

MULTIPLEXED DETECTION OF STEROIDS WITH SILICON NANOWIRE FIELD EFFECT TRANSISTORS

S. Klinghammer^{1,*}, N. Licciardello¹, T. Voitsekhivska², C. Kirschbaum³, L. Baraban¹, G. Cuniberti¹

¹Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany ²Institute of Electronic Packaging Technology, TU Dresden, 01062 Dresden, Germany ³Department of Psychology, TU Dresden, 01062 Dresden Germany

*Stephanie.Klinghammer@nano.tu-dresden.de

The simultaneous detection of multiple targets within one sample on a portable point-of-care device is attracting great attention in bio- and nanotechnology for more than a decade [1]. Here, we demonstrate a multiplexed, label-free and real-time sensing platform for detection of small molecules based on silicon nanowire field effect transistors [2]. We particularly focus on the sensitive recognition of the stress hormone cortisol by using aptamers as receptors. Figure 1 shows structure and electrical response of an individual FET upon cortisol injection.

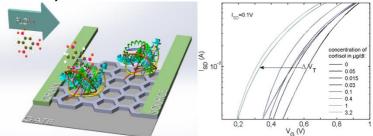


Figure 1: Schematic drawing of honeycomb structured FET and its electrical upon injection of target cortisol at various concentrations.

REFERENCES:

[1] Patolsky, F., Zheng, G., Lieber, C.M., Nanowire sensors for medicine and the life sciences. *Nanomed.* **1**, 51–65. (2006.)

NanoBioSensors Conference Dresden, 4th – 5th September

[2] Voitsekhivska, T., Suthau, E., Wolter, K.-J., CMOS multiplexer for portable biosensing system with integrated microfluidic interface. *IEEE*, pp. 173–178.(2014)