
Reconfigurable Multi-Processor Network-on-Chip on FPGA

Akash Kumar1, Ido Ovadia1, Jos Huisken2, Henk Corporaal1,
Jef van Meerbergen1,3 and Yajun Ha4

1Technical University of Eindhoven, 2Silicon Hive,
3Philips Research, 4National University of Singapore.

Email: a.kumar@tue.nl

Keywords—MPSoC, NoC, FPGA, reconfigurable network.

Abstract—Dealing with real-time constraints is

always a problem in a typical System-on-chip design. It
is worsened in a multi-processor system connected via
a network. FPGA prototyping is a quick way to do a
real-time simulation of the system and identify the
potential problems. In this paper we propose a
reconfigurable MPNoC architecture in which both the
network and the processing nodes are configured. The
flow allows for each component to be tested separately
prior to testing the entire design. This allows for quick
design iterations of the system. An example design of
such an architecture that has been mapped onto an
FPGA is presented.

I. Introduction
NE of the major problems when mapping
applications to processing platforms like NoCs

is dealing with real-time constraints; e.g., how to
deal with them on an architecture that includes non-
predictable elements like caches and shared buses.
This problem is becoming even worse due to the
increasing dynamism inside applications and due to
the dynamically changing set of running applications
(on a single platform); this especially holds for the
video domain. Guaranteeing real-time behavior
therefore requires dynamic adaptation of the video
quality, without being disruptive, and still satisfying
non-functional constraints, like latency and
throughput constraints. As a result many design
iterations are needed. FPGA prototyping is one of
the ways to explore the design space and to identify
potential bottlenecks in the system, since it allows
one to run cycle accurate models on real hardware,
and is much faster than simulation.

Here we present a design flow that can be used to
generate network-based MPSoC quickly. The
application determines the architecture and the
communication requirements of the system. The
design of computation and communication
infrastructure is decoupled. IP blocks (processing
nodes) and the network are generated separately.
The two are customized to the application
requirements and tested at a higher level which

allows for quick iterations.
The system was designed with configurable cores

from Silicon Hive [3] and connected via the
Æthereal network developed by ESAS (Embedded
Systems Architecture on Silicon) group at Philips
[4]. The Æthereal network is a TDMA based
network-on-chip (NoC) that can provide guarantees
in communication. The system was simulated and
tested and mapped on to an FPGA.

The rest of the paper is organized as follows. We
start with summarizing the design flow for Silicon
Hive cores and for Æthereal NoC generation. We
then introduce the flow which uses both of these and
allows one to design and test MPSoC architectures
quickly. This is followed by a section on the actual
implementation work carried out together with
results. The relevant work that has been done in
MPSoC and NoC is overviewed, before presenting
the conclusions of this research and a direction for
the future work that will be carried out to further this
research.

II. Silicon Hive Cores
Silicon Hive has an entire tool chain of rapidly

designing custom VLIW cores, a library of function
units for designers to choose from and adaptive
software-development tools [3]. One of the main
strengths of Silicon Hive cores lies in the ease with
which the cores can be generated with design time
configurability. The cores are generated from a
flexible architecture template that can vary the
number of processing units, function units, register
files, interconnects, and local memories. New
instructions, function-units and registers can also be
added. Even the lengths of operations within the
instruction words are configurable.

Figure 1 shows a flowchart of Silicon Hive system
design flow. The flow starts with a TIM (The
Incredible Machine) description file. In this file one
can specify all information relevant for the
generation, programming, and simulation of a
processor, e.g. register file sizes and widths,
interconnect, issue slots, operation sets, custom
operations, memory and I/O subsystem of the

O

processor. Thus, using the TIM language the entire
processor can be described in relatively few code
lines. TIM also drives the development-tool
generator that creates a matching assembler, linker,
C compiler, instruction-set simulator, and cycle-
accurate simulator. These boxes are shown in grey in
the figure. Once a TIM file is created, it is tested
with representative programs from the application
domain. It provides important feedback to the
designer, such as the scheduling of instructions to
processor resources (i.e. register files, issue slots,
interconnect), which reflects resource utilization.

Figure 1: Silicon Hive design flow for cores

Once the design has been verified, a complete
synthesizable RTL hardware description of the
processors is generated. Pre-written blocks of VHDL
or Verilog (stored in the component library depicted
in the flow) are invoked from TIM description and
the processor is generated. This flow has several
properties that are useful for processor designers:

- It allows for quick generation of a processor,
including VHDL generation.

- It allows for fast design-space exploration of
a processor.

- The resulting processors are tuned to specific
application domains in terms of area,
performance and power trade-offs.

Some of the cores that have been designed by

Silicon Hive are avispa_im2, moustique_ic1 and
avispa_ch1 that have specifically been customized
for image processing algorithms, camera based
applications and wireless OFDM respectively.
Avispa_ch1 has 60 issue slots per word, i.e. it can do
up to 60 DSP operations in parallel, the instruction
memory is of size 48K, has 103 function units, 130
register files, and 4 dual-port mini-caches. The core
area is about 4 mm2 and it dissipates 150mW when

running at 150MHz.

