
1

Enhancing VHDL Learning through a Light-weight
Integrated Environment for Development and

Automated Checking
Akash Kumar, Rajesh C. Panicker and Ashraf Kassim

Department of Electrical & Computer Engineering, National University of Singapore, Singapore
Corresponding author email: akash@nus.edu.sg

Abstract—The development environments for Hardware De-
scription Languages (HDLs) are essentially meant and designed
for highly trained professionals/ engineers and as such are not
suitable for use as an introductory tool for students learning
HDLs. With students adopting a variety of operating systems,
there is a need for a light-weight and cross-platform environment.
Further, such a development environment for students should be
able to provide some feedback about the functional correctness
of their program. In this paper, we describe an open-source
environment for developing and simulating VHDL programs
on the client side, and a server side application for automated
checking of submissions. The client has been developed for three
desktop operating systems – Windows, Linux and MacOSX. The
server application runs on Linux. The client allows students to
develop and simulate VHDL programs. They can also submit
programs to a remote server for automated verification. The
environment – client and server, has been used for two semesters
at the National University of Singapore to provide an enhanced
learning experience to the students in a first year course on digital
fundamentals.

Index Terms—Integrated development environment, VHDL,
Simulation, Automated checking.

I. INTRODUCTION

Very high speed integrated circuit hardware description
language (VHDL) is one of the two most popular hardware
description languages, the other being Verilog. VHDL is
widely used in academia and industry. It was developed by
US department of defense and standardized by the IEEE
(standards 1076-1987, 1076-1993, 1076-2008). It is a strictly
typed, formal language syntactically similar to ADA. VHDL
is widely taught as a part of the first or second course
in digital design in undergraduate curricula of electrical /
computer engineering. Hence, teaching community has been
developing several tools and techniques for enhancing the
students’ learning experience of VHDL [1], [2]. VHDL is
also widely taught as a part of more advanced courses such as
computer architecture [3], [4], and increasingly, as an alternate
language for describing systems in other electrical / computer
engineering courses [5].

Today’s electronic systems, ranging from digital audio sys-
tems to complex computers, are substantially realized using
digital logic. At National University of Singapore’s Depart-
ment of Electrical and Computer Engineering, EE2020 Digital

Fundamentals is a first course that introduces fundamental
digital logic, digital circuits, and programmable devices to
the students [6]. This course provides students with an un-
derstanding of the building blocks of modern digital systems
and methods for designing, simulating and realizing such
systems. The emphasis of this module is on understanding
the fundamentals of digital design across different levels
of abstraction using hardware description languages and lab
exercises.

In fundamental courses, students are taught how to describe
and simulate simple circuits using VHDL. However, most
courses use bulky integrated development environments (IDEs)
such as Xilinx Webpack or Altera Quartus as a tool for editing
and simulating designs. For example, the most basic version
of Xilinx ISE, the Webpack has a download size of more than
6GB and an installed size (depending on the selected features)
close to 12GB. Moreover, it can be installed only on Windows
and Linux platforms; thus it is not truly a multi-platform
software. The increasing MacOSX user base is unable to use it
without a virtual machine running a supported operating sys-
tem (OS). While it is very feature rich and supports synthesis
etc., such additional functionalities are probably unnecessary
at the entry level. The large feature set may in fact, increase the
learning curve for students in using the software. The software
is typically required only for 6-8 weeks; only students who
take advanced modules requiring VHDL need this software in
the future. Hence, we have developed an IDE utilizing only
open-source tools – jEdit, GHDL and GTKWave. The IDE is
light-weight and has an installer of size less than 20MB. It is
truly multi-platform and runs on MacOSX too. Further, since
it is based on flexible editor jEdit, its functionalities can be
easily enhanced through Java-based plugins.

For efficient learning of programming, it is very important
for students to receive immediate feedback about the cor-
rectness of the program. While a (good) compiler is able to
identify most syntax errors, extensive simulation is needed
to ensure that the program works correctly for all scenarios.
Sometimes, even though students think that they have the
correct answer for all scenarios, the timing (which is very
important in hardware design) may be incorrect. Manual
checking of code and resulting simulation waveforms is not

2

feasible for large classes. An automated checker has therefore
been developed that allows students to submit the code to a
server and receive feedback on the correctness of the code.

