.93 9.54 0.02

LeAp-5 [54] 227 6.15 36.09 191.71 0.98 4.80 0.06 SAADI-EC [59] 362 25.7 29.24 890.29 2.14 8.82 1.76

SIMDive 216 5.94 34.82 184.24 0.82 4.90 0.05 SIMDive 143 5.56 23.03 123.90 0.78 5.2 0.01

32 × 32
Area

(LUT)

Latency

(ns)

Power

(mW)

Energy

(uJ)

ARE

(%)

PRE

(%)

Error

Bias (%)
32/16

Area

(LUT)

Latency

(ns)

Power

(mW)

Energy

(uJ)

ARE

(%)

PRE

(%)

Error

Bias (%)

Acc-IP NP [15] 1,037 9.81 114.32 1,065.4 Acc-IP NP [12] 597 46.14 33.08 1,479.9

DRUM-6 [50] 616 6.35 77.60 356.8 1.53 5.88 0.05 AAXD 12/6 [44] 513 37.2 30.36 1,048.05 0.79 100 0.35

AFM1 [39] 995 10.76 87.94 815.9 2.88 22.40 2.88 AAXD 8/4 [44] 361 24.66 26.71 688.79 3.04 100 1.1

Mitchell [25] 484 5.96 57.1 334.3 3.91 11.11 3.91 Mitchell [25] 349 6.11 33.9 236.1 4.19 13 4.19

MBM [17] 533 7.51 60.14 447.6 2.69 8.74 0.10 INZeD [16] 422 8.15 36.56 305.47 2.96 9.47 0.03

LeAp-5 [54] 547 7.19 60.25 411.5 1.03 4.87 0.05 SAADI-EC [59] 822 51.6 42.61 2,143.33 2.33 9.04 1.85

SIMDive 521 6.88 58.32 362.0 0.91 4.72 0.05 SIMDive 381 6.34 39.94 246.66 0.81 5.16 0.02

1Peak Relative Error.
2Initial version of LeAp is a sequential design. For a fair comparison with other designs, in terms of the resource cost for

its error-reduction scheme, it is implemented combinational-based in this manuscript.

Table 5. SIMDive Hybrid and SIMD Design Parameters

(8-bit Hybrid and 16-8 SIMD Are Designed for This Article)

Area

(LUT)

Latency

(ns)

Power

(mW)

Energy

(uJ)

ARE

(%)

PRE

(%)

Error

Bias (%)

Area

(LUT)

Latency

(ns)

Power

(mW)

Energy

(uJ)

ARE

(%)

PRE

(%)

Error

Bias (%)

8-bit Hybrid

Mul/Div (SISD)
87 5.57 25.69 144.9

0.82 5.2 0.05

16-bit Hybrid

Mul/Div (SISD)
261 5.84 57.33 235.9

0.82 5.2 0.05
SIMD Mul/Div

(16/8 bit)
283 6.13 79.2 502.41

SIMD Mul/Div

(32/16/8 bit)
1059 7.92 97.81 778.1

First, it not only reduces the amount of computations, but also the latency of the application can
be reduced, due to the shortened propagation delay of operations in the critical path. Second, pre-
cision scaling also positively contributes to reducing memory footprint and its associated data
movement energy. Third, errors arising from neglecting LSBs will not result in noticeable decline
in the final accuracy (detailed results for this on three studied applications are discussed in the
next section).

6 RESULTS AND DISCUSSION

In this section, first, we present the implementation results of SIMDive SISD and SIMD configura-
tions and compare them against SoA multipliers and dividers. Afterwards, the results of sensitivity
analysis in three applications are presented, which provided inputs of the proposed approximation
methodology. Finally the results of proposed cross-layer strategy versus baselines is assessed.
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6.1 Evaluation and Characterization of SIMDive against SoA Multipliers and Dividers