III. Æthereal Network-on-Chip
In this section we briefly describe the design flow

of network generation and configuration. A detailed
description can be found in [4]. Figure 2 shows the
Æthereal design flow. The user provides the
architecture around the network together with the
communication requirements of the application.
Communication, in Æthereal, is expressed by means
of connections. A connection specifies a
communication between a master port and a slave
port, the required (minimum) bandwidth, the
(maximum) allowed latency, and burst size for read
and/or write data, and the traffic class (best-effort or
guaranteed). The user also provides the topology to
be used for the underlying network e.g. a mesh or a
ring. With these details, a network is generated and
the architecture entities mapped to it.

Figure 2: Æthereal design flow for network

For the network itself, many parameters are
specified which can be either customized by hand or
left to the tool. Some of the things that can be
configured are flit duration, number of slots in the
TDMA table; arity and BE buffer sizes for the
routers; and number of ports, connection per port,
and buffer size per connection for each instance of
the network interface (NI).

This is followed by the configuration step in
which the tool computes the network configuration
code that contains the information to program the

hardware and setup the connections. Configuration
code essentially contains the values to be written to
NI registers, such as connection identifiers, and for
each connection, the path and other relevant
information. An API is available to the programmer
to manage the communication between ports at run-
time as well. The API supports the functions like
open_config_conn(), close_config_conn(),
create_path(), etc. It should be emphasized that if
the network is to be reconfigured for a different
communication pattern, it is possible to do so,
provided the required hardware is already existent.
A slot is also allocated for connections with
guaranteed latency and throughput.

Once the entire NoC specification is ready, the
user may generate a SystemC and/or a VHDL code.
In either of these cases, TCL scripts used to simulate
traffic are also generated. The TCL scripts are
parameterized based on the specified communication
requirements. It is also possible to analytically
compute results for verification that GT traffic meets
the previously specified requirements.

IV. Overall Design Flow
The overall design flow is presented in Figure 3.

The application is taken and partitioned by the user.
It is split into different sections of the codes to be
run on Silicon Hive processors. The communication
requirements between the cores are also determined
by this partition for the network generation.

Figure 3: The new flow for overall design

These together with the overall architecture are

fed to the Æthereal flow. The flow generates the
network and provides the VHDL code of the whole
network. It also provides the code which is needed
for the configuration of the network. This code is fed
to the Silicon Hive flow together with the
application code. This generates the processor cores
using the flow as explained above and tests them
with the application programs.

Once the processor core is verified, the VHDL
from the flow is generated and combined with the
same from Æthereal flow. The two are simulated
using all the code segments to confirm that the
overall design is correct. The code can be then
synthesized for the required technology accordingly
– whether ASIC or FPGA.

The flow was tested with an example and mapped
onto FPGA in our case. The same is explained in the
next section.

V. Implementation and Results
Figure 4 shows the top level architecture that we

decided to implement and test our design flow with.
In the application we have two processing nodes and
one configuration node. The network itself is rather
simple – it has only one router and two network
interfaces, one for each processing node – but
sufficient to demonstrate the flexibility in the flow.
Two connections are needed – in the first one, Node
1 is the master and Node 2 is the slave, while in the
second, roles are reversed. The bandwidth for each
of these connections is set to 100 MB/s, the data
width is 32 bits, and both have “GT” (Guaranteed
Throughput) traffic.

Figure 4: The top-level architecture with

connections

The total number of cores needed for the
application is 3. For sake of simplicity we decided to
use the same core both for configuration of the
network and for processing. The core used was
customized for 4 issue slots, 32-bit data path, and
one master and slave port for communication. The
size of memory for data and program was set to
16KB and 32KB respectively. Both Æthereal and

 Node
2

Configures
Network

Node
1

Router NI NI

Master
Slave
Config

Silicon Hive cores were configured to use DTL
(Device Transaction Level) protocol for
communication.

From both the flows, VHDL for each was
generated and combined as described in the previous
section. It was simulated to test if there were any
errors in integration. Once the simulation was
verified, the source code was synthesized for Xilinx
Virtex II [1] series. The generated design was
debugged and verified by using both logic analyzer
and ChipScope. For both of them, a wrapper had to
be written around the actual design to export the
signals to be examined on a separate output port.
GoLogic analyzers from NCI were used for the same
[2].

The target platform for the design was Xilinx
Virtex II 6000FF1152-C4. The chip itself has about
72,000 logic cells (LCs) and 144 block RAMs of 18
kbits each. The entire design uses about 65% of the
entire chip area in terms of LCs. Each processor core
takes about 20% while the network takes about 5%
including network interfaces and the router. A total
of 29 block RAMs were used for memory.