Several tools for automated checking / evaluation for teach-
ing programming have been reported in the literature [7]–
[11]. Comprehensive reviews on this topic can be found
in [9] and [10]. However, automated checking in VHDL has
received only limited attention. Gutierrez et al. [2] developed
an automated VHDL checking and collaboration system where
students can submit their designs to Moodle (an e-learning
platform [12]) for automated checking. This was further
extended to a computer architecture module, where students
simulated a complete simplified CPU written in VHDL [4].
In this paper, we describe a light-weight application and an
automated VHDL source checking system, which is targeted
to enhance the learning experience of students specifically
in a course on digital fundamentals. It broadly includes the
following functionalities:

• A light-weight cross-platform open-source IDE for edit-
ing, compiling and simulating VHDL programs.

• A client (integrated into the IDE) – server system to do
automated checking of VHDL programs.

• An interface for the teaching staff to update the database
of problems whose solutions can be automatically
checked.

• A logging system to keep track of student submissions,
which can be useful in programming tests.

The rest of the paper is organized as follows. Section II
provides details of the IDE that has been built using various
open source tools into a nice package. Section III gives more
information on client and server components required for
the automated checking feature. Section IV presents relevant
results to evaluate the efficiency of the developed IDE and
the automated-checker. Section V concludes the paper and
provides directions for future works.

II. IDE IMPLEMENTATION

There are a number of development environments available
for designing circuits using a hardware description language
(HDL). However, most of these are commercial tools that need
to be purchased [13], [14]. Further, since they are aimed at
developing commercial designs, most of the available features
are often not necessary in an introductory level course. For
basic HDL development, students only need to edit, compile
and simulate simple programs, typically contained within a
single file. In the following subsections, we provide further
details about the individual components put together in the
light-weight IDE.

A. Editor

The text editor should support syntax highlighting for
VHDL, allow custom plugins and run on multiple platforms.
jEdit [15] is a mature programmer’s text editor which is feature

rich and easy to use. It is released as a free software with full
source code, provided under the terms of the GPL 2.03. Some
of the relevant features include:

• Written in Java; runs on all desktop OSs.
• Built-in macro language; extensible plugin architecture,

allowing custom plugins to be developed easily.
• Auto indent and syntax highlighting for a lot of languages

including VHDL.
• Support for code-folding and word-wrap.
Figure 1 shows the jEdit editor with a custom plugin

designed for VHDL compilation, simulation, etc. The editor
area shows a VHDL code snippet with highlighted syntax.
The custom plugin is docked below the editor area, with user
interface (UI) controls for performing various tasks. Since the
editor and the plugin is based on Java, it works cross-platform
without the need for re-compilation.

B. Compiler and Simulator

The compiler and simulator should also be light, open-
source and cross-platform. GHDL [16] meets these require-
ments and is hence ideally suited for our purpose. It allows
the user to compile and execute VHDL code directly. It has
several commands allowing the user to analyze, elaborate and
run VHDL code / testbenches with various options. Though
it is a command-line tool making it powerful, it can often be
hard to use for a beginner for that reason. In our IDE, this tool
is invoked using the UI controls, essentially making GHDL
transparent to the user. Upon simulation, a value change dump
(VCD) file is produced.

C. Waveform Viewer

The VCD file is a text file with the values of signals at
various time points in the simulation. For easy visualization
of results, we need a program which shows this information
graphically. GTKWave is an open-source GTK+ based wave
viewer which runs on Unix, Windows and MacOSX [17]. It
supports several file formats including standard VCD files. It
is an interactive tool allowing features to be invoked using
command-line options. These are again made transparent to
the user through the use of plugin UI controls. As shown in
Figure 2, we can select the signals to be displayed, their radix
and zoom-level. Moving the cursor about the signals displays
the value of the signal at particular time instant.

