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Volume image registration remains one of the best candidates for Graphics Processing Unit (GPU)
acceleration because of its enormous computation time and plentiful data-level parallelism. However,
an efficient GPU implementation for image registration is still challenging due to the heavy utilization
of expensive atomic operations for similarity calculations. In this paper, we first propose five
GPU-friendly Correlation Ratio (CR) based methods to accelerate the process of image registration.
Compared to widely used Mutual Information (MI) based methods, the CR-based approaches require less
resource for shadow histograms, a faster storage, such as the on-chip scratchpad memory, therefore can
be fully exploited to achieve better performance. Second, we make design space exploration of the
CR-based methods, and study the trade-off of introducing shadow histograms on different storage
(shared memory, global memory) by computation units of different granularity (thread, warp, thread
block). Third, we exhaustively test the proposed designs on GPUs of different generations (Fermi,
Kepler and Maxwell) so that performance variations due to hardware migration are addressed. Finally,
we evaluate the performance impact corresponding to the tuning of concurrency, algorithm settings as
well as overheads incurred by preprocessing, smoothing and workload unbalancing. We highlight our last
CR approach which completely avoids updating conflicts of histogram calculation, leading to substantial
performance improvements (up to 55� speedup over naive CPU implementation). It reduces the registra-
tion time from 145 s to 2.6 s for two typical 256 � 256 � 160 volume images on a Kepler GPU.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Volume image registration (VIR), the process of generating a
transformation that maximizes the similarity between two volume
images [1] (see Fig. 1), is one of the fundamental components
frequently encountered in many medical image processing
applications [2]. Among various medical registration frameworks,
FMRIB’s Linear Image Registration Tool (FLIRT) [3,4] is reported
to be effective and robust [5]. Several similarity functions are
exploited in FLIRT, the default one, however, is Correlation Ratio
(CR) [6]. Based on information theory, CR exhibits comparative
robustness and stability as the Mutual Information (MI) methods
[4,7]. It is also reported that CR is more accurate and easier to com-
pute than MI [4], which is confirmed by this paper as well.

VIR traditionally requires enormous computation time (e.g.
registering two 256 � 256 � 160 images spends 145 s). The
calculation of the similarity function, however, is the most domi-
nant component which takes over 98% of the registration time.
Meanwhile, the similarity function is inherently data parallel [8]
as voxels of the volume images can be processed independently.
Therefore, ever since Nvidia published Compute Unified Device
Architecture (CUDA) [9], people are seeking to accelerate VIR as
well as the similarity function calculations via GPU. However, an
efficient GPU implementation for VIR is still challenging due to
heavy utilization of expensive atomic operations for similarity cal-
culations, which frequently turn into a performance bottleneck
[10]. Although several approaches are proposed [10–14], most of
them are specifically targeted for MI and still fail to resolve the
bottleneck very effectively.

In this paper, we show that, compared to MI, the CR-based sim-
ilarity functions are more suitable for the GPU platform. We thus
explore the design space of CR and propose five CR-based similarity
function implementations. The FLIRT registration framework is
implemented to embed these similarity functions to construct a
complete registration procedure. We show the trade-off between
benefits and overheads of mapping local sub-histograms (or
shadow histograms) to different storage (shared memory, global
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Fig. 1. Image registration. In the example, the source image is a raw MRI image
while the reference image is a template. The registration framework measures the
similarity between the transformed image and the reference image and tunes the
transform matrices accordingly based on the searching strategies. After registration,
the raw image is supposed to be aligned with the template when applying the
obtained transform.
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memory) by execution units of different granularity (thread, warp,
thread block). The proposed designs are exhaustively tested on
GPUs of different generations (Fermi, Kepler and Maxwell) so that
performance variations due to hardware migrations are addressed.
Further, the performance impact corresponding to the tuning of
concurrency, algorithm settings (such as the number of bins) as well
as overheads induced by preprocessing, smoothing and workload
unbalancing are also evaluated. It is highlighted that, in the last pro-
posed scheme, the updating conflicts of histogram calculation are
completely avoided, leading to substantial performance improve-
ments. Our best scheme achieves over 55� speedup compared to
the original FLIRT version on CPU, which reduces the registration
time from 145 s to 2.6 s for typical 256 � 256 � 160 3D images on
a Kepler platform. Hence, the contributions of this paper are:

� Five CR based registration implement schemes for GPU. To the
best of our knowledge, this is the first time the CR method is
reported to be employed for image registration on GPUs.
Experimental results show that CR outperforms MI, both on
speed and accuracy.
� A novel design that completely eliminates the updating con-

flicts. This highlights the significant advantage of CR over MI
on the GPU platforms.
� The trade-off between benefits of exploiting shadow histograms

and its concomitant overhead based on comparisons among dif-
ferent schemes.
� An exhaustive and detailed evaluation of the schemes for differ-

ent generations of GPUs. In this way, we address the stability
and portability of the proposed designs while acquiring more
details about the hardware capabilities.

The rest of the paper is organized as follows. Section 2 intro-
duces the background of image registration, FLIRT framework
and histogram calculation. Section 3 presents the proposed
schemes to implement the CR similarity function. Section 4 vali-
dates these schemes on hardware. Section 5 discusses the related
performance considerations. Section 6 reviews related works.
Finally, Section 7 draws the conclusion.

2. Background

In this section, we first briefly describe the meaning of image
registration, the process of FLIRT framework and the definition of
Correlation Ratio. We then present histogram calculation and
explain why conflicts exist.

2.1. Image registration

Image registration is the process of determining a transforma-
tion that maps points from one image (source image) to their
Please cite this article in press as: A. Li et al., Correlation ratio based volume ima
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homologous points in another image (reference image). It is gener-
ally formalized as a cost optimization problem. Its cost function
measures the similarity degree between two images. Therefore,
the optimization process is attributed as the search for a transform
that minimizes the cost function (i.e. maximizes similarity):

Calculate Transform
such that similarityðA; BÞ is maximized
where A ¼ reference image;

B ¼ Transformðsource imageÞ

Fig. 1 illustrates the process of image registration. The
Transformed Image is produced by applying the transform function
on the Source Image. The similarity between the Transformed Image
and the Reference Image is then calculated, which is returned to the
optimizer. Based on the similarity, the optimizer iteratively tunes
the transform function until finally the Transformed Image and
the Reference Image show the best similarity.

In order to tune the transform function, we need to parameter-
ize it. In this paper, affine registration is considered, so the trans-
form is affine transform, which can be expressed as:

transformed image ¼ M � source imageþ~b

where M is a 3� 3 matrix; ~b is a vector. The 3� 4 matrix ½M b� is
labeled as a transform matrix that uniquely defines a transform
function. Therefore, the transform parameter shown in Fig. 1 is in
fact a transform matrix.

During the search process various searching strategies are
employed to enhance the possibility of obtaining an optimal trans-
form, while reducing search time. These strategies comprise a
searching framework.
2.2. FLIRT framework

FLIRT algorithm [3,4] is one of such searching frameworks. It is
composed of four stages – each stage focuses on a specific resolu-
tion, from 8 mm, 4 mm, 2 mm to 1 mm progressively. A stage con-
tains a series of local searches in which four spaces are traversed:
rotation, translation, scale and skew. Each space is three dimen-
sional ðX;Y; ZÞ, so if one dimension is represented by one degree
of freedom (DOF), at maximum a 12-DOF search can be performed.