We have evaluated SIMDive against five accurate and approximate cutting-edge multipliers and
dividers. All the designs are developed in Verilog HDL, synthesized, and implemented in Xilinx
Vivado 2019.2 on Virtex-7 FPGA. To ensure scalability of multipliers and dividers, they are im-
plemented and compared for comprehensive precision of 8-, 16-, and 32-bit. Area and latency are
collected from Vivado reports. Power and energy dissipation are scrutinized through simulations
in Xilinx Power Estimator (XPE) over 100M inputs, uniformly distributed in a random order
over whole input interval. Accuracy metrics: The behavioral structure of multipliers and dividers

are developed in C++ to calculate their accuracy metrics. For 8- and 16-bit designs exhaustive test
is applied. For 32-bit error characterization, 232, ∼4.3B input pairs, uniformly distributed random
over the whole 32-bit interval have been evaluated in Monte Carlo simulations.6

The circuit-level results, summarized in Tables 4 and 5, demonstrate that SoA logarithmic de-
signs yield a better performance-accuracy tradeoff than other counterparts. This is due to trans-
forming the 2D array-based structure of Mul/Div to 1D Add/Sub through Mitchell’s algorithms.
Specifically, although the gains from SIMDive designs is highly pronounced in 32- and 16-bit, the
performance metrics of both SIMDive multiplier and divider are still superior than accurate IPs in
8-bit precision. In terms of accuracy, SIMDive designs render higher accuracy than other cutting-

edge counterparts, including MBM w.r.t. both latency and energy. Particularly, in case of division,
SIMDive reduces the drastically high latency of accurate divider, nearly to latency of same-size
multiplier. Furthermore, the peak relative error in SIMDive divider is successfully bounded to 5.2%.
Contrarily, there are a lot of cases with error near or equal to 100% in the truncated-based AAXD
divider (that also increases with truncating more bits). Such high error cases can result in false posi-
tive peaks in heartbeat and corner detection. Also, as discussed, the unbiased errors of SIMDive can
cancel out each other and minimize error accumulation in the aggregation-based (mostly Add/Mul)
structure of bio-signal and image-processing kernels. Finally, recalling Section 4, boosting preci-
sion in our approach comes with a negligible cost, compared to the original Mitchell’s design: One
more LUT means adding one more bit to the error-coefficient, thereby reducing the original biased-
error of Mitchell’s multiplication/division. The effect of such LSB-truncation approach has already
been discussed in detail, in REALM/MBM/INZeD studies. In terms of performance, the plasticity

provided by SIMDive hybrid mode enables on-the-fly switching between two functionalities and
without the need of reconfiguration. It is worth noting that the improvement obtained by our
logarithmic designs are also reflected in SISD to SIMD transformation: For example, referring to
Section 4, in SIMDive the detection of leading one is performed in parallel in each 4-bit segment
of inputs, which is inherently suited for parallelization in a SIMD design. Interestingly, this trans-
formation comes with a tolerable cost, as both SISD hybrid and SIMD modes (16- and 32-bit) are
still smaller and faster than one accurate multiplier [15].

6.2 Application-level Sensitivity Analysis on Three Multi-kernel Applications

Figure 7 illustrates the inputs for sensitivity analysis and its generated outputs as the inputs for
cross-layer design generation methodology. The conducted analysis is detailed in the following:
Hardware implementation of applications: As illustrated in Figure 7, the source-code of appli-

cations is synthesized with Xilinx Vivado. Pan-Tompkins algorithm is adopted from Reference
[92]. For JPEG and HCD, we have developed both in C++7 and synthesized them using Vivado

6Simulated on Rack Server with Intel Xeon E5-2667 CPU @ 3.20 GHz and 512 GB RAM.
7The base of JPEG Compression is adopted from AxBench [104] and further optimized for a resource-efficient implemen-

tation on FPGA, e.g., by transforming 2D-DCT computations to the butterfly-based 1D-DCT approach [104, 105].
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Fig. 7. Overall three-step flow for the proposed sensitivity analysis and cross-layer approximation

methodology.

