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Abstract— Dynamic Partial Reconfiguration (DPR)
in reconfigurable platforms can be used for the miti-
gation of aging-related permanent faults. We propose
an application-specific system-level design methodol-
ogy for determining the appropriate number of Par-
tially Reconfigurable Regions and their compatibility
with Partially Reconfigurable Modules for maximizing
the system lifetime. Specifically, we propose a lifetime-
aware scheduler that maximizes system MTTF. We
use the scheduler along with an automated floorplan-
ner for design space exploration at design-time to gen-
erate a heterogeneous PRR system. Our experiments
show that the heterogeneous systems can offer up to
2x lifetime improvement over homogeneous ones.

I. Introduction

Embedded systems are used in a host of different ap-
plications – Consumer Electronics, Telephony, In-Vehicle
Infotainment, Medical Equipments, Automobiles, Military
etc. – with widely varying performance and dependabil-
ity requirements. Reconfigurable systems, specifically FP-
GAs, have emerged as a key concept to cope with such
diverse application requirements [1]. The state-of-the-art
FPGAs now can incorporate sophisticated multi-processor
system-on-chip with hundreds of general purpose proces-
sors and hardware accelerators. A major enabling factor
behind such dense integration is the continuous technol-
ogy scaling and architectural innovations in the semicon-
ductor industry over the last four decades. However, the
breakdown of Dennard Scaling has resulted in the increase
of power density. The situation is worse with the reduced
transistor sizes where the increased operating temperature
due to higher power density leads to faster aging. Thus,
the aging-related intermittent and permanent faults occur
more frequently, leading to reduced system lifetime.

In reconfigurable platforms, Dynamic Partial Reconfig-
uration (DPR) allows replacing some hardware modules at
runtime without affecting the rest of the system [2]. In ad-
dition to allowing multiplexing of different hardware accel-
erators (called Partially Reconfigurable Modules, PRMs)
on compatible Partially Reconfigurable Regions (PRRs),
DPR can be used to mitigate the permanent hardware
faults at runtime by migrating the fault-affected PRM to
another fault-free PRR. However, with such an approach,
the system lifetime, depends on available PRR redun-
dancy in the system architecture. Most of the research
into DPR-based system design has been focused on ho-
mogeneous PRRs where each PRR can accommodate any

PRM. While it provides the flexibility to configure each
PRM to any PRR; given the limited FPGA resources, the
redundancy of PRRs is limited by the largest PRM. There-
fore, such an approach may not be appropriate for PRMs
that have large resources variation.

The aforementioned issue opens a possibility of using
heterogeneous systems to utilize the FPGA resources bet-
ter. The PRRs in these systems now only host a sub-
set of the original list of PRMs. The new freedom of
assigning PRMs to PRRs leads to an interesting obser-
vation that it can be optimized to proactively improve
the lifetime of the system. Aging-related fault rates are
usually proportional to the number of execution cycles of
the PRM on the PRR [3]. Therefore, an aging-aware ap-
proach to task-scheduling on reconfigurable platforms can
increase the system lifetime by distributing the execution
of stress-inducing PRMs across different PRRs. To this
end, we propose a design-time methodology that analyzes
the PRM-PRR mapping/scheduling space in both homo-
geneous and heterogeneous system w.r.t. system lifetime.
Contributions: Our contributions are listed below.

1. A lifetime-aware scheduler to improve the expected
lifetime in DPR systems. We formulate a Mixed Inte-
ger Linear Programming (MILP) problem that incor-
porates the aging effect of the PRMs. The objective is
to minimize the overall aging of each PRR and hence
extend the overall lifetime of the system – for both ho-
mogeneous and heterogeneous systems.

2. A resource-constraint-aware design methodol-
ogy to enable efficient usage of FPGA resources. The
final system can be homogeneous or heterogeneous de-
pending on the needs of the system designer.