The primary 8 mm searching stage first executes a rotation
space searching with a stride of 60 degrees, thus 6� 6� 6 times
to cover the whole space (360 degrees for all three dimensions).
For each checkpoint, a 4-DOF (i.e. rotation and global scale) local
search is done. Then another rotation space search with a finer

stride of 18 degrees is executed. This time, ð360=18Þ3 ¼ 8000 trials
are required. However, unlike the coarse grain search, for every
checkpoint, we only evaluate that specific spot instead of initiating
a complete local search. Afterwards, three transformation matrices
that generate the minimum cost are selected to execute a 7-DOF
(i.e. rotation, translation and global scale) full search. The obtained
matrices are marked as candidates for the next stage.

In the second 4 mm stage with 4 mm resolution, a 7-DOF (i.e.
rotation, translation and global scale) search is applied to the three
candidates together with their 30 neighbors (for each candidate,
two perturbations on each rotation dimension with 9 degree devi-
ation, four perturbations on scaling with zoom in and zoom out by
a factor of 0.1 and 0.2). The best transformation is found out as
input for the next stage.

In the 2 mm stage, a 7-DOF (i.e. rotation, translation and global
scale), 9-DOF (i.e. rotation, translation and scale) and 12-DOF (i.e.
rotation, translation, scale and skew) local search are performed
alternately, further approaching the global optimal.
ge registration on GPUs, Microprocess. Microsyst. (2015), http://dx.doi.org/
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Fig. 2. Update conflicts for histogram calculation on multithreaded platform: If T0
and T2 update Bin 1 simultaneously, one may overwrite the other, leading to
incorrect results.
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Finally, in the 1 mm stage, the expected global optimal is
obtained after going through a complete 12-DOF (i.e. rotation,
translation, scale and skew) local search. This transform matrix
generates the maximum value for the similarity function.

2.3. Correlation ratio

The Correlation Ratio (CR) [6] of two variables X and Y is a mea-
surement of functional dependence between them, defined as:

gðYjXÞ ¼ Var½EðYjXÞ�
VarðYÞ ¼ 1� Var½Y � EðYjXÞ�

VarðYÞ ð1Þ

which can be measured as:

gðYjXÞ ¼ 1� 1
Nr2

X
i

Nir2
i ð2Þ

where

r2 ¼ 1
N

X
x2X

YðxÞ2 �m2; m ¼ 1
N

X
x2X

YðxÞ ð3Þ

r2
i ¼

1
Ni

X
x2Xi

YðxÞ2 �m2
i ; mi ¼

1
Ni

X
x2Xi

YðxÞ ð4Þ

Here X denotes the overlapping region of the two images; N is the
number of voxels in X. Consider the distribution of X, if a histogram
operation is performed on X to sample the distribution, then Xi

denotes the voxels belong to the ith column of the histogram (i.e.
Xi ¼ fx 2 BINðiÞg); Ni is the number of voxels in Xi.

The value of CR is between 0 (no functional dependence or the
two images are completely different) and 1 (fully deterministic
dependence or the two images are exactly the same). Defined as
a ratio, CR is invariant to the scaling of Y or YðxÞ. Besides,
CR is asymmetrical by definition, indicating that in general
gðYjXÞ – gðXjYÞ.

Compared to MI, the computation of CR does not require
2D-histogram calculation, which makes it more suitable for GPUs
which has very limited on-chip memory. Moreover, the computa-
tion complexity of CR is OðnxÞ, better than OðnxnyÞ for MI.
Further, CR can generate comparatively accurate result while
showing better robustness at lower resolutions [6] and less sensi-
tive on sub-sampling [15]. These features are especially beneficial
to a multi-resolution framework such as FLIRT.

2.4. Histogram calculation

The calculation of CR requires the values of Ni;
P

x2Xi
YðxÞ2 andP

x2Xi
YðxÞ for each i, which contains histogram calculations. The

CR histogram routine is shown in Listing 1.
For a single thread, histogram calculation is straightforward. As

illustrated in Fig. 2, the thread simply goes through all the ele-
ments of an array, updating the target counters accordingly.
However, to run it on a multithreaded machine like GPU, several
threads may attempt to update the same counter simultaneously,
leading to inconsistent results. Therefore, atomic operations are
Listing 1. Histogram c
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utilized to sequentialize these access. This solution preserves cor-
rectness, but significantly enlarges the updating latency and usu-
ally aggravates to be the major bottleneck of the application. The
notion of conflicts is to describe the scenario that multiple threads
update the same memory location, as shown in Fig. 2.

Histogram conflicts are generally tackled by histogram replica-
tion [16], which is to allocate local copies of the shared histogram
counters so as to reduce the conflict degree on those counters. We
label such local copies as shadow histogram in this paper.
3. Registration algorithm

In this section, we describe the registration algorithm. We first
present the skeleton for the whole algorithm and then introduce
the proposed CR schemes, which are summarized at last.
3.1. Skeleton

The skeleton of our GPU-based registration algorithm is shown
in Fig. 3. As can be seen, for every FLIRT stage, a half-sampling pro-
cedure is performed to convert the images into the operating res-
olution. An additional normalization is required provided the
source image and reference image are not initially in the same res-
olution. After that, some preparation work are done in the ‘‘init vol-
ume’’ phase, mainly the allocation and configuration for GPU
processing. For example, copying the images to texture memory
and allocating histogram counters. Extra preprocessing follows if
necessary. For each local search, depending on the search logic,
the transform matrix is tuned before transferring to the GPU con-
stant memory. Then histogram calculation is executed and the
similarity degree – measured by CR is computed. The similarity
calculation can take over 98% of the execution time for the regis-
tration process.

Since the transform is affine transform, it is linear or say, invert-
ible: we can either map the source image to the reference image
with transform f, or we can map the reference image to the source

image with f�1, which is just the inverse matrix of the transform
matrix described in Section 2.1. In this work, we are choosing to
map the reference image to the source image, i.e.
gðSource imagejReference imageÞ is the CR similarity measure,
because:
alculation for CR.
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Fig. 3. Algorithm framework. The vertical arrows indicate module execution sequences. Dashed horizontal arrows implies module hierarchy. The dashed circle means the
right-hand modules are called by the left-hand module repeatedly. The yellow star means the current module contains GPU kernel functions. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Voxel mapping. Voxel Aðx; y; zÞ from the reference image is mapped to
A0ðx0; y0; z0Þ in the transformed reference image by multiplying the transform matrix
M�1 to ðx; y; zÞ. A and A0 have identical intensity value but different coordinates.
Then we measure the intensity difference between A0 and the point from source
image with the same coordinate ðx0; y0; z0Þ. Note that only the voxels within the
overlapping region are considered. Therefore, B is neglected in this scenario.

4 A. Li et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx
� The reference image size is generally smaller than or equal to
the source image size, as the example shown in Fig. 1. In such
cases, choosing the reference image as X in the evaluation of
CR can reduce the number of voxels that has to be processed
during histogram.
Listing 2. Kernel code segment o
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� The reference image is generally fixed (e.g. a template image).
Thus, by taking reference image as X, it is possible to reuse
the preprocessing outcome from the initialization phase for
new source images.