High-Level Synthesis (HLS) and disabled DSPs.8 To efficiently reflect the optimizations of SIM-
Dive in final HDL design, we have adopted a three-step approach to bridge this resource gap. In
the first step, we have coded individual functions for each size of accurate multiplications and di-
visions in the application. This was for both accurate multiplier and divider functions (SISD) and
also approximate SISD/SIMD designs (for SIMD configurations, respective operands are packed
in the function based on Table 7). This approach has facilitated replacement of such SISD/SIMD
modules with optimized SIMDive versions later on in step 3. Afterwards, using HLS inline pragma,
we have forced the compiler to generate an independent HDL file for each of these functions. In
the third step, the HDL description of the respective functions implementation that realizes the
target SISD or SIMD operations (based on Table 7 of the article) are replaced by HDL-optimized
versions of SIMDive modules. HLS has two main advantages: First, it enables the flexibility to apply
user-defined directives (when needed) more easily in a system-level implementation and shortens
the process of generating variety of customized configurations. Second, it facilitates the high-level
behavioral evaluation of approximate designs.
Performance analysis of applications: The end-to-end performance gains shown in Figure 8 are

measured after adjusting the approximation knobs in one kernel of the baseline accurate C++ code:
The precision of data/operations in the kernel is reduced from 32-bit to the target one and accurate
multipliers/dividers are substituted with SIMDive versions. For exact performance analysis, the
HDL design of all accurate and approximate versions, generated by HLS, have been further passed
to the downstream implementation phase, placed and routed on Virtex-7.
QoR analysis of applications: The evaluated application-level quality metrics are: QRS and Peak

Signal to Noise Ratio (PSNR) for Pan-Tompkins, PSNR for JPEG, and percentage of correct vec-
tors for HCD. In fact, for generating the motion/terrain vectors, similar to Reference [106], the
extracted corners from HCD algorithm have been passed through MATLAB simulations.9

Benchmarks: The reports in Figure 8 are obtained by conducting the ECG analysis on real-world
MIT-BIH database [100] in MATLAB. For JPEG and HCD, we have gauged their end-to-end accu-
racy alterations on 100 miscellaneous images from different aerial imagery datasets [101–103].
Cross-layer sensitivity analysis: Figures 8(a), (b), and (c) summarize the contribution of each ker-

nel in the end-to-end LUT count, latency (Σ delay of consecutive kernels) of the application, and

8Using LUTs-based soft multipliers for low bit-widths operations has also been recommended by, e.g., Xilinx [13].
9In Reference [106], only DCT adders are approximated (DCT is used as a pre-processing compression step in studied UAV

programs).
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ADP,10 when implemented in accurate mode. Recalling Section 3, zigzag and Huffman kernels in
JPEG implement a re-arrangement and encoding scheme. To remain inline with industrial stan-
dards, we refrained from applying approximations in this process. In addition, the corner selection
via non-maximum suppression also remained accurate in HCD, due to its moderately low resource
footprint and the fact that it mainly comprises comparison operations. As can be seen, although
most of existing works have focused on DCT kernel in JPEG (because of its multiplicative-structure
and high area), quantization kernel contributes more significantly to the total application latency.

Targeting a high accuracy, computations can be carried out in floating point or 32-bit integer, in
both bio-signal and image processing applications [107] Note, filters’ coefficients and the interme-
diate results of kernels are considered in 32-bit integer format for baseline designs. The bit-width
of the intermediate results can also be increased in consecutive kernels, even when input image is
in 8-bit gray-scale. However, bounding the precision to 16- or 8-bit has also reported to be satisfac-
tory in SoA studies [16, 17]. The intermediate results of each kernel are scaled before being used in
the next kernel. Targeting an adaptable cross-layer approximation, in our analysis, we inspect the
effects of kernels precision-scaling and imprecise multiplication and division on QoR-performance
tradeoff, described as follows:

As the first step, we have deployed our SIMDive multiplier and divider, having 99.2% accuracy,
in all 32-bit kernels. Afterwards, we have applied precision scaling one-kernel-at-a-time, while
others are remained at 32-bit. The obtained end-to-end performance improvements and their
respective QoR for each of these configurations have been reported in Figure 8. This figure,
therefore, exhibits the sensitivity of kernels, individually, to approximations from different
layers of abstraction (precision scaling atop of imprecise multiplication and division). The key
observations of our analysis for the three applications are pin-pointed in the following:

