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ABSTRACT
Dynamic voltage and frequency scaling (DVFS) offers great
potential for optimizing the energy efficiency of Multipro-
cessor Systems-on-Chip (MPSoCs). The conventional ap-
proaches for processor voltage and frequency adjustment
are not suitable for streaming multimedia applications due
to the cyclic nature of dependencies in the executing tasks
which can potentially violate the throughput constraints. In
this paper, we propose a methodology that applies DVFS for
such cyclic dependent tasks. The methodology involves an
off-line analysis that assumes worst-case execution times of
tasks to identify the executions that can be slowed down and
an on-line analysis to utilize the slacks arising from tasks
that finish their execution before the worst-case execution
times. Thus, the methodology minimizes energy consump-
tion during both off-line and on-line analysis while satisfying
the throughput constraints. Experiments based on models
of real-life streaming multimedia applications show that the
proposed methodology reduces the overall energy consump-
tion by 43% when compared to existing approaches.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time systems and embedded systems

General Terms
Algorithms, Design, Management, Performance

Keywords
Multiprocessor Systems-on-Chip, streaming applications, en-
ergy consumption, throughput constraint

1. INTRODUCTION
Modern embedded systems (e.g., mobile phones, tablets)

need to support a number of streaming multimedia appli-
cations. In order to satisfy the ever increasing performance
(throughput) constraints of the applications, MPSoC based
systems are being designed. Since such systems are usually
operated by stand-alone power supply like battery, minimiz-
ing energy consumption during their design and operation
is important in order to increase the operational time.

Several efforts have been made to minimize energy con-
sumption of battery-operated MPSoCs. These efforts use
system-level energy optimization techniques such as efficient
scheduling and DVFS. Many advanced processors support
DVFS with multiple voltage levels, which are used in both
general-purpose and embedded computing domains [1–4,17].
For applying DVFS in MPSoCs, the voltage and frequency
of one or more processors is adjusted depending upon the
workload of processors while satisfying the throughput con-
straint [5]. It has been observed that lowering the voltage
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by half might lead to eight times reduction in power con-
sumptions with the linear reduction in maximum operating
frequency of a CMOS circuit [7]. The DVFS approaches
have also been validated [29]. Executing at lower frequency
results in stretched (slowed down) execution, which should
not violate the timing constraints such as throughput.

Existing DVFS techniques apply off-line [18] [14] or on-
line [8] [23] voltage and frequency scaling. Off-line DVFS
techniques estimate the voltage scaling (VS) levels at com-
pile time (design-time) with the knowledge of specific task
timings, e.g. worst-case task execution times. On-line DVFS
techniques make the voltage and frequency scaling decisions
at run-time based on the slack arising from tasks finishing
before the worst-case execution-times (WCETs). The off-
line DVFS techniques cannot exploit the slacks arising at
run-time and the on-line DVFS strategies utilize only lim-
ited information to keep a minimum run-time computation
overhead. Further, most of the existing DVFS strategies
are applicable only to applications described as indepen-
dent tasks and task graphs represented as directed acyclic
graphs (DAGs). Additionally, they don’t take the actual
VS overhead into account. Such strategies are not applica-
ble for streaming applications that normally exhibit cyclic
dependencies amongst the tasks and need to be executed
in modern embedded systems such as smart phones and
tablets. In [24] and [20], DVFS techniques that are applica-
ble on the applications having cyclic dependencies amongst
tasks are presented but the techniques have several limita-
tions. For example, in [24], applications need to be described
as homogeneous synchronous dataflow graphs (HSDFs) [19]
that impose high computation complexity, tasks are bound
by WCET and only static-slack (off-line slack) created by
the difference between application’s desired and obtained
throughput is used for energy reduction. In [20], only on-line
DVFS is applied while considering a uni-processor system.

Contribution: This paper addresses shortcomings of ex-
isting DVFS techniques and proposes a methodology that
applies both off-line and on-line DVFS to reduce the en-
ergy consumption for applications containing cyclic depen-
dent tasks. In the off-line analysis, the tasks are assumed to
have WCETs and DVFS is applied in two phases. In the first
phase, the executions of tasks are stretched (slowed down)
by applying suitable voltage scaling (VS) without violat-
ing the throughput constraint. The second phase analyzes
execution traces of application tasks & their dependencies
to identify the parallel executions that can be slowed down
without violating the throughput constraint and applies ap-
propriate VS. The updated execution trace by applying the
off-line analysis is used to apply on-line DVFS where VS is
further applied based on the dynamically created slacks due
to tasks finishing earlier than their WCETs. VS assumes
linear frequency scaling and the methodology takes VS over-
head captured from manufacturer’s datasheet into account,
which is explained in section 5. We evaluate the proposed
methodology for streaming multimedia applications repre-
sented as SDFs. The methodology applies VS directly on
SDFs without converting them into HSDFs in order to re-
duce the computation cost and it is general enough to be
applied to applications described as independent tasks and
DAGs as well.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the literature in the direction of off-line and



on-line DVFS. Section 3 introduces the preliminaries nec-
essary to understand the work. Section 4 presents the pro-
posed DVFS methodology. The experimental results to eval-
uate our methodology are presented in Section 5. Section 6
concludes the paper.