D. Plugin

The plugin integrates the compiler, simulator and the wave-
form viewer with jEdit, and handles the communication with
the server. The visual interface of the plugin has three main
components – 1) compilation, testbench generation and sim-
ulation controls; 2) output console; and 3) server interactivity
controls. GHDL is invoked using proper command-line options
to analyze the code upon pressing the ‘compile’ button. Syntax
errors, if any, are displayed in the output console.

3

Syntax highlighted

Output console

Tool panel to �ubmit, �ompile, �reate test bench and �iew wave form

Server feedback

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Test is

Port (A : in STD_LOGIC_VECTOR(1 downto 0);
 B : in STD_LOGIC;
 C : in STD_LOGIC_VECTOR(3 downto 0);

 Z : out STD_LOGIC_VECTOR(2 downto 0));
end Test;

architecture Behavioral of Test is
begin

Z <= A(0) & B & C(0);
end Behavioral;

Compiling...

D:\Dropbox\p2001.vhd

Analyse completed.

Fig. 1. Integrated development environment with the plugin docked at the bottom

Fig. 2. The GTKWave window showing an output waveform

‘Create testbench’ button can be used to create a testbench
template automatically. The various input / output ports are
identified by parsing the entity in the VHDL unit under test,

and an appropriate architecture is created. To complete the
testbench code, the user just needs to fill in the stimuli (test
pattern) to be applied. A sample testbench generated by the
plugin for the code given in Fig. 1 is shown in Fig. 3.

The simulation is performed through the ‘simulate’ button
after entering the duration for which the simulation needs to
be performed. This invokes GHDL which runs the testbench,
generating a VCD file, followed by an automatic invocation
of GTKWave. The statuses and messages from various tools
can be viewed in the output console. More details on the
communication with the server is presented in Section III.

The three open-source components as well as the plugin
needs to be configured properly for correct functionality. We
have created custom installers which does this automatically
for Windows, Linux as well as MacOSX so that the users can
get the IDE to run out of the box. It should be noted that while
jEdit, being Java based runs on all the platforms without re-
compilation, other components as well as the installer have
separate binaries for each platform.

4

1 LIBRARY ieee;
2 USE ieee.std_logic_1164.ALL;
3
4 ENTITY hh_tb IS
5 END hh_tb;
6
7 ARCHITECTURE behavior OF hh_tb IS
8 COMPONENT Test
9 PORT(
10 A: in STD_LOGIC_VECTOR(1 DOWNTO 0);
11 B: in STD_LOGIC;
12 C: in STD_LOGIC_VECTOR(3 DOWNTO 0);
13 Z: out STD_LOGIC_VECTOR(2 DOWNTO 0));
14 END COMPONENT;
15
16 signal A: STD_LOGIC_VECTOR(1 DOWNTO 0) := (others => '0');
17 signal B: STD_LOGIC := '0';
18 signal C: STD_LOGIC_VECTOR(3 DOWNTO 0) := (others => '0');
19 signal Z: STD_LOGIC_VECTOR(2 DOWNTO 0) := (others => '0');
20 BEGIN
21 -- Instantiate the Unit Under Test (UUT)
22 uut: Test PORT MAP (A => A, B => B, C => C, Z => Z);
23 -- Stimulus process
24 stim_proc: process
25 begin
26 -- hold reset state for 100 ns.
27 wait for 100 ns;
28 -- insert stimulus here
29
30 wait;
31 end process;
32 END behavior;

Fig. 3. Listing of the sample testbench created automatically for the program
shown in Figure 1

III. AUTOMATED CHECKER

In order to provide quick feedback to students, the IDE
provides a feature to check the correctness of selected prob-
lems automatically by submitting them to the server. In the
following subsections, we provide further details about the
client (an IDE feature) and server that have been developed for
automated checking of VHDL programs and associated tasks.
Details of a problem-database and management of submissions
is also provided.