Insight 1- Deploying SIMDive marginally affects the accuracy: We have observed replacing
accurate multiplier and divider with SIMDive—having 99.2% accuracy—in all stages has marginally
affected the final QoR, even when precision of kernels are tuned at 16-bit. Fluctuations in the visual
quality of JPEG compressed image and the number of detected corners and correct vectors in HCD
were also negligible. Part (b) in each of Figure 9 and Figure 10 (also Figure 14 and Figure 15 in
Appendix) exhibit visual examples of such negligible changes by deployment of SIMDive (more
examples can be found in the Appendix). The PSNR of 32-bit SIMDive-based ECG is also 45.8 (the
tradeoff between QoR and ADP improvement in all configurations are shown in Figure 11). This
negligible accuracy loss is due to two facts: First, the small error metric of SIMDive, i.e., ARE and
PRE. In fact, the analysis of HCD application has shown that more false positive or false negative
vectors cases will occur, provided that the approximate unit has a high peak error (e.g., 100% for
AAXD dividers, shown in Table 4). The same also holds true for heartbeat (QRS) peaks, especially
considering that the 100% error of division occurs at the last ECG stage. Second, our profiling has
revealed that the near-zero biased errors of our multiplier and divider have been able to cancel
out each other in consecutive kernels and prevent a drastic error accumulation in the aggregation-
based (mostly Add/Mul) structure of kernels. Based on this observation, we have been able to
deploy SIMDive in all kernels and thus the size of design space has been reduced to only changing
the precision of kernels. In fact, our analysis exhibits that even 4-coefficient based SIMDive results
in 100% detection in heartbeat or vectors generated by Harris corners. Nonetheless, we opted to
increase the accuracy of Mul/Div (comes with the negligible cost of few more LUTs) and create
opportunity for our adaptable precision-scaling.

Insight 2- Applications show more sensitivity to approximation of addition: We have ob-
served that truncating the output of Add/Sub in kernels (when more than few bits), significantly

10Comprehensive energy calculation for multi-kernel programs on large ECG/image dataset is targeted for follow-up track.
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Fig. 8. Sensitivity analysis to cross-layer approximation in three applications. (a), (b), (c): contribution of

each kernel in performance metrics of accurate implementation. (d), (e), (f): the tradeoff between end-to-

end performance gains and QoR degradation after scaling down the precision of one kernel having SIMDive

Mul/Div, while the rest are 32-bit accurate (32-bit integer with accurate operations). Area is in terms of LUT

and delay in terms of ns.

affects the accuracy (so addition is kept accurate in the depicted figure). This happened especially
in differentiator or moving average window stages of ECG application and corner response calcula-
tion stage of HCD. As discussed earlier, such observation are also endorsed by, e.g., Reference [31]
for matrix multiplication-based applications.

Insight 3- Kernels contribute differently to each of performance metrics: Figures 8(d), (e),
and (f) also reveal that kernels exhibit different behavior w.r.t. the gains from the same approxi-
mation: For example, when targeting LUT saving, approximation of HPF (second kernel) is more
beneficial in ECG, while when detection latency improvement is the goal, differentiator should
be approximated (because of its division, acting as speed bottleneck operation). Interestingly, as
can be seen in Figure 8, although DCT has higher ADP than quantization in the original accu-
rate configuration, by applying same precision scaling on both kernels, more energy saving is
achieved via approximation of quantization. This is because, beside LUT, latency of quantization
also significantly reduces (due to its divider). This further corroborates our strategy, that the knobs
should be adjusted based on the gained improvement, not based on their primary order, in the non-
approximated version.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 2, Article 16. Pub. date: November 2021.



Plasticine: A Cross-layer Approximation Methodology for Multi-kernel Applications 16:23

Fig. 9. JPEG compression for aerial images: The PSNR fluctuations are still tolerable by applying precision

scaling and Mul/Div approximation.

Insight 4- Kernels significance order in lost QoR can differ from its order in the gained

performance: While applying the same approximation results in a specific order for gained per-
formance, the same/inverse order will not necessarily appear in QoR fluctuations. For example,
referring to Figure 8(e), among Pan-Tompkins kernels, HPF enables the highest LUT saving and
affects the ultimate PSNR the least. However, as shown in part (e), Harris score kernel not only
enables the highest LUT saving, but also changes the final accuracy more than other down-scaled
kernels. Hence, Insight-3 and Insight-4 endorse that: First, the relation between ΔPerformance and
ΔQoR should be considered. Second, applying the most aggressive approximation on early stages
(which is the adopted strategy in XBioSiP [92]) not only neglects order of stages w.r.t. their QoR
sensitivity, but also disregards their order in the obtained performance improvement.