2. RELATED WORK
Amongst the earliest works to apply DVFS, Yao et. al.

[32] proposed an algorithm to compute optimal static slow
down schedule for a set of tasks. Several extensions were
undertaken for periodic and aperiodic tasks [6] [26]. Inter-
task DVFS [34] [33] and intra-task DVFS [27] [20] have been
applied to execute a task at a single and multiple voltage
levels, respectively. Recent work also incorporates leakage
power aware DVFS [16] [9]. Most of the aforementioned
DVFS strategies target a uni-processor system and apply
off-line or on-line DVFS to reduce the energy consumption
[31]. Simply extending them for MPSoCs leads to increased
complexity and inefficiency.

A large body of research exists for applying off-line DVFS
while targeting MPSoC [14, 18, 21, 24, 25]. These strategies
assume fixed execution time (e.g. WCET) for each task
and thus cannot be applied to reduce energy consumption
at run-time where tasks have varying execution times.

Dynamic slack reclamation techniques to apply on-line
DVFS while targeting MPSoC have also been proposed [8,
23, 35]. These techniques utilize dynamically created slack
(due to earlier finish of the tasks) to reduce overall energy
consumption. In order to maximize utilization of the slack
created on a processor, it is shared amongst other proces-
sors or forwarded to later executing tasks. These on-line
DVFS strategies don’t use any off-line analysis and thus im-
pose high run-time scheduling overhead and reduce energy
consumption only due to dynamically created slacks.

On-line DVFS strategies using off-line analysis are pre-
sented for MPSoC [10, 11, 22]. The off-line analysis aims at
minimizing expected energy consumption. In [10], an off-line
analysis phase calculates expected future slack and computa-
tion of future tasks by taking average and worst case execu-
tion timings. In [22] and [11], the off-line analysis constructs
static schedules to be used at run-time. The schedule is
constructed by considering critical path and task execution
orders. Since these strategies use off-line analysis, run-time
scheduling overhead gets reduced and energy consumption is
optimized during both design-time and run-time. However,
they cannot be efficiently applied to applications containing
cyclic dependent tasks as they are developed while targeting
independent tasks or DAGs.

In contrast to above strategies, our approach applies both
off-line and on-line DVFS for MPSoCs while targeting appli-
cations containing cyclic dependent tasks, which are mod-
eled as Synchronous Dataflow Graphs (SDFGs) [19]. In [20]
and [24], the applications are modeled as SDF but energy is
reduced by applying either off-line [24] or on-line [20] DVFS.
Further, the strategy in [20] considers uni-processor system
and in [24] is applicable to homogeneous SDFs (HSDFs) that
need to be derived from SDFs. Our approach is applicable
to applications represented as independent tasks and DAGs
as well.

3. PRELIMINARIES
This section provides a brief overview of the MPSoC plat-

form & application model and challenges involved in apply-
ing DVFS.

3.1 MPSoC Platform & Application Model
The MPSoC platform is modeled as tile-based architec-

ture [12]. Fig. 1 shows an example platform containing
three tiles having DVFS capabilities. Each tile consists of
a processor (P), a local memory (M, size in bits) and a
network interface (NI). The DVFS controller adjusts volt-
age and frequency of processors to reduce the overall en-
ergy consumption similar to the one supported in Intel’s
XScale processor [2]. In order to facilitate communication
amongst tiles, they are connected to an interconnection net-
work through the NI. The interconnection network provides
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Figure 1: Example MPSoC platform.
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Figure 2: SDFG model of an H.263 decoder.

end-to-end connections between the tiles. However, the la-
tencies of connections can be modeled according to different
network-on-chips (NoCs).