We provide a brief overview of aging-mitigation tech-
niques in FPGA-based systems, and state-of-the-art re-
search in DPR-based systems in Section II. In Section III,
we provide detailed description of our system model. Var-
ious stages of the proposed DPR system design method-
ology are detailed in Section IV. The experiment setup,
and results for evaluating the proposed design methodol-
ogy are described in Section V. Finally, we conclude the
paper in Section VI with directions and scope for future
work.

II. Background and Related Work

Lifetime Reliability: Solid-state devices tend to de-
grade with time and stress. Transistor scaling and higher



temperatures make the devices more susceptible and also
accelerates the occurrence of aging-related faults. Recent
surveys [3] suggest that the fault rates in processing ele-
ments (PEs) correlate with the number of cycles executed
by the PE. Fault mechanisms that are activated by wear-
out, resulting in the faults are – Gate-oxide breakdown,
Negative Bias Thermal Instability, Hot Carrier Injection
and Electromigration. Detailed description of these mech-
anisms can be found in [4, 5].

Various approaches have been proposed for mitigating
the aging effects in FPGAs. In [5], the authors propose
few phenomenon-specific methods such as selective alter-
nate routing, load balancing, and leakage optimization to
counter each failure mechanism. In [6], the authors pro-
pose three wear-levelling techniques to reduce electrical
stress hotspots. The discussed methods provide generic
reconfiguration solutions and do not consider any appli-
cation specific requirements like deadlines and periodicity
and the FPGA resource constraints. Such methods can
be augmented to improve the performance of system-level
design techniques discussed in the current article.

Dynamic Partial Reconfiguration: DPR en-
ables different PRMs to share the same PRRs in time-
multiplexed way leading to use of smaller devices, reduced
power and more functionality. In addition to power and
performance benefits, DPR offers a method for mitigating
permanent faults. DPR-based lifetime extension meth-
ods can be broadly classified into two approaches– Reac-
tive: involves relocating the PRMs from a faulty PRR
to a functional region, and Pro-active: methods that re-
duce the electric stress on the PRRs, thereby reducing
their wear-out. An aging-aware floorplanner along with a
proactive aging-aware reconfiguration policy was proposed
in [7] which aims to reduce the stress on PRRs by using the
delay-based degradation estimates of previous execution
cycles. In [8], the authors propose a methodology to pe-
riodically swap bitstreams of same PRM with placements
that use different Configurable Logic Blocks (CLBs). In
[9], a cross-layer aging-aware placement method for accel-
erators in FPGA-based runtime reconfigurable architec-
tures is proposed. The described methodology involves
module diversification, as proposed in [8], during synthe-
sis and stress-aware placement at runtime to reduce wear-
out. A stress-aware placement algorithm for DPR sys-
tems, that uses run-time aging estimation, is proposed in
[10]. In [11], the authors propose a distributed architec-
ture that uses DPR to mitigate soft-errors and permanent
hardware faults in FPGA-based systems. The proposed
methodology uses distributed control and same reactive
recovery mechanism for all faults, thereby providing pre-
dictable recovery time.

Most of the proactive approaches to DPR-based lifetime
extension assume homogeneous PRRs. Such an assump-
tion simplifies the PRM to PRR mapping and reduces the
complexity of designing mitigation techniques. However,
if the PRMs have large variation in their resource require-
ments, each PRR area is dictated by the most resource
consuming PRM. With limited reconfigurable resources,
this can lead to reduced spatial redundancy and may re-
sult in reduced performance. Further, the most stress-
inducing PRM dictates the aging of each PRR. A smaller
PRM, that uses only a fraction of the available homoge-
neous PRR, but causes more electrical stress, can lead to
faster aging and result in making the whole PRR unus-
able. Therefore, we propose a novel application-specific

��������� ���	�
��
�

�����
�

Serial number of PRR

�������
�

CLBs present in the PRR

��������
�

BRAMs present in the PRR

�������
�

DSPs present in the PRR

�������
�

Estimated MTTF of the PRR

�������
�

List of PRMs supported by the PRR

�������� !
�

Schedule of task execution on the PRR

Fig. 1. PRR parameters

heterogeneous PRR-based partially reconfigurable system
design methodology.