Conclusion: in short, aforementioned insights corroborate our strategy that considers the re-
lation between the gained performance and QoR loss. Moreover, provided that the multi-kernel ap-
plication has aggregation-based structure, adopting imprecise operations with minimally biased
errors in all kernels can create the opportunity for applying a runtime adaptable precision scal-
ing (efficiently supported herein, thorough on-the-fly configurable SIMDive units). The outputs
of this sensitivity analysis, i.e., end-to-end performance gain and QoR loss, when each kernel
is approximated by different techniques (imprecise multiplication, division and scaled down to
16- or 8-bit) are given in four lists to the cross-layer approximation methodology, discussed in
Section 5.

6.3 Evaluating Mixed-precision Configurations and Proposed Heuristic on
Multi-kernel Applications

Herein, the overall efficacy of the proposed cross-layer approximation methodology is as-
sessed. Figure 11 details the obtained ADP improvement for different kernel configurations and
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Fig. 10. Tracking via Harris Corner Detection: The number of detected corners and vectors marginally

changes with approximation. (Changes in Harris score range also enable detection of new vectors in the

threshold-based selection of tracking algorithm in MATLAB. Average of false positive vectors is less than 4%.)

Table 6. Simulation Setup & Exhaustive Runtime for Three Applications

(Kernels Mul/Div Replaced by SIMDive)

Pan-Tompkins (ECG) JPEG Compression Harris Corner Detection

# Configurations Exhaustive Time # Configurations Exhaustive Time # Configurations Exhaustive Time

Five kernels

(32-, 16, or 8-bit)

3 × 3 × 3 × 3 × 3

= 243 configs

11.7 hours in MATLAB

(20k real-world

ECG samples

from MIT-BIH [100])

3 × 3 × 3

= 27 configs

5.2 hours in HLS

(100 HD drone

images [101–103])

3 × 3 × 3 × 3 × 3 ×
= 243 configs

62.6 hours: HLS (corners) +

MATLAB (vectors)

(100 drone

images [101–103])

distinguishes the mixed-precision configurations found by the heuristic. For packing SIMD oper-
ations inside precision reduced kernels, dependency of multiplication and/or division operations
has been considered (referring to Figures 2, 3, and 4). Empirical observations from sensitivity
analysis, such as adopting the approximate multiplier and divider in all kernels and maintaining
accurate structure of Add operation, has pruned the dominated points and efficiently reduced
the size of design space that is evaluated in our case studies: As detailed in Table 6, simulating
243 possible ECG scenarios in MATLAB (each of five kernels can be adjusted to 8-, 16-, or 32-bit)
takes a runtime of 11.7 hours when analyzing 20K real-world ECG samples of MIT-BIH database,
sampled at the frequency of 200 Hz. Runtimes of 27 scenarios in JPEG and 243 scenarios in HCD
(HLS generated corners processed in MATLAB-based code to produce terrain vectors) also take
5.2 and 62.6 hours over 100 image samples, respectively. The following inferences are highlighted
on the functioning and efficacy of our cross-layer strategy:
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Fig. 11. Approximate, mixed-precision configs generate accuracy-performance tradeoffs with similar/higher

gains than accurate-uniform. The heuristic also finds many of Pareto/near-Pareto points. Configs found in

20% of exhaustive time are distinguished by green stars (QoR thresholds: JPEG 28 dB, ECG 35 dB, HCD 90%).

• It can be deduced from Figure 11 that not only new resource-accuracy tradeoff levels are
generated by mixed-precision configurations, but also they can enable higher savings than
the uniform counterparts in similar accuracy-level. Note that there is not only one unique,
but a set of configurations with permissible resource-accuracy tradeoffs.
• Although the proposed design generation methodology is a heuristic and may not always

find all Pareto-optimal solutions, for the three case studies it has been able to generate most
of Pareto/near-Pareto points for applications within the first ∼10%–30% of their execution
time (the points generated in first 20% of exhaustive time are shown in green stars in Fig-
ure 11). This asserts the effectiveness of the heuristic and its notable saving in exploration
time, especially when brute-force exploration is not time-wise tractable for a larger design
space. Note, Figure 11 shows how the heuristic proceeds toward the Pareto points (when the
user-QoR threshold is 70%).
• ΔADP