A. Server Connector

The developed IDE plugin supports automated checking.
Once the program has been compiled, students can submit
it after indicating the corresponding problem identifier. The
server compiles the submitted program, carries out the simu-
lation using the input test cases for the problem and compares
it with the corresponding output cases. For each test case,
a response is sent to the client indicating the correctness.
Figure 1 shows the response for problem 2001, where the
program produced correct output for three out of the four
test cases. The plugin supports a maximum of ten input
cases per problem (although this can be changed easily if
necessary). More details about input size and format are given
in Section III-C.

B. Automated Checking Server

The server for automated checking of VHDL programs
was inspired by the various online judging systems for pro-
gramming contests [18], [19]. Such online judging systems

accept the user solution to a problem and compares the output
produced against a set of input cases. Since there are usually
no unique answers in programming, it is not possible to
directly compare the code to a model solution. Instead, the
program has to be compiled and tested across multiple cases
for correctness. This part of compilation, checking and sending
the response to the client is handled by a server which is
described below.

In order to handle multiple requests from students to the
server, the server platform adopted was the Apache Tomcat
[20], an open source implementation of the Java Servlet
and JavaServer Pages technologies with the specifications
developed under the Java Community Process. A Java Servlet
is a Java programming language class used to extend the ca-
pabilities of servers that can be accessed by a host application
via a request-response programming model. Although servlets
can respond to any type of request, they are commonly used
to extend the applications hosted by Web servers. Thus, it can
be thought of as a Java Applet that runs on a server instead of
a browser. JavaServer Pages (JSP) is a technology that enables
dynamic generation of web pages based on HTML, XML, or
other document types. JSP is similar to PHP, but it uses Java
programming language.

Two servlets are written for the server – teacher servlet
and student servlet. The teacher servlet handles addition of
new problems to the system by managing the VHDL files and
input files associated with the test cases. More details about
this feature is provided in Section III-C. The student servlet
handles VHDL file submissions by students. It compiles their
program and checks the output produced for corresponding
input cases and sends the response to the client. The servlet
also takes care of organizing the files on the server for
logging purposes. More details on this feature are provided
in Section III-D.

C. Problem Database

An interface is provided to upload new problems and
solutions to the server. This is intended to be used by teachers
to add new problems for students to solve. The interface shown
in Figure 4 has the problem identifier (i.e., problem number),
the clock period/duration (default is 100ns), input cases (for
evaluating / comparing submissions) and the problem solution
which is used to generate the model output. The three options
for upload to the problem database are:

1) A combinational VHDL file without any input file or
clock period.

2) A combinational VHDL file with an input file. (Clock
is not applicable for a combinational circuit.)

3) A sequential VHDL file with an input file and clock
period.

Once a new problem is submitted, the teacher servlet creates
a folder for the problem. This folder contains the input cases
and the model VHDL answer. The format of the file containing

5

Problem Number
Clock Period (Sequential)

Input File

VHD File

JSP Page http://mamps.nus.edu.sg:8080/VHDL_Server/VHDLAnswer.jsp

1 of 1 23/4/2013 3:17 PM

Fig. 4. Webpage for uploading new problems on the server

Input file:

0000100

0010010

0000100

0010010

0000100

0010010

0000100

0010010

@

0000100

0010010

0000100

0000100

A B C

Input for ports A, B

and C in sequence

Start of new case.

End of the case.

Fig. 5. Sample input file for providing test cases for combinational circuits

input cases depends on whether the problem requires combina-
tional or sequential description. Figure 5 shows a sample input
file for a combinational circuit. While a maximum of ten input
cases are supported, each test case can be as long as desired.
Each test case is enclosed between ‘#’ and ‘@’ as shown in
the figure. The order of values on a line is determined by the
order of input signals declared in the model VHDL file. For
the example shown in Figure 5, there are three inputs – A, B
and C which are 2-bit, 1-bit and 4-bit wide respectively. If no
input file is provided, all possible input combinations are used
as a single test case.

Figure 6 shows a sample input file for a sequential circuit.
Each line in this file indicates the time at which the inputs get
their designated value, followed by the value itself, demarcated
using ‘||’. A separate webpage showing the problems students
can try out along with their identifiers is maintained, as shown
in Figure 7.