The calculation procedure is shown in Fig. 4. The reference
image is transformed to a transformed reference image by multiply-
ing the transform matrix (M�1) to all of its voxels. Then, the simi-
larity between source image and the transformed reference image is
computed.

In the remaining part, we present the proposed schemes
alternately.
3.2. First scheme

The code segment is shown in Listing 2. Three counter arrays
h; y1; y2 are allocated on global memory, corresponding to

N;
P

x2XYðxÞ2 and
P

x2XYðxÞ, respectively. Each counter accounts
for a bin. During execution, from the current position in the refer-
ence image, a thread applies the transformation defined by the
transform matrix and obtains the homologous coordinate in the
f the global_atomic scheme.
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Fig. 5. Execution Procedure for Conflict_free Scheme. Thread block n traverses from position marked by Block[n] start index. After several iterations, it terminates at the
primary element owned by the next block. During this term, each thread handles one element and calculates the corresponding Ni;YðxiÞ2 and YðxiÞ. After all the rotations are
accomplished, the threads submit their local accumulated values to shared memory followed by a block-wise reduction.

Table 2
Platform configuration.

System_1 System_2

CPU Intel Q8300 Intel i7-4770
gcc gcc-4.4.7 gcc-4.4.7
GPU GTX-570 GTX-TITAN GTX-750 Ti
Architecture Fermi Kepler Maxwell
Compute capacity 2.0 3.5 5.0
CUDA cores 15(SM) � 32 14(SM) � 192 5(SM) � 128
GPU frequency 1464 MHz 876 MHz 1137 MHz
Memory throughput 152 GB/s 288 GB/s 86.4 GB/s
Driver/runtime 6.5/4.0 6.5/6.5

Table 3
OASIS image information.

Type MR1

Subjects OA_0001 to 22 (except 08)
dim 1–3 256x256x160
pixdim 1–3 (1,1,1) mm
datatype 4 Bytes
filetype ANALYZE-7.5
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transformed reference image. Using this coordinate, the voxel is
fetched from the source image. The thread then calculates the
bin this voxel belongs to and updates the counters accordingly.

Note that the statement in line 17 improves the performance
noticeably since for this scheme, atomic updates are the bottleneck
and most of the intensities from the image background are zero.
Meanwhile, the reference image voxels are only retrieved if the
mapped coordinates fall in the overlapping region. This trick does
not violate the coalesced memory access [9] but potentially save L2
bandwidth if L1 cache is disabled. It also reduces the number of
memory requests provided all threads in a warp falling outside
the overlapping region. The weight function in line 14 is used for
smoothing which is discussed in Section 5.3.

The first scheme is a direct implementation of the histogram
calculation using the hardware-based atomic primitives for GPU
global memory. We label this scheme as global_atomic.

3.3. Second scheme

The bottleneck for the first scheme is the conflicts of atomic
updates. Intuitively, we can allocate extra counters to mitigate
the conflict degree. Imagine if every thread is equipped with a pri-
vate copy of the histogram counters, there will be no conflicts at
all. This is our second scheme: every thread updates its local sha-
dow counters which are aggregated afterwards. We label this
scheme as global_merge.

This scheme consumes huge space, therefore cannot fit into the
shared memory. Some existing proposals attempted to circumvent
this problem by assigning less storage per bin via bit-shifting [17],
but these schemes strictly limit the number of bins and the bits
allocated per bin. In the computation of CR, however, each bin
requires three floating-point counters (12 bytes, see List 1), hence
the overall consumption is far overloaded for the small on-chip
shared memory.

The shadow bins avoid the possible updating collisions.
However, due to enormous global memory traffic, especially most
of them are non-coalesced, performance of the data cache and TLB
are extremely low. Meanwhile, the final aggregation phase merges
many zero counters which are redundant. This also induces
overhead.
Table 1
Proposed schemes.

Scheme Name Characteristics

1 global_atomic Atomic updating on global memory
2 global_merge Per-thread shadow histogram on global memory
3a shared_atomic Intra-block atomic updating on shared memory;

then inter-block atomic updating on global
memory

3b shared_merge Intra-block atomic updating on shared memory;
then inter-block merging on global memory

4 shared_warp Warpwise atomic updating on shared memory
5 conflict_free Conflict free scheme

Please cite this article in press as: A. Li et al., Correlation ratio based volume ima
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3.4. Third scheme

Shared memory is exploited here concerning its fast speed for
both raw and atomic memory access [9]. We allocate one shadow
histogram for each thread block on the shared memory and inte-
grate them afterwards. Consequently, the possible conflicts are
separated into local intra-block conflicts and global inter-block
conflicts.

Intra-block conflicts occur among threads of the same block,
which are resolved by shared memory atomic operations.
Inter-block conflicts, on the other hand, take place between
thread blocks on the global memory. Two approaches can be
deployed to resolve the inter-block conflicts. One is through
global memory atomic operations, marked as shared_atomic; the
other is via merging on global memory, marked as shared_merge.
We will compare these two alternative schemes in the
experiments.

3.5. Fourth scheme

The fourth scheme also exploits the shared memory.
Concerning the updating conflicts are still significant for threads
in a thread block, we allocate shadow histogram for each warp
instead of block so that inter-thread conflicts can be further miti-
gated. However, the drawback is more shared memory usage that
can limit the number of thread block in a streaming multiproces-
sor. A merging phase is still necessary and requires even more
efforts since there are more shadow histograms. This scheme is
labeled as shared_warp.
ge registration on GPUs, Microprocess. Microsyst. (2015), http://dx.doi.org/
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Listing 3. Kernel code segment of Conflict_free scheme.
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3.6. Fifth scheme

Previous schemes explore design space from various aspects.
However, none of them entirely resolve the conflicts problem
despite trying different ways to mitigate the degree (actually there
is no conflict in global_merge, however at the expense of enrolling
enormous global memory access). Motivated by this, we propose
the last design – conflict_free scheme. The basic idea is that, since
the cause of the conflict is the interleaved access to the shared his-
togram counters, why not sorting the voxels first so that each thread
block can work on voxels belonging to the same histogram bin.
3.6.1. Pre-processing
As aforementioned, in this scheme, a pre-sorting on the refer-

ence image is required, which takes place in the module of other
pre-processing in Fig. 3. An array Vindex is constructed with
Fig. 6. Execution time for different thread blocks in Fermi GPU. global_merge breaks
halfway is due to the shortage of global memory.
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sequential series (i.e. 0, 1, 2, . . .) as the initial values. Then, Vindex

is sorted, using the reference image intensities Iref as the sorting
key. After that, Iref is in order. For an arbitrary element of Iref with
index i, we can still obtain its original unsorted index VindexðiÞ so as
its primary coordinate. In this way, we gather voxels with the same
intensity together and make them continuously distributed but
still conserving the original coordinate information.

We sort in the GPU so as to reduce data transfer. Effective sort-
ing algorithms in GPU are radix sort [18] or bitonic sort [19]. In this
work, we use the thrust library [20] for simplicity and efficiency.
The associated overhead for sorting is measured in Section 5.2.
After sorting, Iref is returned to the host part and a routine is
employed to traverse Iref to mark the starting and ending positions
for the workload of each thread block.