The streaming multimedia applications with timing con-
straints are modeled as SDFGs [19]. Fig. 2 shows SDFG
model of H.263 decoder that contains cyclic dependent tasks.
The nodes (vld, iq, idct & mc) and edges (e1, e2, e3 &
e4) model tasks and dependencies respectively. The nodes
are referred to as actors that communicate with tokens sent
from one actor to another through the edges. Each actor
has its attributes WCET and memory requirement when
mapped on a tile operating at a particular voltage level.
Each edge has following attributes: size of a token, mem-
ory needed on the tile when connected actors are allocated
to the same tile, memory needed in source and destination
tiles when connected actors are allocated to different tiles
and respective bandwidth requirements between the tiles.
An actor fires (executes) when there are sufficient input to-
kens on all of its input edges and sufficient buffer space on
all of its output connections, and in turn the actor consumes
a fixed amount of tokens from the input edges and produces
a fixed amount of tokens on the output edges. These to-
ken amounts are referred to as rates. An edge may contain
initial tokens.
Throughput of an application is determined as the inverse

of the long term period that is calculated as the average
time needed for one iteration of the application. An itera-
tion is defined as the minimum non-zero execution such that
the original state of the SDFG is obtained. Period for the
example H.263 decoder is equal to the summation of Exec-
Time(vld), 2376×ExecTime(iq), 2376×ExecTime(idct) and
ExecTime(mc), where ExecTime is the WCET of respective
actors. This period does not include network and memory
access delays. It should be noted that actors iq and idct
have to execute 2376 times in one iteration and the number
of executions is referred to as repetition vector of the actor.
An SDFG with a throughput of 1000 Hz has a period of 1
millisecond (ms), i.e. takes 1 ms to complete one iteration.

3.2 DVFS for Applications modeled as Cyclic
SDF Graphs

The DVFS process is applied for a given application to
MPSoC platform mapping. In a mapping, actors are bound
to tiles and edges to memory inside tiles or to connections
in the platform. Applying voltage scaling (VS) on one or
more tiles results in stretched (slowed down) execution of
the bound actors. Modern processors support multiple volt-
age levels and thus several VS options exist for the same
given mapping. Evaluating the throughput obtained with
different VS options on each processor is time consuming.
This imposes a challenge to rapidly identify the VS options
that will lead to throughput satisfying scaling. Further, for a
given application and MPSoC platform, as there are several
possible mappings (actors to tiles allocations), the complete
evaluation with different VS options on each processor might
not be feasible within an acceptable time. In order to reduce
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decoder.

the evaluation time, efficient mappings (providing optimal
throughput) need to be identified and only appropriate VS
options need to be applied.

In case of applications containing cyclic dependent actors,
applying VS on a tile is very challenging as one needs to
capture the VS effect on the execution of actors mapped on
other tiles by taking the cyclic dependencies into account.
Most of the existing DVFS strategies do not take such cyclic
dependencies into account and thus cannot be applied to
streaming multimedia applications such as H.263 decoder
(Fig. 2). Fig. 3 shows the execution trace of the H.263 de-
coder mapped on a 4-tile MPSoC such that each actor is
mapped on a separate processor tile operating at voltage v0.
The connections containing edges also operate at the same
voltage. Each rectangle represents an execution such that
its height corresponds to the operating voltage (pertaining
to a frequency) and its length corresponds to the execution
time. First, actor vld fires (executes) as it has sufficient in-
put tokens on its incoming edge e4. Thereafter, it generates
2376 tokens to be transferred through e1 to process them
one by one by iq. The transfer of tokens through edges and
their processing by different actors follows the shown trace.
For easier understanding, the shown trace considers rates as
4 in places of 2376 and thus actors vld, iq, idct & mc fire
1, 4, 4 & 1 times respectively during one period. Actor vld
fires again after finishing the execution of actor mc and sim-
ilar execution patterns are followed in the upcoming periods
due to cyclic dependencies. The existing DVFS strategies
cannot be applied on such executions.

4. PROPOSED DVFS METHODOLOGY
This section describes our DVFS methodology. In con-

trast to conventional existing DVFS methodologies, our method-
ology differs in following aspects: 1) applies DVFS for appli-
cations containing cyclic dependent actors, 2) applies DVFS
by analyzing the execution traces of actors/edges, 3) for
a given application and MPSoC platform, applies off-line
DVFS only for the optimal mappings in order to perform
faster evaluation, 4) off-line DVFS results are used to ap-
ply on-line DVFS for the dynamically created slacks, and 5)
considers actual VS overhead.

An overview of our DVFS flow is presented in Fig. 4. The
DVFS flow optimizes energy consumption for each appli-
cation to be supported on a MPSoC platform. The appli-
cations are evaluated one after another by using the same
DVFS flow. The flow takes an application (Application
Model) & a platform (Platform Model) as input and per-
forms design-time and run-time energy optimization for dif-
ferent mappings. At design-time, the flow first evaluates
mappings for their throughput and energy consumption. The
mappings are generated by using the strategy proposed in
[28] as it discards evaluation of inefficient mappings (provid-
ing less throughput) and performs faster evaluation with-
out missing the efficient mappings. Then, off-line analysis
is applied for the Pareto-optimal mappings that represent
resource-throughput trade-offs. At run-time, first, the best
mapping (having maximum throughput) is selected depend-
ing upon the throughput constraint and available platform
resources to configure the platform. Then, on-line DVFS is
applied to utilize the dynamically created slacks. Through-
put and energy consumption computation for each mapping
are done as follows.

