
Dynamically Adaptive Scrubbing Mechanism for Improved
Reliability in Reconfigurable Embedded Systems

Rui Santos
National University of

Singapore
elergvds@nus.edu.sg

Shyamsundar
Venkataraman

National University of
Singapore

shyam@nus.edu.sg

Akash Kumar
National University of

Singapore
akash@nus.edu.sg

ABSTRACT
Commercial off-the-shelf (COTS) reconfigurable devices have
been recognized as one of the most suitable processing de-
vices to be applied in satellites, since they can satisfy and
combine their most important requirements, namely pro-
cessing performance, reconfigurability and low cost. How-
ever, COTS reconfigurable devices, in particular Static-RAM
Field Programmable Gate Arrays (FPGAs), can be affected
by cosmic radiation, compromising the overall satellite re-
liability. Scrubbing has been proposed as a mechanism to
repair faults in configuration memory. However, the cur-
rent scrubbing mechanisms are predominantly static and
unable to adapt to run-time variations in applications. In
this paper, a dynamically adaptive scrubbing mechanism is
proposed. Through a window-based scrubbing scheduling,
this mechanism adapts the scrubbing process to the recon-
figurations and modifications on the FPGA user-design at
runtime. Conducted simulation experiments show the feasi-
bility and the efficiency of the proposed solution in terms of
system reliability and memory overhead.

1. INTRODUCTION
Satellites have to deal with increasingly tight requirements

regarding their processing systems. They have to combine
high performance, high reliability, operational flexibility and
adaptability during the execution, and low cost. In par-
ticular, satellites are requiring more and more processing
and operational performance, since their payload subsys-
tems have to deal with increasingly complex sensing applica-
tions. These sensing applications usually require an efficient
execution on the same system of image and video process-
ing, software defined radio and generic signal processing.
They also produce a large amount of information that has
to be processed locally, avoiding the transmission of large
amounts of data to a ground station, through the conven-
tional transmission channels that are increasingly saturated.
At the same time, reliability is always a special concern in
space systems, since satellites are subjected to extreme ra-
diation effects that often lead to malfunction in processes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’15, June 07 - 11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00
http://dx.doi.org/10.1145/2744769.2744827 .

and loss of information. Therefore, the processing system
has to implement suitable mechanisms to mitigate erroneous
states. Moreover, the processing system should also provide
mechanisms to allow runtime adaptations that will be very
useful after the satellite launch. This way, satellites can eas-
ily be functionally adapted to any unexpected scenario that
was not considered at design time. For instance, an effi-
cient implementation of a synthetic aperture radar through
the space-time-adaptive processing algorithms requires con-
stant dynamic reconfigurability [12]. Finally, the cost and
the resource efficiency are also a great concern. Therefore,
the use of commercial off-the-shelf (COTS) devices has been
considered as a good option to reduce the overall satellite
costs.
Taking into account all these concerns, COTS Static-RAM

(SRAM)-based Field Programmable Gate Arrays (FPGAs)
have been considered as the ideal processing devices to be
applied in satellites. They offer great operation capacity
and performance, combined with reconfigurable properties.
This latter allows changing or adapting the satellite func-
tionalities after its launch. Moreover, regarding the costs,
COTS SRAM-based FPGAs are widely spread and they
have a wide range of tools that allow fast development and
lower prices. However, in terms of reliability, COTS SRAM-
based FPGAs were not originally developed to be placed in
space. In space, FPGAs may be affected by charged par-
ticles that strike the silicon substrate. These events called
Single Event Upsets (SEUs) can inadvertently change the
configuration memory, corrupting the function results and
device outputs. In order to overcome this drawback, several
fault-tolerant mechanisms to be applied on the FPGA scope
have been proposed. However, the majority of these fault-
tolerant mechanisms are predominately static, i.e., they do
not efficiently support runtime adaptation and reconfigura-
tion on the satellite payload, jeopardising the overall system
reliability.
Key contributions: This paper proposes a dynamically