III. System Model

A. Architecture model
In this work, we perform Design Space Exploration

(DSE) on various DPR systems with varying number of
PRRs to find the system configuration which gives the
best lifetime. In any DPR system, beside PRRs, there are
other static modules that make up the whole functional
system such as network-on-chip, reconfiguration/resource
manager, reconfiguration module, etc. The system tem-
plate must be flexible enough to automatically instantiate
the corresponding static modules to support the varying
number of PRRs. Therefore, we utilize the PR-HMPSoC
template provided by Nguyen et al. [12]. All Tiles (or
PEs) are connected to a network-on-chip for high band-
width communication between them. The interactions
with peripherals are done via the PLB bus. Each tile
corresponds to one PRR.

We represent each PRR Rr with the parameters shown
in Fig. 1, where r refers to the prrID and varies between
1 and R, the total number of PRRs. Any parameter <
param > of rth PRR is represented as < param >r.

B. Application model
Mathematically, we model an application as a task-

graph Gapp = (Tapp, Eapp, Papp), where Tapp, Eapp and
Papp represent the set of task nodes, the directed con-
nectivity of the nodes representing task dependencies,
and the periodicity of the application. Fig. 2a shows
the application model represented as task-graphs. Fig.
2b describes the parameters used to represent each task
node in the task-graph. The resource requirement and
expected lifetime parameters represent the estimated re-
sources used in the implementation of the accelerator or
PRM and the estimated lifetime respectively. The dead-
line parameter TaskD implements the real-time behavior
of the application. For the rest of the article, each param-
eter < param > of tth task node will be represented as
< param >t, where t is the TaskID and varies between
1 and |Tapp|.

C. Lifetime Reliability model
We represent the expected lifetime of the system,

SysMTTF , by the Mean Time To Failure (MTTF) of
the system. The reliability model used is similar to that
presented in [13]. Assuming a Weibull distribution of fail-
ures, the reliability of hardware resources and correspond-
ing MTTF can be represented as shown in Equation 1. β,
the shape parameter, can be used to represent the hard-
ware fault profile and η, the scale parameter, represents
the inverse of the aging effect of executing some PRM on
the hardware.

R(t) = e
−(t/η)β

; MTTF = η × Γ (1 + 1/β) (1)
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Fig. 2. Application model

Considering the temporal variation in aging effect,
caused by the time multiplexing of different PRMs on a
PRR, the effective scale parameter ηeff over a time in-
terval t can be obtained as shown in Equation 2. ηi and
MTTFi represent the aging effect due to execution of ith

PRM on a PRR.

ηeff =

∑
∆ti∑ ∆ti
ηi

, t =
∑

∆ti , ηi =
MTTFi

Γ (1 + 1/β) (2)

Considering Papp as the representative time interval, the
effective MTTF of a PRR, prrMTTF , and SysMTTF
can be obtained as shown in Equation 3. M refers to the
number of tasks mapped on the PRR. We do not include
the effect of process variations in our model. Hence, the
shape parameter β remains constant.

prrMTTFr =
Papp∑M

i=1
ExecTi

TaskMTTFi

SysMTTF = min
all PRRs

(prrMTTFr)

(3)