Throughput Computation: The throughput for a map-
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Figure 4: Proposed DVFS flow.
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ping is computed by taking the resource allocations of ac-
tors/edges on the platform into account. For each platform
tile, first, static-order schedule that orders the execution
of bound actors is constructed. Then, all the binding and
scheduling decisions are modeled in a graph called binding-
aware SDFG. Finally, throughput is computed by self-timed
state-space exploration of the binding-aware SDFG [13]. Dur-
ing the self-timed execution, states visited are examined and
stored until a recurrent state is found. The throughput is
computed from the periodic part of the state-space.

Energy Consumption Computation: The total en-
ergy consumption for a mapping is computed as the sum
of communication and computation energy for one iteration
(periodic execution) of the application. Communication en-
ergy is required to transfer data (tokens) from source tile
to destination tile and the energy required to process the
transferred token on the destination tile is referred to as
the computation energy. The detailed approach to compute
total energy consumption is provided in Appendix A.

4.1 Off-line Analysis
The off-line analysis strategy applies voltage scaling (VS)

for each Pareto-optimal mapping in two different phases.
The first phase aims to utilize the static slack while max-
imizing the energy savings as shown in Fig. 5. The static
slack is defined as the difference between period (Pconstraint)
corresponding to throughput constraint and period (P) cor-
responding to obtained throughput, where period is equal
to 1/throughput. The timing constraint Pconstraint has also
been referred to as deadline constraint. The second phase
aims to stretch the slower parallel executions.

4.1.1 First Phase Analysis
In the first phase, the lowest possible VS levels for differ-

ent tiles are identified while satisfying the throughput con-
straint and maximizing the energy savings. Towards this, we
have proposed a Greedy and an Integer Linear Programming
(ILP) formulation based approach.
Greedy Approach
The greedy approach is presented in Algorithm 1. The al-
gorithm takes throughput constraint (τ), VS levels (V) and
WCETs of actors at different VS levels (ET) as input and
identifies the VS levels to be applied. For the given Pareto-
optimal mapping, first, the tiles containing actor(s) are se-
lected. Then, for each selected tile, different available VS



ALGORITHM 1: Greedy Analysis

Input: throughput constraint τ , V = {vi|∀i ∈ [1, · · · , n]},
ET = {WCET [a] → tvi|∀i|∀actors}.

Output: VS levels of tiles.
Select tiles containing actor(s);
repeat

for each selected tile t whose VS level is not fixed do
for each VS level vi do

Apply VS vi on t and compute throughput thrMap;
if thrMap > τ then

Calculate energy savings ES[t][vi] from equation 1;
end

end
end
Find tile tf & VS level vf corresponding to maximum ES[][];
Fix voltage of tf to vf ;

until VS levels of all selected tiles are not fixed;

levels are applied and throughput of the mapping (thrMap)
is computed. If an applied VS on a tile satisfies the through-
put constraint then energy savings for all the actors mapped
on the tile (a0,...,am) during one periodic execution is calcu-
lated from equation 1, where v0 and vi represents the initial
and applied voltages respectively. Thereafter, the tile and
its VS level corresponding to maximum energy savings is
found. The same process is repeated to find VS levels of
other tiles.

ES[t][vi] =

am∑
a=a0

repV [a]× [(ET [a] → tv0 )× (pow → tv0 )−

(ET [a] → tvi )× (pow → tvi )]
(1)

The complexity of the Greedy analysis in terms of num-
ber of used (selected) tiles n in the mapping and available
VS levels l has been evaluated. For a given value of n and
l, the worst-case complexity (C ) is calculated as the max-
imum number of throughput computations by equation 2.
The complexity of the analysis is O(ln2).

C = n× l + (n− 1)× l + ...+ 2× l + 1× l

= l ×
n∑

p=1

p = l

(
n2

2
+

n

2

)
(2)

ILP Formulation
To facilitate the ILP formulation, two tables – slack use
table and energy savings table are defined (see Appendix B).
There are n rows and l columns for both the table, where
n and l are the number of used tiles and supported voltage
levels respectively. Each entry (i, j) of the slack used table
(SU) is computed as follows.