In the ideal case, the number of thread blocks is identical to the
preestablished bin counts. However, due the severe workload
unbalancing (For a typical MRI image, because of the large
Fig. 7. Execution time for different thread blocks in Kepler GPU.
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Fig. 8. Execution time for different thread blocks in Maxwell GPU.
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background area, the first bin contains as much as 77% of all vox-
els.), we need to settle a threshold to limit the maximum workload
(see Section 5.1 for detailed evaluation).

It is important to note that, unlike other conflict-free schemes
with pre-sorting such as [12], the preprocessing and sorting stage
in our scheme is executed only once for each resolution stage pro-
vided that the bin size is unchanged. Yet, the sorted data can be
reused by the cost function for thousands of times within that
stage. Further, if the reference image is invariant, the sorting
results can be further reused for registration of other source
images. This is a good property for the scenarios of multiple image
registration.

3.6.2. Cost function
In the preprocessing phase, we know the starting and ending

positions for every thread block. Inside the cost function kernel, a
thread block goes through the partition of Iref it is in charge of.
As all the elements for the whole thread block belong to a unique
bin, three per-thread registers are sufficient for the counters. The
counters are accumulated locally in thread-scope registers first
Fig. 9. Execution time for different threads per block in Fermi GPU. global_merge
and shared_warp break halfway are due to the shortage of global memory and
shared memory.

Please cite this article in press as: A. Li et al., Correlation ratio based volume ima
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and then merged on the block-scope shared memory after a
block-wise synchronization. This procedure and the corresponding
code segment are illustrated in Fig. 5 and Listing 3.

Compared to former schemes, the advantages of scheme_5 are:

� During the whole life, a thread only works on a unique bin.
Therefore, it has a very low demand for storage. In fact, 12 bytes
are sufficient, which can be easily fulfilled by the fast registers.
� All threads from a thread block target the same bin so they can

be rapidly aggregated through parallel reduction operations in
the shared memory, after accomplishing their own tasks.
Moreover, one thread only consumes 4 bytes of shared memory.
Compared to shared_atomic, shared_merge and shared_warp
schemes, it is more likely that a streaming processor can accom-
modate extra thread blocks when shared memory size is the
limitation.
� All the conflicts are resolved through shadow counters in regis-

ters and parallel merging in the shared memory. This is very dif-
ferent from global_merge in which conflicts are resolved in the
global memory at the expense of excessive global memory
access.

3.7. Scheme summary

As a summary, all the proposed schemes are listed in Table 1.
4. Experiments

In this section, we compare the proposed schemes with the
variation of three configuration factors and evaluate the perfor-
mance for the entire application on different GPU platforms.
Several observations are made and discussed through the
comparisons.
4.1. Environment settings

The experiments are performed on three Nvidia GPUs of differ-
ent hardware generations. Their configurations and the environ-
ment are listed in Table 2. The compiler optimization level is -O3.
The L1 cache is disabled by setting the compiler option -ptxas
-dlcm=cg since histogram calculation is generally cache-
unfriendly. The interpolation method is nearest-point for stage 1
Fig. 10. Execution time for different threads per block in Kepler GPU. shared_warp
breaks halfway is due to the shortage of shared memory.
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Fig. 11. Execution time for different threads per block in Maxwell GPU.
global_merge and shared_warp break halfway are due to the shortage of global
memory and shared memory.
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and stage 2, but trilinear for the remaining stages. The texture
addressing model is wrapping for all the three spatial axes.

The used dataset is obtained from the OASIS database which is
public available [21]. We use 11 MR1 images indexed from
OA_0001 to OA_0012 except OA_0008 (due to unavailability) for
registration. The test plan is that we register the last 10 images
to the first one (the information is listed in Table 3) and calculate
the average value.

4.2. Cost function evaluation

First, we concentrate on the CR cost function and evaluate three
factors that may influence the performance:

� Number of thread blocks. If fewer thread blocks are allocated,
the remaining ones have to finish more jobs. This parameter
may make a difference on resource usage but will not affect
conflict degree.
� Number of threads per block. This factor may influence con-

currency, resource usage and conflict degree.
Fig. 12. Execution time for different histogram bins in Fermi GPU.
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� Number of histogram bins. This factor impacts resource usage
and conflict degree.

Since the execution time for the cost function is very short, to
avoid distortion, we run the cost function 10 times for each subject
(i.e. one source image and the reference image) and obtain the
average. We then do the test on all the 10 subjects and calculate
their average value to be the result for a particular testing point.

4.2.1. Influence due to the variation of the number of thread blocks
Figs. 6–8 illustrate the variation of execution time with the

number of thread blocks from 64 to 2048 for the Fermi, Kepler
and Maxwell platforms. conflict_free has only one point because
the number of thread blocks for this approach depends on the
number of bins, which is fixed to 256 in this experiment. The block
size is 256 threads.

As can be seen, inside each figure, only the global_merge curve is
strongly correlated with the variation of thread blocks. This is rea-
sonable as the global_merge scheme allocates shadow histograms
for all threads: the more the thread blocks allocated, the more
irregular global memory access, the lower the performance. For
this scheme, clearly the bottleneck is the global memory through-
put. Among the different platforms, Kepler shows the best perfor-
mance as its global memory bandwidth is the highest (288 GB/s
compared to 152 GB/s in Fermi and 86.4 GB/s in Maxwell).

Regarding the global_atomic scheme, it is observed that the effi-
ciency of performing atomic operations on global memory has
improved quite significantly – the execution time reduces from
95 ms in Fermi to 22 ms in Kepler. This substantial hardware
improvement has been declared in the Kepler whitepaper.
Although from Kepler to Maxwell the time reduction is not obvi-
ous, considering that there are fewer cores in Maxwell, such ‘‘per-
formance unchanging’’ is still a step forward (Maxwell has a larger
L2 cache thus a larger buffer for atomic operations on global mem-
ory). Therefore, it is suggested to use global memory atomic oper-
ations for the latest GPUs. Note that global_atomic has already
becomes the best choice among these four tested schemes in
Maxwell platform.

For the three shared memory related schemes, it is also
observed that from Kepler to Maxwell, the efficiency of performing
atomic operations on the shared memory has dropped signifi-
cantly, especially in the case of inter-warp conflicts. We see the
corresponding execution time for shared_merge and shared_atomic
increase from about 18 ms to more than 80 ms while at the same
Fig. 13. Execution time for different histogram bins in Kepler GPU.
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Fig. 14. Execution time for different histogram bins in Maxwell GPU.
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time, the delay of shared_warp scheme has only increased slightly.
In Maxwell Tuning Guide [22], Nvidia states that the
lock-update-unlock pattern for realizing atomic operation in Fermi
and Kepler has been replaced by a native implementation in
Maxwell. This might explain the performance degradation here.
4.2.2. Influence due to the variation of the number of threads per
thread block

Figs. 9–11 depict the variation of execution time with the num-
ber of threads in a thread block from 32 to 1024 for all schemes in
Fermi, Kepler and Maxwell platforms, respectively. The volume of
thread blocks is 1024 and the number of bins is 256.