IV. Heterogeneous lifetime-aware DPR System
Design

The overall flow of the proposed design methodology is
shown in Fig. 3. We use the application task-graph to gen-
erate a feasible execution trace that is used by the MILP to
determine the appropriate PRR to map to each task node.
The PRMs’ MTTF values, determined during PRM char-
acterization stage, are used to constraint the MILP solver
to optimize for system lifetime. DPR resource estimation
stage involves estimating the available resources for DPR
after generating the static components of the system. This
information, along with PRMs’ resoure requirement esti-
mates obtained during PRM characterization, is used to
constraint the MILP from generating an infeasible solu-
tion. Floorplanning stage involves verifying the feasibility
of the heterogeneous mapping information generated by
the solver and getting a feasible system design. We per-
form design space exploration (DSE) to find the maximum
number of PRRs that maximizes the SysMTTF and is
still feasible with the limited resources of the FPGA. We
obtain this by incrementing the number of PRRs in the
system, solving the MILP and using PRFloor to find the
feasibility of the design. The DSE is completed when the
MILP solver fails to find a valid mapping of tasks to PRRs.
The design with maximum SysMTTF having the lowest
number of PRRs is selected as the best design.

A. DPR Resource estimation
The DPR system consists of static components in ad-

dition to the DPR resources. The amount of FPGA re-
sources dedicated to static components varies with the
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number of PRRs implemented in the system. We use the
automatic floorplanner, PRFLoor [14] to estimate the re-
maining resources in terms of number of CLBs, Block
RAMs (BRAMs), and Digital Signal Processing blocks
(DSPs), that can be utilized for creating heterogeneous
PRRs. We denote the remaining DPR resource quantities
by remCLBs, remBRAMs, and remDSPs.

B. PRM characterization
Each PRM is characterized to determine their resource

requirements and their aging effect. Each task node of
the application task-graph involves the execution of any
one of the PRMs. Hence, the resource requirements for
each task is obtained from the synthesis of the respec-
tive PRMs. Similarly, the power estimation from the syn-
thesized netlist is used to generate the expected junction
temperature. Out of the four dominant wear-out meth-
ods, we model EM related wear-out failures for our cur-
rent work. However, any other effects can be easily incor-
porated either standalone or using Sum-of-Failure Rate
(SOFR) model for any combination of the failure mecha-
nisms. The estimated aging effect at temperature Ti can
be obtained based on the relation shown in Equation 4. A0

is a constant determined by the physical interconnect, Ea
is the activation energy, J (and Jcrit) refer to the current
density (and critical current density), n is an empirically
determined constant, and K is the Boltzmann constant.

η(Ti) =
A0(J − Jcrit)

−neEa/(KTi)

Γ (1 + 1/β)
(4)

C. Execution Trace Generation
A greedy algorithm is used to generate a list, ExTrace,

of tasks from the application task-graph. A two-stage ap-
proach is used for this purpose. In the first stage, we
update the StartTt and EndTt of each task t, with the
assumption of infinite parallel resources available in the
system. This provides us with the best case StartTt of
each task. In the second stage, we create a linear array
of tasks ExTrace by using a greedy approach. We parse
through all tasks in the set Tapp that are not already in
ExTrace. A list of all feasible options for the next entry
into ExTrace, i.e. tasks whose parents nodes are already
in the trace, is generated. From this list we choose the
task with the least ExecTt as the next entry in ExTrace.
This linear list of tasks, prevents the solver from evaluat-
ing infeasible sequences of task executions.

D. MILP Formulation
The MILP problem formulation and its solution are

used to determine the Task to PRR mapping. We for-
mulate the problem as finding appropriate entries for a
binary-valued matrix, MapMatrix. The columns corre-
spond to the tasks in the Exec Trace, and the rows cor-
respond to the available PRRs in the system. Hence the



MapMatrix is of size R×|Tapp|. The matrix entries rt(r,t)
denote whether task t is executed (rt(r,t) = 1) on PRR r
or not (rt(r,t) = 0). The different constraints and objec-
tive function of the MILP are described below.
Deadline constraints: For every task t with a deadline,
a constraint, StartTt +ExecTt ≤ TaskDt, is added to the
problem.
Dependability constraints: For every task t a con-
straint for every parent task node p a constraint:
StartTt ≥ StartTp + ExecTp, is used in the problem for-
mulation.
Task start time constraints: For a task-PRR pair
(t, r), we introduce a new variable StartT(t,r) that sig-
nifies feasible start time of task t when mapped to PRR r.
Since the execution trace signifies a sequence of task exe-
cution, the first relation in Equation 5 signifies the feasible
values of StartT(t,r). The second relation in the equation
provides the overall equivalent start time of the task.