adaptive scrubbing schedule mechanism for mixed-criticality
systems executed on reconfigurable embedded systems. This
mechanism schedules scrubbing executions based on win-
dows in runtime, following the fixed priority scheduling. As
a result, this mechanism enables a higher reactive scrub-
bing system that adapts the scrubbing executions to the
user task set reconfigurations and modifications in runtime.
Moreover, this solution reduces significantly the amount of
memory required to store the scrubbing schedule (at least
16 times better – for the highest level of system reliability).
The rest of the paper is organised as follows. Section 2

presents the background concerning the scrubbing mecha-
nisms and the motivation for this work. Section 3 intro-

duces the system model. Section 4 presents the proposed
adaptive scrubbing approach. In Section 5, the conducted
experiments are introduced and their results are discussed.
Finally, Section 6 presents the conclusions.

2. RELATED WORKS

2.1 Scrubbing Related Works
Scrubbing [6] is a mechanism used to repair faults on an

FPGA that takes advantage of the FPGA reconfiguration
capabilities. The FPGA reconfiguration is possible through
the FPGA internal configuration access port (ICAP) that
allows the reading and writing of the FPGA configuration
frames, the lowest reconfigurable granular blocks found in
an FPGA. Several fault-tolerance solutions have been de-
veloped around this mechanism with the simplest approach
being blind scrubbing [4]. This solution does not detect
the existence of faults on the FPGA, but it periodically
rewrites the configuration frames (bitstream file) onto the
FPGA instead, overwriting possible faulty bits caused by
SEUs. The entire FPGA is scrubbed blindly without con-
sidering the tasks that have been implemented on it and
the respective used configuration frames. An external mem-
ory with continuous access is required to store the original
configuration frames, frequently called golden copy. Read-
back scrubbing is another solution, which enables fault de-
tection, reading frame-by-frame the configuration data from
the FPGA and then performing a bit-for-bit comparison to
the original frames stored in the external memory (golden
copy). Another alternative combines readback scrubbing
with Error Correction Codes (ECCs) [1, 10, 8, 13]. This ap-
proach enables fault detection by reading the configuration
data frame-by-frame, computing their error correction codes
(ECCs) and comparing them to the original ones previously
computed and stored externally for each frame. Nazar et
al. [9] propose a mechanism that statistically finds the op-
timal frame to start the scrubbing, which reduces the mean
time to repair a certain fault. All these scrubbing mecha-
nisms are independent of the user tasks implemented on the
FPGA. The FPGA is scrubbed subsequently with a con-
stant and static rate defined, before the execution of the
system. As a result, the reliability of the system is not
maximized and scrubbing utilization is wasted. To solve
part of this drawback, Santos et al. [11] propose a scrub-
bing mechanism that improves the reliability of the system.
In order to achieve that, the scrubbing process is sched-
uled according to the criticality of the user tasks and also
scheduled as close as possible of their executions. This way,
the probability of the user tasks being affected by a fault is
reduced. However, this solution is also static, i.e., the scrub-
bing scheduled is computed offline and during the user task
execution it does not reflect on the scrubbing schedule mod-
ification/reconfigurations that may occur on the user task
set. The memory required to store the scrubbing schedule
may be large, since this solution is dependent on the least
common multiple (LCM) among the scrubbing task periods
on the system. Moreover, the task model considered in this
solution is limited, since it assumes that the user tasks are
strictly periodic, executing in well defined instants.

2.2 Motivation Example
In order to better understand the motivation for this work,

please consider a simple example described in Figure 1. Ini-
tially, two user tasks (τ1 and τ2) are implemented on an
FPGA system, where the ICAP module provides 90% of its

scrubbing schedule

τ2

τ1

time

time

time

τ2 τ2 τ2

τ1

τ3 τ3
time

0 2 4 6 8 10 12 14

0 2 4 6 8 10 12 14

0 2 4 6 8 10 12 14

0 2 4 6 8 10 12 14

mit mit mit

Figure 1: Motivation example.