Still, the global_merge curves are linearly correlated with the
block size as more threads are initiated, which means more sha-
dow histograms have to be allocated in the global memory. The
global_atomic curves are irrelevant to the variation of thread block
size as the overall conflict degree in global memory can be hardly
influenced by this factor.

The remaining four schemes show similar variation pattern: the
curve drops slightly at the beginning and then rises slowly but
steady after a minimum point. This is because for the initial part,
more threads leads to more parallelism. Although some extra
shared memory conflicts are introduced, the benefit is larger.
However, beyond the inflection point, the conflict overhead
becomes the major factor hence we see the continuous perfor-
mance degradation. It should be noted that in Maxwell, such
degradation is quite significant. When comparing with the share-
d_warp curve, it is obvious that the bottleneck is the inter-warp
conflicts (rather than the intra-warp conflicts). Therefore, it is not
suggested to leverage the atomic operations in the shared memory
of Maxwell GPUs.
Table 4
Application test configuration.

Fermi Kepler Maxwell

Threads Blocks Threads Blocks Threads Blocks

global_atomic 256 15 1024 14 1024 5
global_merge 192 15 256 14 256 5
shared_atomic 96 120 128 224 32 160
shared_merge 96 120 128 224 32 160
shared_warp 256 90 256 112 64 160
conflict_free 256 128 128
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4.2.3. Influence due to the variation of the number of bins
Figs. 12–14 illustrate how the execution time varies with the

number of bins set by the algorithm. The number of thread blocks
is 1024 while thread block size is 256.

As can be seen, most of the schemes are insensitive to the vari-
ation of bin size. The global_merge curves rise slightly, but not in a
degree as sharp as the conditions in Section 4.1.1 and 4.1.2. It is
because the number of threads allocated is not changed, so is the
number of memory transactions. However, more bins imply a lar-
ger memory space for the messy access during histogram, there-
fore the poorer L2 cache efficiency (L1 cache is disabled). The
global_atomic curves decrease marginally in Kepler and Maxwell
platforms. The reason is that in general, more histogram bins imply
lower average conflict degree, thus lower execution time. Similar
effect are also observed for other shared memory relevant schemes
at their beginning phases. However, since the shared memory is
very small and has to be distributed among the concurrent thread
blocks, more bins leads to higher shared memory consumption.
Consequently, at the ending phases, the parallelism is damaged
and the performance is affected. This is especially the case for
the shared_warp scheme.

To summarize, we have the following observations:

� The conflict_free scheme demonstrates the best performance in
all experiments. Besides, it is very stable and insensitive to the
variation of the three factors: the number of thread blocks, the
number of threads per block and the number of bins.
� The global_merge scheme behaves the worst in all experiments

meaning that avoiding some conflicts at the expense of exces-
sive irregular global memory access is not worthwhile.
� From Fermi to Kepler to Maxwell, the efficiency of global mem-

ory atomic access has improved significantly. So it is more
advisable to adopt global_atomic schemes in Maxwell GPUs.
� From Kepler to Maxwell, the overhead of resolving inter-warp

conflicts in shared memory has degraded considerably. So
shared_atomic and shared_merge schemes are not good choices
anymore for Maxwell platform.
� Except the conflict_free scheme, shared_warp shows the best

performance. However, it is highly sensitive to the shared
memory usage.

4.3. Application evaluation

We proceed to the experiments for the whole registration pro-
cess. The configurations for similarity function are listed in Table 4,
which are extracted from the experiment results described in
Section 4.2. For those values that are constant (e.g. thread blocks),
we choose the value that is just sufficient to reach the highest the-
oretical occupancy for that platform [23]. The number of bins is
varied depending on the present stage, say 64, 128, 256, 256 for
stage 1, 2, 3, 4, respectively.

Meanwhile, since no CR based GPU acceleration scheme has
been published before, to make a solid demonstration, the pro-
posed CR-based schemes are also compared with several existing
MI-based approaches (see Section 6): Shams’ per-warp method
[12], sort-and-count method [24], Chens’ method [13], Vetters’
method [10] and the native CPU implementation (denoted as
MI_Sham, MI_sort, MI_Chen, MI_Vetter and MI_cpu, respectively).
In fact, Sham et al. also propose a per-thread scheme in [12].
However, this method is similar to the global_merge scheme and
the acceleration technique is only feasible for small numbers of
bins; it is therefore excluded from the results. Note we replace
the software simulated atomic operations with their
hardware-based counterparts in these approaches since some of
them are based on the older generation GPUs. The figures for
MI_cpu and CR_cpu are obtained in System 1 (see Table 2).
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http://dx.doi.org/10.1016/j.micpro.2015.04.002
http://dx.doi.org/10.1016/j.micpro.2015.04.002


Fig. 15. Application execution time for different schemes on different platforms. As can be seen, conflict_free always shows the best performance, especially on Kepler GPU.

Table 5
Average speedup over native version.

gb_atom gb_merg sh_atom sh_merg sh_warp cf_free

Fermi 3.3� 1.8� 19.5� 11.7� 18.5� 31.6�
Kepler 14.2� 1.6� 25.3� 15.9� 20.9� 55.3�
Maxwell 13.7� 5.4� 11.3� 10.1� 11.7� 28.4�
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Fig. 15 illustrates the average application execution time across
the 10 different source images (from 10 patients). As can be seen,
in general the CR based methods run faster than the MI based
methods in both CPU and GPUs except global_merge. Particularly,
the conflict_free achieves the best performance among all the
approaches in all GPU platforms. The speedup of the proposed
schemes over CR_cpu is listed in Table 5.

Fig. 16 shows the RMS error between output images (i.e. regis-
tered source images) and reference image. The measurement of
error is not straightforward due to the lack of a standard baseline.
Fig. 16. RMS error for the registration application on different platforms. Clearly, CR ach
MI or CR schemes on GPUs are due to the accumulated rounding error via different red
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So we use the intensity standard deviation (RMS) between the out-
put images and the reference image as the metric:

RMSðX;YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
x2X

XðxÞ � YðxÞð Þ2
r

ð5Þ

where X is the overlapping region, N is the number of voxels in X.
As can be seen, both MI and CR show consistent figures for dif-

ferent schemes. The CR in GPUs is slightly better than in CPU while
MI is worse. However, overall the CR based methods show a lower
RMS than MI based methods, in both CPU and GPUs, which high-
lights the great advantage of CR.

Meanwhile, except global_merge, all the other proposed
schemes achieve good speedup (see Table 5). In particular, the
conflicts_free scheme reaches a speedup of 55x over the baseline
on Kepler with however, less RMS. The execution time is 2.63s
compared with 145.3s in for CR_cpu.
ieves lower error than MI on CPU and GPUs. The slightly differences among differnt
uction approaches.
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Table 6
Histogram result for 8 bins.

Bin 1 2 3 4 5 6 7 8

Voxels 8,065,900 1,073,218 742,400 369,655 113,187 90,263 29,056 2081
% 76.92 10.24 7.08 3.53 1.08 0.86 0.28 0.02

Listing 4. Scheme_5 post-sorting process.