For every task, t, for every PRR r :

StartT(t,r) ≥
t−1∑
i=1

(
StartT(i,r) + ExecTi

)
× rt(r,i)

where, i is any task that is before t in Exec Trace

For each task t, StartTt =

R∑
r=1

StartT(t,r) × rt(r,t)

(5)

Lifetime Constraints: For each PRR, we use a variable,

InvMTTFr =
∑T

t=1

ExecTt×rt(r,t)
TaskMTTFt

, to denote the net aging
effect on a PRR in each cycle. Please note from Equation
3, maximizing for SysMTTf is equivalent to minimizing
the maximum of InvMTTFr across all PRRs. Therefore
we use a variable SysInvMTTF to denote the maximum
InvMTTFr.
Resource Constraints: For any task to be executed on
a PRR, the PRR must have sufficient resources. Further,
the sum of all resources in all PRRs must be less than
the remaining resources for DPR. Equation 6 shows the
resource constraints used in the MILP formulation.

For every task, t, for every PRR r :

prrCLBsr ≥ TaskCLBst × rt(r,t)

prrDSPsr ≥ TaskDSPst × rt(r,t)

prrBRAMsr ≥ TaskBRAMst × rt(r,t)

Overall Resources :

remCLBs ≥
R∑
r=1

prrCLBsr; remDSPs ≥
R∑
r=1

prrDSPsr

remBRAMs ≥
R∑
r=1

prrBRAMsr;

(6)

Objective Function: To compare the performance of
our lifetime-aware scheduler, we run two optimization
modes:
In mode 1 we maximize the system life time with the ob-
jective function: Minimize SysInvMTTF .
In mode 2 we minimize the makespan of the application
by minimizing the start time of the last task. The corre-
sponding objective function: Minimize StartTT .

E. Floorplanning
The automatic floorplanning tool PRFloor [14] is used

to determine the feasibility of the mapping generated by
the MILP solver.

V. Experiments and Results

A. Experiment Setup
All our experiments are run on a computer with two

CPUs – IntelTM XeonTM E5-2609 v2 @ 2.50GHz (each

CPU is quad-core) and 32 GB of memory. The oper-
ating system is Ubuntu 14.04 LTS 64-bit. Even though
our method is made general enough for all kinds of Xil-
inx FPGA, the one we are experimenting with is Virtex-6
XC6VLX240T. Gurobi Solver is used to solve our sched-
uler with parameter Presolve=2.

B. IP Pool
In this work, we collected 50 real-world hardware ac-

celerators (PRMs) from CHStone benchmark, Opencores,
EPFL benchmark and Xilinx XPS IP core library. The
MTTF for different PRMs was obtained using the rela-
tion shown in Equation 4. The scaling parameter was used
to obtain an MTTF of 75 years at 25℃ and the PRMs’
MTTF values were truncated and scaled to obtain a range
from 2-10 years. Please note that our contributions do not
include the PRM characterization. We used the generated
data to get realistic estimates about the performance of
our proposed lifetime-aware scheduler and heterogeneous
system design tool. More accurate estimates of PRMs’
MTTF can be plugged directly to our proposed flow to
perform more accurate analysis.

C. Experiments
Experiments for performance evaluation involved using

application task-graphs with the number of tasks vary-
ing from 5 to 50, in increments of 5. The task-graphs
were generated using Task Graphs For Free (TGFF) tool
[15]. Task-graphs with different levels of branching and
depth were used to compare the performance. We use
terms Fat and Slim to describe applications that demand
higher parallel resources and longer serial chains respec-
tively. Further, PRM sets with different range of resource
requirements were used for evaluation. In order to es-
timate the performance of the scheduler and heteroge-
neous PRR-based systems simultaneously, we performed
experiments in 4 modes. Mode 1 1 and Mode 1 2 refer to
maximization of system lifetime and minimization of ap-
plication makespan respectively in a heterogeneous PRR
system. Similarly Mode 2 1 and Mode 2 2 refer to op-
timization of system lifetime and makespan respectively
in a homogeneous PRR system. We limit the number of
available PRRs to 15, as the homogeneous system design
fails for almost all cases beyond that.