ΔQoR is customizable w.r.t. the design constraints and objectives. For example, on the similar

basis of a greedy heuristic, the work in the domain of NNs [29, 63] mostly targets memory
traffic reduction and applies layer-wise quantization. Herein, we opted ADP, as in an FPGA
platform, smaller ADP can better reflect the resource savings. Nevertheless, other perfor-
mance metrics can also be explored based on designer’s goal.
• This flexibility provided by our adaptable approximation strategy also can be exploited in

a runtime energy-management technique: The bitstream of arbitrary heuristic-generated
configurations or Pareto-optimal configurations (provided that exhaustive search is feasible)
can also be stored in the FPGA SPI/BPI flash memories [108] to be loaded at runtime for
various accuracy-performance tradeoffs.

6.4 End-to-end Performance Gains of Heuristic-generated Configurations on
Multi-kernel Applications

In this section, the end-to-end QoR-performance tradeoff for five approaches are evaluated on
Pan-Tompkins, JPEG compression, and HCD applications. Approximation approaches comprise
the two proposed: uniform 16-bit and mixed-precision SIMDive based configurations, found
by the proposed ΔADP

ΔQoR based heuristic, compared against two baselines, i.e., uniform 32- and

16-bit accurate counterparts and mixed-precision SIMDive-based configurations, found by SoA
ΔQoR-based heuristic (this heuristic is adopted in References [29, 63]). In this article, we have
adhered to PSNR of 35 and 28 dB for ECG and JPEG compression and 90% correct vectors for
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Table 7. Kernels’ SISD/SIMD Structure in Three Applications, w.r.t. the Final Approximate Configuration

Pan Tompkins (ECG) JPEG Compression Harris Corner Detection

Kernel Name Configuration Kernel Name Configuration Kernel Name Configuration

Low-Pass Filter SIMD 8–16 bit RGB to YCbCr SIMD 8–16 bit RGB to Grayscale SIMD 8–16 bit

High-Pass Filter SIMD 8–16 bit 2D-DCT SIMD 8–16 bit Gaussian Smoothing SIMD 8–16 bit

Differentiator SISD 16 bit Derivative Sobel SIMD 8–16 bit

Squarer SIMD 8–16 bit Tensor & Score Response SISD 16 bit

Moving Avg Filter SISD 16 bit

Quantization SISD 16 bit

Normalization SISD 16 bit

HCD application (which is reported as an acceptable confidence level for moving object tracking
[106]). In fact, for the Pan-Tompkins case study, although the work of XBioSip [92] has allowed
PSNR of 19.2 dB (which also satisfies QRS threshold of 100%), herein, we maintain a high PSNR
value, i.e., 35 dB that is also expected to deliver 100% detection accuracy [92]. For these quality
thresholds, the following configurations are found by the proposed heuristic: [8-8-16-8-16] for
five-kernel ECG Pan-Tompkins, [8-8-16] for three-kernel JPEG Compression, and [8-8-8-16-16]
for five-kernel HCD. Accordingly, the adopted SISD/SIMD structure of SIMDive for the proposed
kernel configurations is detailed in Table 7.11 The end-to-end performance gain from such
heuristic-generated configurations are evaluated against the baselines in Figure 12. The results
detailed in this figure demonstrate that not only the mixed-precision configurations enable
higher improvement over uniform 16-bit precision counterpart, but also the proposed ΔADP

ΔQoR -based

heuristic outperforms the ΔQoR based approach [29, 63] in ECG and HCD applications.
Finally, the two greedy strategies are appraised on various QoR thresholds in all applications, the

results of which are presented in Figure 13. It should be noted that the functionality and thereby, the
quality of final configuration found by heuristic approaches depends on different factors, including
kernel structure, exploration time, accuracy-performance tradeoff of the approximate components,
and so on. Nevertheless, as detailed in Figure 13, we have observed that the proposed heuristic
based on ΔADP

ΔQoR saliency metric can find solutions with higher performance improvement when

the accuracy threshold is moderate to relatively high. On the contrary, when the ultimate quality
threshold is relaxed, ΔQoR-based heuristic takes more steps with smaller quality changes (which
also increased the heuristic exploration time) and gradually approaches to a solution with slightly
higher gains, up to 8%. It should be highlighted that to fairly assess the quality of solution found by
ΔQoR-based heuristic against the ones found by our proposed approach (shown in Figure 13), we
also enabled the same 1%–5% freedom for both approaches and started the heuristic after efficiently
pruning the design space by the proposed sensitivity analysis. Comparing the search complexity
of various heuristics such as Reference [66], for which the original size of design space is different,
is planned for a future track of this extension manuscript.