Fig. 17. Average execution time over the maximum per-block workload. The curve
drops drastically at the beginning and increases thereafter indicating that after the
flex point, the impact of load unbalancing appears to be prominent.
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The low performance of global_merge suggests that the over-
head of excessive global memory access is much higher than some
atomic operations when referring to global_atomic, not to mention
that the efficiency of performing global atomic operations has
improved considerably from Fermi to Kepler. Meanwhile, compar-
ing between global_atomic and shared_atomic, it is obvious that
atomic operations on shared memory are more efficient in the
old hardware (i.e. Fermi), but probably not the case for the new
hardware anymore (i.e. Maxwell). Further, the comparison
between shared_atomic and shared_merge indicates if the updating
conflicts are not severe on global memory, the overhead of merging
is often larger than that of atomic operations. For shared_atomic,
after intra-block conflicts are resolved on shared memory,
inter-block conflicts are much lighter and thus can be easily hidden
by multi-threading since thread blocks are independent and pro-
gress in their own contexts. Finally, the performance of shared_a-
tomic being similar to shared_warp indicates that the conflicts
among threads of the same thread block are not very severe that
allocating shadow histograms at the warp level is not beneficial.

5. Discussion

In this section, we analyze three topics about the conflict free
scheme and their impact on performance.

5.1. Per-thread-block workload unbalancing

GPU distributes thread blocks among streaming processors fol-
lowing a round robin fashion based on the assumption that the
workload for each thread block is roughly identical. However, this
is not the case for conflict_free scheme if each thread block
accounts for an entire histogram bin. Table 6 shows an example
of one histogram calculation between OA_0002 and OA_0001 with
8 bins.

As can be seen, the proportion of voxels belonging to Bin 1 is
about 77% where Bin 8 is less than 0.02%. This is extremely unbal-
anced. So if 8 thread blocks are allocated, the 8th streaming proces-
sor will be idle for more than 99.97% of the total execution time.
Further, if there are many thread blocks and a heavy-loaded thread
block is dispatched at the last time of the execution, the processor
utilization would be even lower since all the other streaming pro-
cessors are idle at that time. So there should be a threshold to limit
the maximum workload for a thread block. Though some overhead
may be induced, it is well worth: the total execution time has
dropped by a factor of over 3 in our test. The code segment for this
post-sorting procedure is presented in Listing 4.
Please cite this article in press as: A. Li et al., Correlation ratio based volume ima
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The question arises what the optimal threshold is. Since more
thread blocks introduce extra overhead (initialization, merging,
dispatch etc.), this threshold is in fact a compromise between
workload balance and the overhead due to extra thread blocks.
Fig. 17 illustrates the variation of execution time with the work-
load for a thread block in different platforms. In the left part of
the inflexion point, the overhead is the major factor while in the
right part, the effect of workload unbalancing becomes more evi-
dent. From the figure, we learn that 1280, 512, 768 (vox/block)
are the optimal thresholds for Fermi, Kepler and Maxwell, which
means each thread has to process 5, 2, 3 voxels at maximum.
The corresponding execution time are 4.6 s, 2.6 s and 5.1 s,
respectively.

5.2. Overhead of presorting

The sorting process was presented in Section 3.6.1. Here we
evaluate its overhead. Since the stages have distinct resolutions
and different image sizes, we list the time expense and throughput
for the sorting kernels and the delay for the entire sorting phase
(including GPU memory allocation and copy) on different plat-
forms for each stage in Tables 7–9 respectively. It can be seen that
the sorting kernels achieve higher throughput for larger datasets.
ge registration on GPUs, Microprocess. Microsyst. (2015), http://dx.doi.org/
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Table 7
Fermi sorting overhead for stages.

Stage Vox size Kernel time
(ls)

Throughput
(vox/ls)

Overall delay
(ls)

1 20,480 678 30.2 766
2 163,840 1532 106.9 2166
3 1,310,720 3122 419.8 5814
4 10,485,760 16,249 645.3 57,312

Table 8
Kepler sorting overhead for stages.

Stage Vox size Kernel time
(ls)

Throughput
(vox/ls)

Overall delay
(ls)

1 20,480 1086 18.9 1141
2 163,840 1411 116.1 1722
3 1,310,720 2815 465.6 3932
4 10,485,760 12,766 821.4 26,195

Table 9
Maxwell sorting overhead for stages.

Stage Vox size Kernel time
(ls)

Throughput
(vox/ls)

Overall delay
(ls)

1 20,480 1435 14.3 1554
2 163,840 2068 79.2 2863
3 1,310,720 4677 280.2 8459
4 10,485,760 27,346 383.4 55,371

Fig. 18. Average execution time over weighting distance. The execution time seems
irrelevant to the size of weighting distance indicating that these extra computation
overhead are completely hidden by multithreading and the long latency texture
fetching.
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The phase of sorting is only beneficial if its outcome could be
reused sufficiently. From this perspective, the more searches inside
a stage, the higher benefit we can expect from this preprocessing.
For other schemes, the scale of reference image dictates the capac-
ity of workload, thus the degree of conflicts. Therefore, a larger vol-
ume reference image will benefit more from the sorting, further
showing the advantage of the conflict_free scheme.

In fact, the conflict_free scheme does not really need a complete
sorting but a process to aggregate voxels with the same intensity
values together. This is also reflected in Listing 4. Further, if a series
of registration jobs share the same reference image, the sorting
results can be recycled among them. Note we do not apply this
optimization technique in the experiments.
Fig. 19. RMS error with the reference image over weighting distance. The curve
decreases at the beginning showing that weighting the border region does help to
improve global accuracy but if the weighting distance is too large, significant bias
are suffered.
5.3. Smoothing of the border region

The FLIRT algorithm deploys a weighting method to eliminate
the discontinuity of the similarity function caused by the simulta-
neous variation of the amount of the overlapping region and the
voxel intensities inside (so both the numerator and denominator
in Formula 4 change, leading to the discontinuity and local opti-
mum of CR) during registration. The weighting method gives a
lower influence coefficient to the voxels near the edges of the over-
lapping region (see [3] for details). This apodization approach is
also implemented in the proposed CR implement (i.e. calWeight()
in Listing 2). In the previous experiments, we disabled this function
by returning 1. Here we evaluate its performance impact. The
results are presented in Figs. 18 and 19.

As weighting distance increases, more points all into the bound-
ary region hence more extra process and computation are needed.
However, from the figures, we can observe that the execution time
is almost unchanged, showing that these additional computations
can be fully hidden through multi-threading and the long latency
of texture fetching. Besides, the RMS curve fitting into a convex fig-
ure indicates that small weighting distance helps to reach global
optimal, but if the weighting distance becomes too large, the
Please cite this article in press as: A. Li et al., Correlation ratio based volume ima
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accuracy of the similarity function is affected. For this dataset, 34
is shown to be the optimal weighting distance.