D. Performance Results
We quantify the performance of our proposed method-

ology in terms of increased system MTTF. Figs. 4, 6, 7
and 9 show the result for all four modes for different sce-
narios – applications with different number of tasks, set
of PRMs with different resource distribution (small /large
PRMs) and type of applications (Fat / Slim). The bars
represent the maximum system MTTF in years, among
all feasible values of number of PRRs, R, for each mode.
The minimum value of R at which we obtain the maxi-
mum MTTF for a mode are shown as labeled markers in
the figure.

Figs. 5, 8 and 10 provide detailed results for a repre-
sentative application (with 25 tasks) under different sce-
narios. They show the variation in system MTTF with
increasing number of PRRs in the system. The perfor-
mance of the proposed methodology in different scenarios
is discussed under two subsections below.

D.1 Lifetime Reliability-aware scheduling

The system’s MTTF (SysMTTF ) obtained using the
lifetime-aware scheduler (Mode ∗ 1), shows considerable
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Fig. 4. SysMTTF in Fat applications with large PRMs

increase over a makespan-optimization approach (Mode ∗
2) for almost every scenario.

In applications with very few tasks (e.g. 10 tasks in Fig.
7, 9), both scheduling modes exhibit similar performance.
In smaller task-graphs, the scope for improvement of life-
time is limited as there are insufficient tasks to exploit the
parallelism. In our current work, we are yet to explore the
effect of redundant PRRs, created from the spare DPR re-
sources, and is left for future research. We only consider
applications with sufficient tasks to exploit all available
parallelism in the system. So, the results for minimum
makespan are similar to that of aging-aware optimization
for smaller task-graphs.

In Fig. 5 (with 4 PRRs), it can be observed that
the aging-aware scheduler, unlike makespan optimization,
could not find a feasible result. This is expected as the
deadline constraints imposed in the aging-aware MILP are
not used in the makespan optimization. Similar behav-
ior can also be observed in Fig. 7 for 50 tasks. Here,
the maximum achievable parallelism in both homogeneous
and heterogeneous PRR types is insufficient for meeting
the application deadline.

Further, for all scenarios, the quality of results of our
aging-aware scheduler increases with increasing number
of PRRs in the system. The scheduler uses increasingly
available parallel resources to spread the electrical stress
spatially, thereby reducing stress hotspots, resulting in im-
proved lifetime. In some cases, the scheduler performance
flattens beyond a certain point. In Fig. 5 there is no
improvements beyond 13 PRRs, as the resource redistri-
bution to create additional heterogeneous PRRs, does not
result in extra PRRs for the more stress-inducing PRMs.
Similarly, as shown in Fig. 8, performance benefits with
the aging-aware scheduler do not improve beyond 11 PRRs
for neither homogeneous nor heterogeneous PRRs as the
aging is dominated by one single PRM mapped to one
PRR.

Overall, it can be concluded that the aging-aware sched-
uler results in considerable system lifetime improvements
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Fig. 6. SysMTTF in Slim applications with large PRMs

TABLE I
SysMTTF Improvements of Heterogeneous vs.

Homogeneous Systems

Scenarios T= 5 T=10 T=15 T=20 T=25 T=30 T=35 T=40 T=45 T=50

Fat, Large 0.00 0.21 0.82 0.75 1.52 1.37 6.62 7.96 8.33 7.33

Slim, Large 0.00 0.00 1.24 1.36 1.42 1.95 9.57 1.76 13.16 1.13

Fat, Small 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.06 0.06 0.00

Slim, Small 0.00 0.00 0.00 0.00 0.05 0.11 0.00 0.00 0.08 0.00

over our baseline makespan optimization scheduler. irre-
spective of the heterogeneity of PRRs.