Discussion: it should be highlighted that although more complicated object tracking or heart ar-
rhythmia programs utilize machine-learning techniques for feature extraction, continuously out-
sourcing the complete video stream (for the former) or patient bio-signal data (for the latter) to
the insecure/untrustworthy network or process/store it on the third-party cloud can pose perfor-
mance bottleneck for a real-time processing and deplete the battery in a short interval. Therefore,
enabling extraction of some features at the edge is highly desired.

11The reported gains are w.r.t. the computations, without considering the overhead of read+pack/write+unpack. Addressing

further architectural details is left for future work.
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Fig. 12. End-to-end performance gains of different strategies, compared to 32-bit accurate (uniform) config-

uration: overall, mixed-precision configurations, generated by the proposed ΔADP
ΔQoR -based heuristic achieves

higher gain than the ΔQoR-based heuristics [29, 63].

Fig. 13. Comparing ΔADP
ΔQoR -based versus ΔQoR-based heuristic in various QoR levels: The former approach

has generated configurations with higher ADP improvement when the accuracy threshold is high.

7 FUTURE WORKS AND CONCLUSION

In this article, we proposed Plasticine, a cross-layer approximation methodology for multi-kernel
application, which efficiently utilizes the synergistic effects of a chain of techniques across layers
of abstraction. The chain of approximations is also effectively enabled in a three-tiered cross-layer
hierarchy through the plasticity of SIMD multiplier-dividers, each of which can support precision
variability along with hybrid functionality. To this end, we first proposed an end-to-end sensi-
tivity analysis that finds the most tolerable degree of approximations for each kernel. Such data
were used afterwards in our proposed heuristic, which tailors the precision at successive kernels
in such a way to maximize performance gain, while also satisfying the user-defined accuracy in
the ultimate QoR. Our heuristic-generated Pareto or near-Pareto mixed-precision configurations—
evaluated on three application domains—not only have enabled various performance-accuracy
tradeoffs, but also provided higher savings versus uniform-precision counterparts in different
accuracy-levels.

For future track, we intend to further expand the applicability of SIMDive and Plasticine cross-
layer methodology for layer-wise approximation of NNs. Especially, the SIMD mode of SIMDive
unit are interesting candidates for implementation of convolution layers (required to be explored
in detail). In addition, we intend to design an approximate SIMD Arithmetic Logic Unit (ALU)

and assess its applicability in data-path of soft processors such as RISC-V, in which a significant
part of execution unit is dedicated to floating point (FP) units [109]. Particularly, in FP multiplier,
more than 90% of total area and power is consumed by mantissa multiplier [17], where the position
of leading-one is fixed at MSB. Therefore, a lightweight FP version of our logarithmic multiplier,
in which the leading one detection unit is omitted, can result in notable resource savings.

Furthermore, it should be noted that the selection of optimal precision for each operation in
a large application is a non-trivial challenge for approximate computing community. This open
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research question can be divided into intra- and inter-kernel granularity. Specifically, optimally
adjusting the approximation knobs within each kernel requires a detailed error propagation be-
havior analysis in a probabilistic manner [66] (as the propagation of error depends on the kernel’s
control and data-flow pattern and errors of consecutive operations can be amplified or dampened
through the downstream computations, depending on the kernel structure). Therefore, an interest-
ing track could be generalizing Plasticine methodology to also enable the efficient heterogeneity
of operaation precision in an intra-kernel granularity.

APPENDIX

Fig. 14. PSNR in JPEG application: Visual quality of image is gracefully maintained after approximations.
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Fig. 15. Corners and vector detected via Harris Corner Detection application: As can be seen even with

approximation, the direction of the movement has been found by many vectors.
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