6. Related work

Ever since CUDA has been published [9], several works are pro-
posed about realizing the image registration algorithms on GPUs
[10–13,25]. However, the interleaved and concurrent writing
access to a limited memory region by massive threads make this
migration a difficult task because atomic operations are employed
to preserve updating correctness meanwhile introducing serious
overheads, especially when numerous threads are competing for
the same bin location. Shams et al. [11,12] maintain a number of
shadow histograms in global memory (when shared memory is
out of range) and aggregate afterwards to alleviate the degree of
conflicts, or keep partial number of shadow histograms in shared
memory but traverse the image several times to cover the entire
bin range. Chen et al. [13] sort the reference volume beforehand
ge registration on GPUs, Microprocess. Microsyst. (2015), http://dx.doi.org/
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to restrict the shadow histograms’ range when counting the joint
entropy. Vetter et al. [10] also perform a pre-sorting to narrow
the space required to fit into shared memory and guarantee coa-
lescing access. They further mitigate the collisions by allocating
more counters for the ‘‘fat bin’’ that appears to incur more conflicts
based on an intensity distribution figure generated from a
pre-profiling. All of these methods, however, are mutual informa-
tion based and conflicts unavoidable. Though Shams et al. pro-
posed a delegate sort-and-count algorithm to achieve atomic
operations free in [24], this sort-and-count phase has to be per-
formed by each thread block every time the cost function is
invoked, thus leads to additional performance overhead.
7. Conclusion

In this paper, we presented five Correlation Ratio based image
registration schemes that are optimized for GPU acceleration.
Through comparisons among different schemes on different GPU
platforms, we observed that: (1) while atomic operations on
shared memory are much faster than on global memory for old
GPUs, it is not the case for new GPUs; (2) The overhead of massive
access is larger than that of atomic operations on global memory;
(3) If conflicts are not too severe, atomic operations are a better
choice than merging. Particularly, we proposed a scheme that
totally avoided conflicts and achieved more than 55 times’ speedup
compared to native implementation with lower RMS error and was
very stable. This design is based on the algorithmic characteristics
of CR, showing its great advantage on GPUs when compared with
the MI based approaches. Additionally, we evaluated the impact
of workload balancing, sorting and smoothing on performance
and accuracy of the conflict-free scheme, which suggested that:
(1) workload balancing is crucial for delivering performance; (2)
the sorting overhead can be amortized on larger dataset and via
sufficient reuse of the sorted results; (3) proper smoothing can
reduce registration error without impairing performance.
Acknowledgements

Part of this work has been done in the Department of Imaging
and Interventional Radiology, The Chinese University of Hong
Kong (CUHK). Special thanks are owed to Dr. Wang Defeng and
Dr. Shi Lin from CUHK for their advices on the initial design of
the proposal. Thanks to Dr. Wu Qiang from Hunan University
(HNU) for his comments on the draft of the paper. We also thank
all the reviewers for their insightful suggestions and feedbacks.
References

[1] B. Zitova, J. Flusser, Image registration methods: a survey, Image Vis. Comput.
21 (11) (2003) 977–1000.

[2] J. Maintz, M.A. Viergever, A survey of medical image registration, Med. Image
Anal. 2 (1) (1998) 1–36.

[3] M. Jenkinson, P. Bannister, M. Brady, S. Smith, Improved optimization for the
robust and accurate linear registration and motion correction of brain images,
Neuroimage 17 (2) (2002) 825–841.

[4] M. Jenkinson, S. Smith, A global optimisation method for robust affine
registration of brain images, Med. Image Anal. 5 (2) (2001) 143–156.

[5] A. Klein, J. Andersson, B.A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G.E.
Christensen, D.L. Collins, J. Gee, P. Hellier, et al., Evaluation of 14 nonlinear
deformation algorithms applied to human brain MRI registration, Neuroimage
46 (3) (2009) 786–802.

[6] A. Roche, G. Malandain, X. Pennec, N. Ayache, The correlation ratio as a new
similarity measure for multimodal image registration, in: Medical Image
Computing and Computer-Assisted Interventation, MICCAI, Springer, 1998, pp.
1115–1124.

[7] J.P. Pluim, J.A. Maintz, M.A. Viergever, Registration of medical images: a survey,
IEEE Trans. Med. Imaging 22 (8) (2003) 986–1004.

[8] R. Shams, P. Sadeghi, R. Kennedy, R. Hartley, A survey of medical image
registration on multicore and the GPU, IEEE Signal Process. Mag. 27 (2) (2010)
50–60.
Please cite this article in press as: A. Li et al., Correlation ratio based volume ima
10.1016/j.micpro.2015.04.002
[9] Nvidia, Programming Guide, 2008. <http://docs.nvidia.com/cuda/cuda-c-
programming-guide/>.

[10] C. Vetter, R. Westermann, Optimized GPU histograms for multi-modal
registration, in: IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, IEEE, 2011, pp. 1227–1230.

[11] R. Shams, N. Barnes, Speeding up mutual information computation using
Nvidia CUDA hardware, in: 9th Biennial Conference of the Australian Pattern
Recognition Society on Digital Image Computing Techniques and Applications,
IEEE, 2007, pp. 555–560.

[12] R. Shams, R. Kennedy, Efficient histogram algorithms for Nvidia CUDA
compatible devices, in: Proc. Int. Conf. on Signal Processing and
Communications Systems (ICSPCS), 2007, pp. 418–422.

[13] S. Chen, J. Qin, Y. Xie, W.-M. Pang, P.-A. Heng, CUDA-based acceleration and
algorithm refinement for volume image registration, in: International
Conference on Future BioMedical Information Engineering, FBIE, IEEE, 2009,
pp. 544–547.

[14] K. Ikeda, F. Ino, K. Hagihara, Efficient acceleration of mutual information
computation for nonrigid registration using cuda, IEEE J. Biomed. Health
Inform. 18 (3) (2014) 956–968.

[15] A. Roche, G. Malandain, N. Ayache, X. Pennec, et al., Multimodal image
registration by maximization of the correlation ratio, 1998.

[16] J. Gomez-Luna, J.M. Gonzalez-Linares, J.I.B. Benitez, N.G. Mata, Performance
modeling of atomic additions on GPU scratchpad memory, IEEE Trans. Parallel
Distrib. Syst. 24 (11) (2013) 2273–2282.

[17] V. Podlozhnyuk, Histogram calculation in CUDA, Nvidia Corporation, White
Paper, 2007.

[18] N. Satish, M. Harris, M. Garland, Designing efficient sorting algorithms for
manycore GPUs, in: IEEE International Symposium on Parallel & Distributed
Processing, IPDPS, IEEE, 2009, pp. 1–10.

[19] H. Peters, O. Schulz-Hildebrandt, N. Luttenberger, Fast in-place sorting with
CUDA based on bitonic sort, in: Parallel Processing and Applied Mathematics,
Springer, 2010, pp. 403–410.

[20] N. Bell, J. Hoberock, Thrust: A 2 6, GPU Computing Gems Jade Edition, 2011, p.
359.

[21] D.S. Marcus, T.H. Wang, J. Parker, J.G. Csernansky, J.C. Morris, R.L. Buckner,
Open access series of imaging studies (OASIS): cross-sectional MRI data in
Young, and demented older adults, J. Cognit. Neurosci. 19 (9) (2007) 1498–
1507.

[22] Nvidia, Maxwell Tuning Guide, 2015. <http://docs.nvidia.com/cuda/maxwell-
tuning-guide/>.

[23] Nvidia, Occupancy Calculator, 2009. <http://developer.download.
nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls>.