It should be mentioned that ChipScope also uses
the block RAMs on-chip for storing the samples. In
our example, we used a total of 61 block RAMs for
ChipScope. This allowed us to sample 60 signals,
each of depth 16,384.

The design was optimized for area and runs at
about 12.5 MHz. The maximum frequency at which
it can be operated is 18 MHz. The bandwidth
achieved is 2.5 MB/s per connection, which is as
expected. 100 MB/s is the bandwidth assuming the
network runs at 500 MHz, while in the prototype it
is only run at 12.5 MHz.

VI. Related Work
For MPSoC design a systematic design-flow has

been proposed for hardware/software prototype
generation from bus-functional models of various
IPs [5]. This is a higher level of abstraction that
allows the integration of heterogeneous hardware,
software components and sophisticated
communication interconnects to adapt different
description models. A two-layer hardware-
dependent software (HdS) has also been proposed
for SoC design [6]. The HdS consists of hardware
abstraction layer to abstract the sub-system
architecture and SoC abstraction layer to abstract the
global MPSoC architecture.

In order to meet the communication requirements
of the future MPSoC designs, networks-on-chip are
being developed. They are a promising alternative to
traditional buses in terms of scalability and wiring.
A host of networks are available in the literature.
Pande et al [7] reviews the state of the art in this

technology in terms of design, automatic synthesis
and testing. One of the examples of NoC is
Technion’s QNoC (QoS NoC) that is based on a 2-D
mesh [8]. Pre-emptive priority scheduling provides
timing predictability between four service classes,
and round robin scheduling is used within a class.
An iterative simulation-based approach is used to
determine the best network resources.

Another example is Nostrum mesh network
[9][10]. In the Nostrum network, hot-potato routing
is used for best effort traffic, meaning that packets
are always routed and latency is deterministic. GT
traffic is facilitated by zero-payload best-effort
packets moving back and fourth between the source
and destination. When necessary, payload can be
added to these empty packets. Thus, these empty
best-effort packets essentially reserve bandwidth for
payload through a single path in each direction,
which is called a virtual circuit. As a result,
bandwidth is always reserved symmetrically
between source and destination, even when no
payload arrives.

VII. Conclusions and Future Work
In this paper, we have a presented a novel design

flow that can be used to quickly generate network-
based MPSoC. The IPs in the design are fully
configurable and the network is designed to match
the application requirements. As an example a
simple architecture is implemented and mapped onto
the FPGA.

We are already in the process of generating a
more complex network with 4 cores and map a real
application on the architecture. Our next course of
action is to make the configuration of the application
dynamic, i.e. to configure the memories of the
processor nodes through a host. Through this
dynamic configuration we hope to be able to
demonstrate re-configurability of the system to
support task dynamism in the system.

Further, we would like to emphasize on
integration of the two flows at a higher level. In the
current setup, the integration was achieved at the
RTL level. Integration at a higher level would allow
us to test different variations of the complete system
in a shorter time.

Acknowledgment
The authors would like to thank Æthereal and

Silicon Hive development teams for their assistance.

References
[1] [Online]. Available: http://www.xilinx.com/.
[2] [Online]. Available: http://www.nci-usa.com/.
[3] Tom R. Halfhill, “Silicon Hive Breaks Out”,

Microprocessor Report, Dec 1, 2003.

[4] Andrei R˘adulescu et al, “An Efficient On-Chip Network
Interface Offering Guaranteed Services, Shared-Memory
Abstraction, and Flexible Network Configuration”, IEEE
Transactions on CAD of Integrated Circuits and Systems,
24(1), January 2005.

[5] Petkov, I et al., "Systematic design flow for fast
hardware/software prototype generation from bus functional
model for MPSoC," The 16th IEEE International Workshop
on Rapid System Prototyping, 2005. (RSP 2005), vol.,
no.pp. 218- 224, 8-10 June 2005.

[6] Sungjoo Yoo et al., "Multi-processor SoC design
methodology using a concept of two-layer hardware-
dependent software," Design, Automation and Test in
Europe Conference and Exhibition, 2004. Proceedings ,
vol.2, no.pp. 1382- 1383 Vol.2, 16-20 Feb. 2004.

[7] Pande, P.P.; Grecu, C.; Ivanov, A.; Saleh, R.; De Micheli,
G., "Design, synthesis, and test of networks on chips,"
Design & Test of Computers, IEEE , vol.22, no.5pp. 404-
413, Sept.-Oct. 2005.

[8] Bolotin, et al, “Automatic Hardware-Efficient SoC
Integration by QoS Network on Chip”. Proc. ICECS, 2004

[9] Millberg et al, “Guaranteed bandwidth using looped
containers in temporally disjoint networks within the
Nostrum network on chip”, Proc. DATE, February 2004

[10] Andreasson and Kumar,: ‘On improving Best-effort
throughput by better utilization of Guaranteed-Throughput
channels in an on-chip communication system’, Proc. IEEE
Norchip, November 2004.