capacity to the scrubbing mechanism. The task τ1 executes
periodically with a period equal to 3 time units and τ2 exe-
cutes sporadically with a minimum inter-arrival time (mit)
equal to 5 time units. If the scrubbing schedule is obtained
according to the technique proposed in [11], the scrubbing
schedule has to be computed by the Earliest Deadline as
Late as possible (EDL) algorithm for the LCM interval de-
fined among the scrubbing periods (only 15 time units in
this example, but it can be very large depending on the com-
puted scrubbing periods). The scrubbing schedule is stored
in an external memory and used at runtime during the user
task execution. This dependency of the scrubbing sched-
ule on the LCM interval causes three limitations. First,
this mechanism may require a large memory to store the
scrubbing schedule. Second, it does not allow the modi-
fications/reconfiguration on the user tasks. For instance,
at instant 5 task τ1 is stopped and this change is not re-
flected on the scrubbing schedule. After the instant 5, task
τ1 continues to be scrubbed, wasting ICAP utilization and
consequently power consumption. At the instant 7, task τ3
is added to the system. This change is also not reflected on
the scrubbing schedule, reducing the reliability of the sys-
tem, since this task is not scrubbed. Third, variations on
the execution of the sporadic task are not considered on the
scrubbing execution, increasing the gap between the task
execution and the corresponding scrubbing execution and
consequently decreasing the system reliability.

3. SYSTEM MODEL

3.1 Task and Scrubbing Model
An FPGA device can accommodate several user function-

alities (tasks), each one implemented on its own reconfig-
urable partitions. The functionalities implemented on these
partitions can be modelled by set Γ of either periodic or
sporadic tasks. Each user task τi ∈ Γ is characterized by
five parameters τi = (Ci, Ti/miti,Φi, ηi, ζi): Ci defines the
worst case execution time in hardware; Ti represents the ex-
ecution period for the periodic tasks and miti represents the
minimum inter-arrival time between two consecutive execu-
tions of the sporadic tasks; Φi defines the initial offset, the
release time of the first instance; ηi defines the number of
FPGA configuration frames used to implement the task; and
finally, ζi represents the criticality of the task in the system
(zero criticality corresponds to the lowest criticality in the
system).
Associated with the user task set Γ, there is a scrub-

bing task set sΓ. Each scrubbing task sτi ∈ sΓ repre-
sents the scrubbing process of task τi, as described in Fig-
ure 2. Moreover, each scrubbing task sτi can also be mod-

scrubbing
schedule

Ti / STi
Ci

τi
2τi

1τi
0 τi

3

time

wi
1,2

wi
1,1

wi
2,4

wi
2,1

wi
3,2

wi
3,1

sτi
0 sτi

1 sτi
2

Figure 2: User task and scrubbing schedule exec.

elled as a periodic task characterized by four parameters
sτi = (SCi, STi,Φi, ζi): SCi defines the time to scrub the ηi
FPGA frames used to implement the task τi; STi represents
the scrubbing period, which is a multiple of the correspond-
ing task period Ti/miti.
In order to guarantee that no scrubbing preemptions occur

during the scrubbing process of one frame, the following
assumption must be taken into account during the task set
definition.
Assumption 1. The minimum time unit used to define the
scrubbing schedule is equal to the time to scrub one FPGA
frame. Therefore, the task periods (Ti) and consequently the
corresponding scrubbing periods (STi) have to be multiples
of that time to scrub one configuration frame.

3.2 Error Model
The FPGA device composed by Θ configuration frames

can be affected by SEUs, which follow a Poisson distribu-
tion with a rate of λ failures per unit of time [3] [5] [2]. For
a given task τi, the ideal scrubbing instant, i.e., the instant
that minimizes the probability of the kth job to be executed
without suffering any fault, is the interval immediately be-
fore its executions. Therefore, the probability of kth job
execution of the task τi being executed without any fault,
considering the last corresponding sτi job execution, is given
by:

Pne[τ
k
i] =

ηi∏

f=1

e−
λ
Θ

w
k,f
i , (1)

wk,f
i is the time interval between last scrubbing process, in

particular the frame f , and the beginning of the kth job
execution, as described in Figure 2. Note that the SEU
rate that affects a task τi is proportional to the hardware
resources (configuration frames) used by it. Moreover, faults
during each task execution instance are not considered.

Definition 1. (Reliability of a task) Reliability of a
task is a metric that defines the probability of a task τi being
executed in the interval [0, t] without faults [7].