SU(i, j) = computePeriod(ti → vj |tk → v0)− P

∀k ∈ [1 · · ·n], k �= i (3)

P = computePeriod(ti → v0, ∀i ∈ [1 · · ·n])
where computePeriod function computes period as 1/through-

put with tile ti assigned voltage level vj and all other tiles
set to voltage v0 (the highest supported voltage level in the
platform). The slack used is obtained by subtracting this pe-
riod with the period obtained by setting all tile voltages to
v0. The energy savings table (ES) is computed in a similar
way as shown below.

ES(i, j) = E − computeEnergy(ti → vj |tk → v0)

∀k ∈ [1 · · ·n], k �= i (4)

E = computeEnergy(ti → v0, ∀i ∈ [1 · · ·n])
Binary Variables: Xij , i ∈ [1, n], j ∈ [1, l]
Objective: Maximize z =

∑
ij Xij × ES(i, j)

Constraints:
One element from each row and column of the table are to
be selected.

n∑

i=1

Xij = 1;
l∑

j=1

Xij = 1 (5)

Total slack distributed on the tiles must be less than or
equal to the available slack.∑

ij

Xij × SU(i, j) ≤ D − P (6)

where D is deadline (Pconstraint) of the given application.
The number of throughput (period) computations in the

ILP approach is n×l, whereas for the Greedy approach it is
O(ln2). The ILP approach uses n×l throughput computa-
tions to fill the slack used table.
4.1.2 Second Phase Analysis
In the second phase, the executions that can be further

slowed down without violating the deadline (Pconstraint) are
identified to apply the appropriate VS while maximizing the
utilization of the remained static slack. The remaining slack
is defined as difference between Pconstraint and period ob-
tained after applying first phase analysis. The second phase
of the off-line DVFS technique is presented in Algorithm
2. The algorithm takes captured execution traces of ac-
tors/edges operating at different voltage levels after apply-
ing first phase analysis, WCETs of actors at available VS
levels & static slack as input and provides updated exe-
cution traces after applying additional VS. The execution
traces for each actor and edge is captured as the start time,
end time and operating voltage of the active executions (fir-
ings) during one periodic execution. The algorithm identifies
the executions that can be slowed down and applies VS on
them. The smaller parallel executions are the ones that can
be stretched without significantly stretching the overall ex-
ecution trace. In Fig. 3, parallel executions of idct (with
iq) can be stretched till the executions of iq by applying a
suitable voltage scaling if the deadline does not get violated.

The algorithm first finds actors executing in parallel by
analyzing the execution traces. Then, the actors are sorted
in ascending order of their WCETs in order to apply volt-
age scaling from the actor having lowest WCET to the ac-
tors having higher WCET until all the parallel executing
actors are covered. The execution trace of the actor hav-
ing lowest WCET is stretched by applying an appropriate
voltage scaling provided the dependency of the actor is nei-
ther longer than connected outgoing edge execution (i.e.,
just after the outgoing edge firing, there should not be any
dependent firing) in some of the actor firings, nor on other
actors mapped on the same tile. The stretching (slow down)
of all the firings is done based on the execution of the paral-
lel executing actor having next higher WCET and the static
slack. Stretching slower parallel executions does not affect
the overall throughput and thus the same has been consid-
ered. Then, the algorithm selects the actor with next higher
WCET and applies voltage scaling on all the earlier selected
actors in the same manner. The same process is repeated
till the parallel executing actor having highest WCET is not
selected as the actor having next higher WCET. Thus, the
algorithm applies recurrent voltage scaling on most of the
parallel executing actors, resulting in maximum energy con-
sumption reduction.

The demonstration of the off-line analysis for the example
H.263 decoder (Fig. 2) is presented in Appendix C. The
analysis applies same voltage scaling for all firings of an actor
on a tile in order to avoid the overhead of keeping track of
the actor firings with different WCETs and VS levels to be
used at run-time. This consideration reduces the voltage
switching overhead as well.

4.2 On-line DVFS
The off-line processed traces with voltage level informa-

tion are used to apply on-line DVFS based on dynamically
created slacks. The on-line technique applies further voltage
scaling to utilize dynamically created slacks due to finishing
of the actors earlier to their WCETs at run-time. The tech-
nique is presented in Algorithm 3. For a given application



ALGORITHM 2: Trace-based Analysis

Input: Execution traces operating at different voltages,
ET = {WCET [a] → tvi|∀i|∀actors} and static slack.