D.2 Lifetime-aware DPR-based System Design

The aging-aware scheduler was used in conjunction with
the DPR resource constraints of the system to generate
the PRM to PRR mappings that maximize the system
MTTF. Table I summarizes the improvements of a het-
erogeneous system over a homogeneous one for different
scenarios. The entries in bold-face signify the inability to
find a feasible homogeneous design for the application.

For scenarios that use large PRMs, we observe sig-
nificant improvements by using a heterogeneous system.
Since homogeneous PRRs need to be compatible with all
PRMs, the size of each PRR is significantly increased with
larger PRMs. Therefore, the resource constraints of the
FPGA limit the number of maximum parallelism with
such large PRRs. The reduced parallelism may be in-
sufficient for meeting deadlines for real-time applications.
A heterogeneous system, on the other hand, allows redis-
tribution of resources to create more PRRs for PRMs that
need more parallel modules. As shown in Fig. 4, the ho-
mogeneous system design fails for Fat applications with
35 or more tasks.

Even in scenarios where both types of systems are feasi-
ble, heterogeneity allows allocation of more PRRs that are
compatible with the more stress-inducing PRMs, thereby
increasing the system MTTF. As seen in Fig. 5, the homo-
geneous system can support only 5 PRRs compared to a
heterogeneous system with up to 15 PRRs. The additional
PRRs were used to accomodate the more stress-inducing
PRMs, and show improvements in system MTTF for up
to 13 PRRs. The flattening of performance beyond that
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Fig. 7. SysMTTF in Fat applications with small PRMs
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Fig. 8. Variation of SysMTTF with number of PRRs for a Fat
task-graph with 25 tasks and small PRMs

was explained in the previous sub-section.

For Slim applications with large PRMs, the heteroge-
neous approach ensures feasibility for all applications. The
homogeneous system design may lead to infeasible results
based on the parallelism requirements of the application
for meeting deadlines.

In scenarios with small PRMs, the resource constraints
do not play a significant role. Therefore, the PRR count
can be increased considerably for homogeneous systems to
achieve the required level of parallelism. Hence, heteroge-
neous systems do not show any significant improvements
in lifetime or feasibility over homogeneous ones. As shown
in Figs. 7 and 9, both the systems perform almost sim-
ilarly for all scenarios. Both approaches fail to generate
feasible designs for a Fat application with 50 tasks, as
the resources are insufficient for sufficient parallelism. As
seen in Figs. 8 and 10, with increasing number of PRRs,
the performance of the homogeneous system matches that
of the heterogeneous system till there are sufficient re-
sources for creating more homogeneous PRRs. Therefore,
for smaller PRMs, the proposed design methodology allo-
cates sufficient resources to each PRR to create a homo-
geneous system.

VI. Conclusion

In this paper, we propose a novel lifetime-aware proac-
tive methodology DPR-based system design. Our ap-
proach analyzes different aspects of designing such sys-
tems – the aging effects of PRMs, the dependencies
between them from the application task graph, the
PR-based system architecture and FPGA resource con-
straints. These information are used to build an MILP
mathematical model to make sure that all of them are
globally considered. The PRRs of the resulting system
are heterogeneous; therefore the FPGA resources are used
more efficiently to optimize the lifetime.
Currently, we are working on exploring the possibility
of having more heterogeneous PRRs as redundancy re-
sources. These PRRs can be utilized at runtime to further
improve the system lifetime. A lifetime-aware runtime
scheduler will also be developed to efficiently monitor and
determine the mapping of PRMs to PRRs.
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Fig. 9. SysMTTF in Slim applications with small PRMs
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Fig. 10. Variation of SysMTTF with number of PRRs for a Slim
task-graph with 25 tasks and small PRMs
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