Therefore, the reliability of the task τi can be expressed
in the following equation as the probability of all instances
of τi in the interval [0, t] being executed without faults.

Ri(t) = Pne[τ
0
i ∧ τ1

i ∧ ... ∧ τki
i], (2)

where ki defines the last τi job execution in the interval [0, t].

Definition 2. (system reliability based on critical-
ity) System reliability based on criticality is a metric that
defines the system reliability during the interval [0, t] taking
into account the reliability as well as the criticality of each
task executing in the system.

Therefore, the system reliability based on criticality can
be expressed as follows,

R(t) =

|Γ|−1∑

i=0

Ri(t)× ζi, (3)

where |Γ| is the number of tasks that are executing in the
system.

window (n-1) scrubbing execution
window n scrubbing schedule

computation

Is any change
detected on the
user task set?

find the minimum scrubbing
periods that satisfy the given

ICAP utilization

n = n + 1

Start

Y

N

Figure 3: Proposed approach flowchart.

4. PROPOSED APPROACH
The scrubbing mechanism of an FPGA device can be clas-

sified as a soft real-time system. If some user task is not
scrubbed at the right instant according to the computed
scrubbing schedule, there is no negative impact on the user
task execution, i.e., the user task is executed normally. How-
ever, the reliability of the system may decrease, i.e, the prob-
ability of that task to be executed with a fault may increase.
Taking this factor into account, the proposed mechanism
computes the scrubbing schedule in pre-defined time win-
dows, enabling reactive adaptations of the scrubbing process
to the changes on the implemented user task set. Schedul-
ing the scrubbing tasks based on windows is not the optimal
solution, since the scrubbing tasks may miss their deadlines.
However, the reliability of the system is improved through a
reactive update of the scrubbing mechanism to the changes
and the execution of the user task set.

4.1 Window-based Scrubbing Schedule
The scrubbing schedule windows have duration Δ (de-

fined as the multiple of the time to scrub one configuration
frame) specified by the user and according to the reactivity
requirements of the scrubbing process. Their execution can
be interpreted as follows: the scrubbing schedule windows
are executed sequentially; each window starts at the instants
n × Δ with n = {0, 1, 2, 3, ...} and it has a duration of Δ.
Therefore, the window n defines the scrubbing schedule for
the interval (nΔ, (n+1)Δ]. Figure 3 describes the sequence
of steps regarding the proposed approach. The first step
computes the minimum scrubbing periods according to the
criticality of each task (min

∑sΓ−1
i=0

STi
Ti

×ζi) that maximize

the allowed ICAP utilization defined for the scrubbing mech-
anism. Therefore, the computed scrubbing periods have to
satisfy the following equation,

∑sΓ−1
i=0

SCi
STi

≤ uBound, where

uBound defines the maximum ICAP utilization provided to
the scrubbing mechanism. As a result, the most critical
tasks are scrubbed more frequently than the less critical
ones. Then the scrubbing schedule is executed and com-
puted in windows. During the execution of the scrubbing
schedule defined in the window n− 1, the scrubbing sched-
ule for the window n is computed. Only the scrubbing task
activations that occur in the interval (nΔ, (n+1)Δ] will af-
fect the schedule produced by the window n. If during the
scrubbing schedule execution of the window n any change
on the user task set is detected, the minimum scrubbing
periods that satisfy the maximum defined ICAP utilization
have to be recomputed. The new periods are used then to
compute the scrubbing schedule for the incoming windows.
The scrubbing schedule is computed according the fixed pri-
ority scheduling (FPS), contrary to the solution proposed
by Santos et al. [11]. FPS is more predictable and easier to
implement than dynamic priority scheduling (DPS), as well