Case	3:	Sequential	VHDL	file	with	an	input	file	and	clock	duration	per	cycle.	
VHD file:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity Test is

 Port (A : in STD_LOGIC_VECTOR(1 downto 0);

 B : in STD_LOGIC;

 C : in STD_LOGIC_VECTOR(3 downto 0);

 Clock : in STD_LOGIC;

 Z : out STD_LOGIC_VECTOR(2 downto 0));

end Test;

architecture Behavioral of Test is

begin

process (Clock)

 begin

 if clk'event and clk = '1' then

 Z <= A(0) & B & C(0);

 end if;

end process;

end Behavioral;

Input file:

700||0000100

950||0010010

1000||0000100

1050||0010010

1700||0000100

1950||0010010

2700||0000100

2950||0010010

@

500||0000100

750||0010010

1000||0000100

1050||0010010

1700||0000100

1950||0010010

@

200||0000100

450||0010010

950||0000100
An example for sequential circuits:

950 refers to the time and 0000100 to the input.

Fig. 6. Sample input file for providing test cases for sequential circuits

jEdit - Untitled-2

4/23/13 3:04 PM :: page 1

1 IPAddress,DateTime,Result
2 172.18.69.100,2012/08/01 15:06:39,"true"
3 172.18.69.100,2012/08/02 11:17:48,"true"
4 172.18.69.100,2012/08/02 13:44:56,"true"
5 172.18.69.100,2012/08/08 16:06:27,"true"
6 172.28.185.156,2012/08/14 14:31:41,"false"
7 172.28.185.156,2012/08/14 14:32:02,"true"
8 172.28.184.216,2012/08/14 14:32:46,"true"
9 172.21.50.6,2012/08/27 17:19:14,"true"
10 172.21.50.6,2012/08/27 17:22:41,"false"
11 172.24.212.165,2012/09/01 16:21:17,"false"
12 172.16.30.71,2012/10/17 17:36:37,"true"
13 172.16.30.71,2012/10/17 17:37:37,"false"
14 172.16.30.71,2012/10/17 17:38:14,"false"
15 172.16.30.71,2012/10/17 18:54:04,"true"
16 172.19.168.39,2012/10/17 22:06:55,"false"
17 172.19.168.39,2012/10/17 22:07:11,"false"
18 172.19.168.39,2012/10/17 22:07:59,"false"
19 172.19.168.39,2012/10/17 22:08:08,"true"
20 172.19.168.39,2012/10/17 22:08:37,"true"
21 172.19.168.39,2012/10/17 22:09:03,"true"
22 172.23.112.122,2012/10/18 14:49:36,"true"
23 172.23.112.122,2012/10/18 14:50:59,"true"
24 172.16.79.15,2012/10/18 22:52:54,"true"
25 172.16.79.15,2012/10/18 23:05:17,"true"
26 172.23.115.145,2012/10/19 11:15:39,"false"
27 172.23.115.145,2012/10/19 11:16:33,"false"
28 172.23.115.145,2012/10/19 11:17:13,"false"
29 172.23.115.145,2012/10/19 11:19:16,"false"
30 172.23.115.145,2012/10/19 11:20:00,"true"
31 172.23.115.145,2012/10/19 11:20:20,"false"
32 172.23.115.145,2012/10/19 11:20:27,"false"
33 172.23.115.145,2012/10/19 11:20:40,"false"
34 172.23.115.145,2012/10/19 11:21:10,"false"
35 172.23.115.145,2012/10/19 11:21:37,"true"
36 172.24.211.44,2012/10/19 21:28:57,"false"
37 172.21.128.92,2012/10/20 00:44:52,"true"
38 172.21.128.92,2012/10/20 00:46:49,"true"
39 172.21.128.92,2012/10/20 00:51:33,"true"
40 172.21.128.99,2012/10/20 01:06:00,"true"
41 172.21.128.99,2012/10/20 01:06:05,"true"
42 172.21.128.99,2012/10/20 01:08:43,"true"
43 172.21.128.99,2012/10/20 01:10:33,"true"
44 172.21.128.99,2012/10/20 01:11:28,"true"
45 172.24.214.106,2012/10/22 22:17:30,"true"
46 172.24.214.106,2012/10/22 22:20:19,"true"
47 172.16.28.213,2012/11/08 12:07:52,"true"
48 172.16.28.213,2012/11/08 13:16:29,"true"
49 172.16.28.213,2012/11/08 13:30:20,"true"
50 172.16.28.213,2012/11/08 13:34:05,"true"
51 172.16.28.213,2012/11/08 13:34:14,"true"
52 172.18.69.100,2013/04/08 13:27:34,"true"
53 172.18.69.100,2013/04/08 13:28:49,"false"
54 172.18.69.100,2013/04/08 13:28:56,"true"
55 172.18.69.100,2013/04/19 11:12:02,"true"
56 172.18.69.100,2013/04/23 11:42:24,"true"
57