Output: Updated execution traces with new operating voltages.
Find actors executing in parallel and their parallel executions;
Sort the actors based on their WCETs at the operating voltages;
Select actor a having lowest WCET to stretch its execution;
repeat

Select actor with next higher WCET as current actor ac;
for each earlier selected actor ai except ac do

if firings of other actors are not dependent on firing of
outgoing edge of ai AND firing of ai is not dependent on
other actor on the same tile then

Determine stretching of ai firings by considering its
parallel firings with ac and static slack;
Apply appropriate VS for ai firings based on the
determined stretching;

end
end

until all parallel executing actors not covered;

ALGORITHM 3: On-line DVFS
for each firing on tile t do

Calculate AET = finish time − start time;
Compute slack += (WCET − AET );
if slack > WCVST then

Compute reduced speed f ′ for the next firing by Equation 7;
Apply VS level vi for next firing on t such that (speed at
vi) ≥ f ′;
slack = 0;

end
end

to be supported onto a platform at run-time, the technique
applies voltage scaling by using off-line processed execution
traces for the best (maximum) throughput mapping that
is selected from the Pareto-optimal mappings based on the
available platform tiles and throughput constraint. The ex-
ecution traces contain information of actors’ & edges’ firings
by considering WCETs and their operating voltages on the
tiles. At run-time, these operating voltages are used for the
first firing on the different tiles. Each tile invokes the al-
gorithm whenever the tile finishes a firing of the mapped
actor(s).

The implementation of on-line DVFS considers a Ready
Queue (RQ) that contains all ready firings of actors, an array
to keep initial speed of tile for the firings, and an array to
store start time of the firings, for each tile. For each tile, all
the firings are put into RQ in the order of their execution
priorities. When a firing is finished on a tile, a slack (worst-
case execution time (WCET) - actual execution time (ACT))
gets created and the tile starts with the next firing from the
RQ by following Algorithm 3. If the created slack is greater
than the worst-case voltage switching time (WCVST), then
the tile calculates its speed (f ′) to execute the next firing
by Equation 7, where f ′ and f represent the reduced and
earlier speed respectively. Otherwise, the created slack is
accumulated to be used for further firings (Algorithm 3).
Such consideration avoids non-beneficial DVFS. Calculation
of f ′ considers WCVST in order to take voltage switching
overhead into account. An appropriate voltage scaling is
applied for the next firing based on f ′ so as to avoid violation
of the deadline. As the voltage and frequency levels are
discrete, a scaling level having frequency higher and closer
to f ′ is applied.

f
′
= f × WCET

WCET + slack + WCV ST
(7)

The runtime overhead of the algorithm depends upon the
number of used tiles (m) by the application and the number
of firings (n) on the different tiles. DVFS is not applied on
the first firing on each tile as it starts with the off-line sug-
gested voltage/speed. Therefore, the algorithm has worst-
case runtime overhead for a maximum of (n-m) firings, where
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Figure 6: Energy consumption for different applica-
tions.
total time for each firing consists of time taken to calculate
AET, slack, reduced speed f’, and WCVST.

The algorithm does not use slack on one tile for another
tile to avoid the overhead of managing its effect on the de-
pendent execution on different tiles. Thus, the algorithm
applies efficient voltage scaling leading to reduced energy
consumption. The on-line DVFS for different firings of ac-
tor idct of H.263 decoder is demonstrated in Appendix D.

5. PERFORMANCE EVALUATION
The proposed DVFS methodology has been implemented

as an extension of the publicly available SDF3 tool set [30].
As a benchmark to evaluate the quality of the methodol-
ogy, models of real-life streaming multimedia applications
H.263 decoder (4 actors), H.263 encoder (5 actors), MPEG-
4 decoder (5 actors), JPEG decoder (6 actors), sample rate
converter (6 actors) and MP3 decoder (14 actors) have been
considered. For each application, its throughput require-
ment and WCETs of actors are known a priory and spec-
ified in the application model. The methodology consid-
ers DVFS-capable processors in the platform. Each plat-
form tile contains StrongARM processor [1], which supports
four voltage-frequency levels: 1.5V–206MHz, 1.4V–192MHz,
1.2V–162MHz and 1.1V–133MHz. The worst-case voltage
switching time (WCVST) for each processor is considered as
the voltage switching time of StrongARM processor [1]. The
energy consumed during the voltage transition is considered
negligible in comparison to the overall energy consumption.
The AET of an actor firing is expressed as fraction (α) of
it’s WCET. For different actor firings, we vary α randomly
from 0.6 to 1.0.

We present results obtained from our DVFS methodol-
ogy and compare them with existing methodologies pro-
posed in [20] and [10] in terms of total energy consump-
tion. In order to realize energy savings by applying differ-
ent DVFS methodologies, energy consumption has been es-
timated without applying voltage scaling (VS) as well. The
strategy in [20] considers applications modeled as SDFGs
but is applicable to a uni-processor system. It has been
extended to multiprocessor system for a fair comparison.
In [10], applications modeled as DAGs are considered. Based
on the execution behavior of DAGs, the application models
are translated into corresponding SDFGs in order to provide
a fair comparison.