[24] R. Shams, P. Sadeghi, R. Kennedy, R. Hartley, Parallel computation of mutual
information on the GPU with application to real-time registration of 3D
medical images, Comput. Methods Prog. Biomed. 99 (2) (2010) 133–146.

[25] P. Muyan-Ozcelik, J.D. Owens, J. Xia, S.S. Samant, Fast deformable registration on
the GPU: a CUDA implementation of demons, in: International Conference on
Computational Sciences and Its Applications, ICCSA’08, IEEE, 2008, pp. 223–233.

Ang Li received the B.S. degree in software engineering
from Zhejiang University (ZJU), China, in 2010. From
2010 to 2012, he worked as a software engineer on GPU
technology in the industry in Shanghai and Hong Kong,
China. Since 2012, he started to purse the Ph.D degree in
the joint Ph.D program between National University of
Singapore (NUS), Singapore and Eindhoven University of
Technology (TUe), Eindhoven, The Netherlands. His
research interests include performance modeling and
optimizations for GPUs.
Akash Kumar received the B.Eng. degree in computer
engineering from the National University of Singapore
(NUS), Singapore, in 2002. He received the joint Master
of Technological Design degree in embedded systems
from NUS and the Eindhoven University of Technology
(TUe), Eindhoven, The Netherlands, in 2004, and
received the joint Ph.D. degree in electrical engineering
in the area of embedded systems from TUe and NUS, in
2009. In 2004, he was with Philips Research Labs,
Eindhoven, The Netherlands, where he worked on Reed
Solomon codes as a Research Intern. From 2005 to 2009,
he was with TUe as a Ph.D. student under project

PreMaDoNA. Since 2009, he has been with the Department of Electrical and
Computer Engineering, NUS. Currently, he is working as an Assistant Professor in
the department. He has published over 60 papers in leading international electronic

design automation journals and conferences. His current research interests include
analysis, design methodologies, and resource management of embedded multi-
processor systems.
ge registration on GPUs, Microprocess. Microsyst. (2015), http://dx.doi.org/

http://refhub.elsevier.com/S0141-9331(15)00045-9/h0005
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0005
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0010
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0010
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0015
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0015
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0015
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0020
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0020
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0025
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0025
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0025
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0025
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0030
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0030
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0030
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0030
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0030
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0035
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0035
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0040
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0040
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0040
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0050
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0050
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0050
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0050
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0055
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0055
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0055
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0055
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0055
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0065
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0065
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0065
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0065
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0065
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0070
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0070
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0070
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0080
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0080
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0080
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0090
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0090
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0090
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0090
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0095
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0095
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0095
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0095
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0105
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0105
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0105
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0105
http://docs.nvidia.com/cuda/maxwell-tuning-guide/
http://docs.nvidia.com/cuda/maxwell-tuning-guide/
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0120
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0120
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0120
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0125
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0125
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0125
http://refhub.elsevier.com/S0141-9331(15)00045-9/h0125
http://dx.doi.org/10.1016/j.micpro.2015.04.002
http://dx.doi.org/10.1016/j.micpro.2015.04.002


Microsystems xxx (2015) xxx–xxx
Yajun Ha received the B.S. degree from Zhejiang

University, China, in 1996, the M.Eng. degree from
National University of Singapore, Singapore, in 1999,
and the Ph.D. degree from Katholieke Universiteit
Leuven (KULeuven), Leuven, Belgium, in 2004, all in
electrical engineering. He is currently the Deputy
Director & Research Scientist of I2R-BYD Joint Lab at
Institute for Infocomm Research, Singapore. Before this,
he was an Assistant Professor with the Dept. of
Electrical and Computer Engineering, National
University of Singapore. From January 1999 to February
2004, he worked as a researcher with the

Inter-University MicroElectronics Center (IMEC), Leuven, Belgium. His research
interests include the general area of embedded computing (VLSI) architectures,
circuits and design methodologies, with the focus on reconfigurable computing and

14 A. Li et al. / Microprocessors and
smart and autonomous electrical car applications. He has published around 80
internationally peer-reviewed journal/conference papers on these topics. Dr. Ha has
served a number of positions in the professional communities. He serves as the
Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—PART II:
EXPRESS BRIEFS (2011–2013), the Associate Editor for the IEEE TRANSACTIONS ON
VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS (2013–2014), and the Journal of
Low Power Electronics(since 2009). He serves as the General Co-Chair of ASP-DAC
2014; Program Co-Chair for FPT 2010 and FPT 2013; Chair of the Singapore Chapter
of the IEEE Circuits and Systems (CAS) Society (2011 and 2012); Member of
ASP-DAC Steering Committee; and Member of IEEE CAS VLSI and Applications
Technical Committee. He is the Program Committee Member for a number of
Please cite this article in press as: A. Li et al., Correlation ratio based volume ima
10.1016/j.micpro.2015.04.002
well-known conferences in the fields of embedded systems and FPGAs, such as DAC,
DATE, ASP-DAC, FPGA, FPL and FPT.

Henk Corporaal received the M.S. degree in theoretical
physics from the University of Groningen, Groningen,
The Netherlands, and the Ph.D. degree in electrical
engineering, in the area of computer architecture, from
the Delft University of Technology, Delft,The
Netherlands. He has been teaching at several schools for
higher education. He has been an Associate Professor
with the Delft University of Technology in the field of
computer architecture and code generation. He was a
Joint Professor with the National University of
Singapore, Singapore, and was the Scientific Director of
the joint NUS-TUE Design Technology Institute. He was

also the Department Head and Chief Scientist with the Design Technology for
Integrated Information and Communication Systems Division, IMEC, Leuven,
Belgium. Currently, he is a Professor of embedded system architectures with the

Eindhoven University of Technology, Eindhoven, The Netherlands. He has
co-authored over 250 journal and conference papers in the (multi)processor
architecture and embedded system design area. Furthermore, he invented a new
class of very long instruction word architectures, the Transport Triggered
Architectures, which is used in several commercial products and by many research
groups. His current research interests include single and multiprocessor architec-
tures and the predictable design of soft and hard real-time embedded systems.
ge registration on GPUs, Microprocess. Microsyst. (2015), http://dx.doi.org/

http://dx.doi.org/10.1016/j.micpro.2015.04.002
http://dx.doi.org/10.1016/j.micpro.2015.04.002

	Correlation ratio based volume image registration on GPUs
	1 Introduction
	2 Background
	2.1 Image registration
	2.2 FLIRT framework
	2.3 Correlation ratio
	2.4 Histogram calculation

	3 Registration algorithm
	3.1 Skeleton
	3.2 First scheme
	3.3 Second scheme
	3.4 Third scheme
	3.5 Fourth scheme
	3.6 Fifth scheme
	3.6.1 Pre-processing
	3.6.2 Cost function

	3.7 Scheme summary

	4 Experiments
	4.1 Environment settings
	4.2 Cost function evaluation
	4.2.1 Influence due to the variation of the number of thread blocks
	4.2.2 Influence due to the variation of the number of threads per thread block
	4.2.3 Influence due to the variation of the number of bins

	4.3 Application evaluation

	5 Discussion
	5.1 Per-thread-block workload unbalancing
	5.2 Overhead of presorting
	5.3 Smoothing of the border region

	6 Related work
	7 Conclusion
	Acknowledgements
	References