Fig. 8. Listing of a log file with IP address, time and the result of submissions

D. Submission Management

When a submission is received by the server, the student
servlet copies them into an appropriate folder as indicated
by the problem identifier. Another folder with the IP address
of the client is also created. For each submission, the server
creates a new sub-folder with the time-stamp. The servlet
then compiles the submitted file with the model testbench and
returns the result to the client. All submissions are thus logged
in the system. Figure 8 shows a sample log file. The log file
stores the IP addresses of the submissions, their date and time
stamps as well as the results. This serves two main purposes
– one is for debugging, and the other, more important use
is in an examination setting where students are expected to
submit VHDL programs for a particular problem. Since the
files stored are rather small text files, it is efficient with respect
to the storage space required.

IV. EVALUATION AND RESULTS

In this section, we present major observations on a survey
conducted to evaluate the usability and usefulness of our tool.
Most questions were evaluated on a Likert scale from 1 to 5,
with 5 being the most desirable. Table I shows the various
survey questions and the average of the responses. Most users
found the installation process rather easy with our custom
installers for different platforms. None of the users found it
difficult to install with 50% users finding it extremely easy to
install.

Most users (63% with a score of 4 and above) felt it was
important to have a simple VHDL editor since existing tools
are very bulky. Close to three-quarters of respondents found
it easy (score of 4 or 5) to use the editor. The automated
checking feature was received very well with close to 90%
respondents feeling a strong need for it.

A similar number of people felt that such a simple editor
and automated checking feature can motivate and enhance
the learning process. Some useful suggestions to improve the
interface were also received during the feedback which will
be incorporated in the future versions of the tool.

6

Question
ID Description Answer

2001 link

2002 link

VHDL

SS3. A digital system with input signals A and B, produces outputs signals X, Y and Z
described by the following boolean expressions. Write a VHDL program that describes the
digital system. (see problem#9 of Tutorial 1)

X = A � B � C
Y = A � (B � C)
Z = A B C + B C

VHDL

A combinational circuit has a four-bit input A and a one-bit output Z. Output Z is 1 if the
4-bit A is a non-prime number, and Z = 0, otherwise. Write a VHDL program to describe
the circuit. (Note that there is no need to simplify the logic expressions.)

Fig. 7. Sample problems with descriptions and problem identifiers

TABLE I
SURVEY RESULTS OF THE DEVELOPED IDE

Question Avg. Score
How would you rate the installation process? 4.1
How important is it to have a light-weight IDE? 3.8
How usable is the provided editor? 3.9
How important is to have automated checking feature? 4.4
How usable is the automated checking feature? 3.9

V. CONCLUSIONS AND FUTURE WORK

We have created (i) a light-weight open-source IDE for
editing, compiling and simulating VHDL programs and (ii)
an automated system for verification of VHDL programs
submitted by students. The IDE is cross-platform and installers
for the three most popular platforms – Windows, Linux
and MacOSX are provided. The software are available for
download at [21].