Fig. 6 shows energy consumption by different DVFS method-
ologies with respect to (w.r.t) energy consumption without
applying VS. Our approach utilizes the Greedy algorithm
for the first phase offline optimization. For each applica-
tion, energy consumption is estimated for the mapping us-
ing the same number of tiles as the number of actors in the
application. It can be observed that our methodology shows
higher reduction in energy consumption for all the appli-
cations. Reduction in energy consumption by the method-
ologies in [20] and [10] is not significant as they have high
penalty to consider the voltage switching time. On an aver-
age, our methodology reduces energy consumption by 52%
and 43% when compared to methodologies in [20] and [10],
respectively.

Next, we analyzed the effect of number of used tiles by
the applications on the reduction in energy consumption.
Fig. 7 shows energy consumption for the best (maximum
throughput) mappings using different number of tiles for
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Figure 7: Energy consumption for different number
of used titles.

MPEG-4 decoder when different DVFS methodologies are
employed. The energy consumptions are shown with respect
to no VS energy consumption. The shown results by our
approach utilize ILP formulation for the first phase offline
optimization. It can be observed that total energy savings
(reduction) by our approach increases with the number of
used tiles as the combinations of VS options on different tiles
get increased, which facilitates for higher energy savings.

Effect of α has been analyzed on the energy savings. The
evaluated energy consumption by different methodologies
with varying α is presented in Appendix E. The runtime
overhead of the on-line DVFS algorithm has been computed.
For the H.263 decoder mapped on four tiles, the runtime
overhead is 0.8 milliseconds when VS gets applied on 50 fir-
ings out of 190 total firings. Experiments have also been
performed to analyze the effect of number of voltage levels
on the energy savings by the Greedy and ILP approach pro-
posed for the first phase off-line analysis. The number of
voltage levels of strongARM [1] are restricted by taking 5 to
15 equally spaced voltage levels between its minimum (1.1V)
and maximum (1.5V) operating voltage. Table 1 shows the
effect of number of voltage levels on the energy savings for
different applications. A couple of observations can be made
from Table 1. First, at lower number of supported volt-
age levels, Greedy approach provides more energy savings
as compared to the ILP approach for few applications (e.g.
MPEG-4 decoder at 5 voltage levels). Second, ILP approach
provides more energy savings than Greedy at higher number
of supported voltage levels (e.g. 10 & 15) for all the appli-
cations. With large number of supported voltage levels, the
Greedy approach finds a local maxima by fixing the voltage
levels of a few tiles at the minimum and higher for other
tiles, whereas ILP approach performs better (more uniform)
distribution of voltage levels on the tiles providing higher
energy savings. It has been observed that Greedy provides
more energy savings than ILP for most of the applications
when number of supported voltage levels is less than 5. For
such case (VS levels < 5), trace-based analysis has been
applied after the ILP approach and it has been observed
that energy savings become closer to that of the Greedy ap-
proach.

6. CONCLUSION
We present a novel DVFS methodology for streaming ap-

plications that contain actors having cyclic dependencies.
Moreover, the methodology is applicable to acyclic task graphs
as well. We show that the methodology applies voltage scal-
ing both at design-time and run-time while satisfying the
temporal deadlines, and thus provides significant energy sav-
ings when compared to existing DVFS methodologies. In
future, we plan to apply voltage scaling on execution of ap-
plication edges while considering an interconnect supporting
multiple voltage levels. We also plan to consider heteroge-
neous platform to accelerate some executions towards creat-
ing longer slacks, which can be used to apply further voltage
scalings. These considerations will facilitate for further en-
ergy savings.
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APPENDIX
A. TOTAL ENERGY CONSUMPTION

Communication energy is required to transfer tokens
from one tile to another through the connections. In between
two tiles, the communication has to take place when actors
mapped on them need to communicate with each other. The
communication energy for each edge e mapped to a connec-
tion c is estimated as product of the number of tokens (in
bits) to be transferred through c, delay (D) and power con-
sumption (Pbit) of c for transferring one bit while operating
at voltage v. Total communication energy for all the edges
is estimated from equation 8. The number of transferred
tokens for an edge is computed as the product of repetition
vector (repV ) of source (or destination) actor and source (or
destination) port rate (equation 9). The power required to
transfer one bit is estimated from [15].