As mentioned in Section III-D, we plan to explore the pos-
sibility of using the IDE for the programming test conducted
as a part of continuous assessment for EE2020. This will make
the administration of the test easier, and the evaluation more
objective. Since the accuracy of the program can be checked
instantly, the evaluation workload of teaching assistants will
be reduced. Further, in the current system, the webpage where
the problems are hosted has to be edited manually. Making
it automated would greatly ease the administrative workload
– perhaps a text file with the problem description can be
uploaded together with the sample program and test cases. We
also intend to collect more feedback from students and make
appropriate modifications to enhance features and usability.

ACKNOWLEDGEMENTS

We would like to thank Ong Jing Jun and Doan Viet Tiep
for their help in programming the system. We would also
like to thank CDTL (Centre for Development in Teaching
and Learning), NUS for supporting this project through the
Teaching Enhancement Grant (TEG).

REFERENCES

[1] A. Wu, “Interactive learning toolbox for logic synthesis with VHDL,”
in Proc. IEEE Intl. Conf. Microelectronic Sys. Edu., 1997, pp. 77–78.

[2] E. Gutirrez, M. A. Trenas, J. Ramos, F. Corbera, and S. Romero, “A
new moodle module supporting automatic verification of VHDL-based
assignments,” Computers & Education, vol. 54, no. 2, pp. 562 – 577,
2010.

[3] T. C. Huang, R. Melton, P. Bingham, C. Alford, and F. Ghannadian,
“The teaching of VHDL in computer architecture,” in Proc. IEEE Intl.
Conf. Microelectronic Sys. Edu., 1997, pp. 133–134.

[4] M. Trenas, J. Ramos, E. Gutierrez, S. Romero, and F. Corbera, “Use of
a new moodle module for improving the teaching of a basic course on
computer architecture,” IEEE Tran. Edu., vol. 54, no. 2, pp. 222–228,
2011.

[5] F. Azcondo, A. De Castro, and C. Braas, “Course on digital electronics
oriented to describing systems in VHDL,” IEEE Tran. Indus Elec.,
vol. 57, no. 10, pp. 3308–3316, 2010.

[6] A. A. Kassim, S. A. Kazi, and S. Ranganath, “A web-based intelligent
learning environment for digital systems,” International Journal of
Engineering Education, vol. 20, no. 1, pp. 13–23, 2004.

[7] M. Amelung, K. Krieger, and D. Rosner, “E-assessment as a service,”
IEEE Tran. Learn. Tech., vol. 4, no. 2, pp. 162–174, 2011.

[8] B. Cheang, A. Kurnia, A. Lim, and W.-C. Oon, “On automated grading
of programming assignments in an academic institution,” Computers &
Education, vol. 41, no. 2, pp. 121–131, 2003.

[9] K. M. Ala-Mutka, “A survey of automated assessment approaches for
programming assignments,” Computer Science Education, vol. 15, no. 2,
pp. 83–102, 2005.

[10] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of
recent systems for automatic assessment of programming assignments,”
in Proc. 10th Koli Calling Intl. Conf. Computing Education Research.
New York, NY, USA: ACM, 2010, pp. 86–93.

[11] C. Daly and J. Horgan, “An automated learning system for Java
programming,” IEEE Tran. Edu., vol. 47, no. 1, pp. 10–17, 2004.

[12] Moodle. (2013). [Online]. Available: https://moodle.org
[13] Xilinx. (2013). [Online]. Available: http://www.xilinx.com
[14] Altera. (2013). [Online]. Available: http://www.altera.com
[15] jEdit. (2013). [Online]. Available: http://www.jedit.org/
[16] GHDL. (2013). [Online]. Available: http://ghdl.free.fr/
[17] GTKWave. (2013). [Online]. Available: http://gtkwave.sourceforge.net/
[18] UVa. (2013) Universidad de Valladolid Online Judge. [Online].

Available: http://uva.onlinejudge.org/
[19] SPOJ. (2013) Sphere online judge. [Online]. Available: http://www.

spoj.com/
[20] Tomcat. (2013). [Online]. Available: http://tomcat.apache.org/
[21] A. Kumar. (2013) VHDL IDE Download page. [Online]. Available:

http://www.ece.nus.edu.sg/stfpage/eleak/teaching.html