Ecomm =
∑

[{nrTokens[e] × tokenSize[e]} × (D → cv) × (Pbit → cv)]

(8)

nrTokens[e] = repV [e → srcActor] × (e → srcPortRate) (9)

Computation energy is required to process the trans-
ferred token on the destination tile after it is received and
able to fire (execute) the mapped actor. Computation en-
ergy for each actor a mapped to tile t is estimated as product
of the number of executions of a (repV [a]), execution time
(ET [a]) and power consumption (pow) on tile t operating
at voltage v. Total computation energy for all actors is es-
timated from equation 10. Power consumption on tile is
estimated by equation 11, where C, v and f denote average
load capacitance, supply voltage and operating frequency,
respectively.

Ecomp =
∑

[repV [a] × (ET [a] → tv) × (pow → tv)] (10)

pow → tv = C × v
2 × f (11)

Total energy consumption is measured as sum of com-
munication and computation energy. The total energy con-
sumption does not include static energy. In our approach, we
focus on mapping of applications on the architecture after it
is designed. So we cannot optimize static energy consump-
tion and focus on optimizing only dynamic energy consump-
tion.

B. ILP FORMULATION USED TABLES
The two tables slack use table and energy savings

table as defined in Table 2 and Table 3 respectively are
used to formulate the ILP.

Table 2: Slack used table
Slack used in ms

Tiles v0 v1 · · · vl−1

t0 0 140 . . . 200
t1 0 35 . . . 150
...

...
...

. . .
...

tn 0 100 . . . 140

Table 3: Energy savings table
Energy savings in nJ

Tiles v0 v1 · · · vl−1

t0 0 11, 000 . . . 40, 0000
t1 0 135, 000 . . . 150, 000
...

...
...

. . .
...

tn 0 15, 0000 . . . 50, 000

C. OFF-LINE ANALYSIS DEMONSTRATION
The demonstration considers one actor to one tile map-

ping (Fig. 3). Fig. 8 shows the execution traces after ap-
plying the off-line analysis (first & second phase). The first

phase identifies the VS levels to be applied on different tiles
while satisfying the deadline. The identified VS levels for
each tile are assumed as v1. The second phase analyzes the
execution traces operating at voltage v1 and provides the
updated traces satisfying the deadline. The analysis (Al-
gorithm 2) finds parallel executing actors as iq & idct, and
applies voltage scaling v2 (< v1) for actor idct as it has lower
WCET. Executions of idct are stretched till the execution
of iq since the outgoing edge of idct does not affect most of
other executions.

Time

vld

iq iq iq iq
e1 e1

e2

e1 e1

e2 e2 e2

idct
e3 e3 e3 e3

mc
e4

idct idct idct

Stretched executions on voltage 
v2 (< v1) after second phase

Tile 1
v1

Tile 2
v1

Tile 3
v2

Tile 4 v1

Pconstraint

Figure 8: Execution trace of actors/edges of H.263
decoder after applying off-line DVFS.

D. ON-LINE ANALYSIS DEMONSTRATION
Fig. 9 shows the demonstration of on-line DVFS for differ-

ent firings of actor idct of H.263 decoder mapped on a tile in
order to apply further voltage scaling. It can be seen that if
a firing finishes earlier than its WCET then created slack is
used to apply DVFS on the next firing. The voltage scaling
for the next firing is decided based on the reduced speed for
the firing calculated by Equation 7. The voltage switching
overhead has also been considered for the next firing. It can
also be observed that overall time for all firings get reduced,
i.e. execution trace gets shrunk. Thus, better throughput
is obtained in addition to reduced energy consumption after
applying on-line DVFS.

Time

idct idct idct idct

e3 e3 e3 e3

idct

e3 e3 e3 e3

v2

slack

WCET

AET

v4
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AET`

slack`

v5
v3

WCET

After off-line 
DVFS

After on-line 
DVFS

Tile 3
v2

Tile 3

Figure 9: Applying on-line DVFS for different firings
of an actor.

E. EVALUATION WITH DIFFERENT α
Effect of α has been analyzed on the energy savings. Ex-

periments have been performed for different fixed values of
α ranging from 0.1 to 1.0 at an interval of 0.1. At a fixed α,
all actor firings assume the same value of α. Fig. 10 shows
energy consumption by different methodologies for the max-
imum throughput mapping of MPEG-4 decoder that uses 3
tiles. A couple of observations can be made from Fig. 10.
First, energy savings (reduction) is higher at lower values
of α and decreases with higher values of α. Second, at α
equal to 1, the methodologies in [20] and [10] do not provide
energy savings as no slack is created at run-time, which con-
tributes to the energy savings. However, our methodology
provides energy savings by the off-line analysis.
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Figure 10: Energy consumption at different α.