 n = 2 n = 0

τ1
0

τ3
0

τ2
0 τ2

1

τ1
1 τ1

2 τ1
3 τ1

4 τ1
5 τ1

6

τ2
2

τ1
8

τ3
1

 n = 4

τ1
7

 n = 0 n = 2 n = 4

τ3
2 τ3

3 τ3
4

τ1
9 τ1

10

I

II

III

0 9 12 18 21 27 30 36 45

0 10 20 30 40

LCM = 40

39

0 9 18 27 36 45

sτ1 sτ1,2 sτ1sτ3 sτ1,2 sτ1,2

sτ1 sτ1,2 sτ1sτ3 sτ1,2 sτ1,3 sτ1 sτ1 sτ3 sτ1 sτ1,3 sτ1

sτ3 sτ1 sτ1,3
sτ1 sτ3

sτ1,3sτ1,3

sτ2

sτ1

sτ3 sτ1 sτ1,3
sτ1 sτ3

sτ1 sτ3

mit1 mit1

sτ1

sτ1

Figure 4: I) User task execution. II) Computed scrubbing schedule using the proposed scrubbing schedule
based on windows and improved by using an auxiliary schedule window. III) Proposed scrubbing schedule
solution improved by the feedback execution of the user sporadic tasks. Note 1: the auxiliary windows are
represented by the darker boxes. The tasks inside them are the tasks considered for the scrubbing schedule
of the previous window. Note 2: the user tasks execution time are not in scale with the scrubbing executions.

as the definition of criticality fits perfectly on the notion of
priority. The most critical tasks are always scrubbed closer
their user task executions than the less critical ones. The
better schedulability of the DPS is almost irrelevant in this
context, since the scrubbing mechanism should be used for
low ICAP utilizations, leaving free space for FPGA reconfig-
urations. Note that the memory required by this approach is
only the memory required to store the scrubbing schedule of
two Δ windows. In contrast, the current similar approaches
have to store the scrubbing schedule for the LCM interval.
The gains in terms of memory would be really high when
the proposed approach uses small windows sizes (Δ) and
the LCM interval given by the task periods is really large.

4.1.1 Auxiliary Window – Improvement
The scrubbing schedule based on windows raises a prob-

lem. The scrubbing tasks that are activated in the beginning
of the window n may not be executed since the remaining
execution space in window n may not be enough. In or-
der to solve this limitation, an auxiliary scrubbing schedule
window is proposed. Every scrubbing schedule window n
is succeeded by an auxiliary window with Ω size (multiple
of the time to scrub one configuration frame), which helps
to compute the scrubbing schedule. This way, for the pro-
duced scrubbing schedule in the window n, all the scrub-
bing requests in the interval (nΔ, (n + 1)Δ + Ω] are con-
sidered. However, the produced schedule in the auxiliary
window ((n+ 1)Δ, (n+ 1)Δ+Ω] is not taken into account,
since it will be recomputed in the scrubbing schedule window
(n+ 1).

4.1.2 User Task Feedback Execution – Improvement
Another improvement has to do with the sporadic tasks.

The variations on the sporadic tasks execution considering
their minimum inter-arrival time can be updated on the
scheduled scrubbings, increasing the system reliability. Dur-
ing the execution of the scrubbing schedule window n, the

Table 1: task set (Γ) and scrubbing task set (sΓ)
parameters

τi Ci
1 Ti SCi Φi ζi STi

τ1 – 4 2 0 3 4
τ2 – 8 2.5 0 2 8
τ3 – 10 2 0 1 10

feedback of the user task’s execution is used to compute for
each user task job execution τk

i ∈ (nΔ, (n+ 1)Δ] the devia-

tion to the miti considering the predecessor job τk−1
i . The

execution deviation of each task τi in the scrubbing schedule
window n is given by:

devni =
∑

τk∈(nΔ,(n+1)Δ]

τk
i − (τk−1

i +miti). (4)

Note that for the periodic tasks the execution deviation devni
is always zero. The computed deviation of each task τi in
the window n (devni) will be used to update the scrubbing
task activations during the computation of the scrubbing
schedule of the window n + 2. Therefore, all the scrubbing
task activations sτp

i in the window ((n+2)Δ+Ω, (n+3)Δ+Ω]
will be delayed by the computed task execution deviation in
all n windows executed before, i.e,

∀sτp
i ∈ ((n+2)Δ+Ω, (n+3)Δ+Ω], sτp

i = sτp
i +

n∑

j=0

devji .

(5)
4.2 Scrubbing System Reactivity
Definition 3. (scrubbing reactivity time) Scrubbing
reactivity time is the time that defines the interval between
one change on the user design at the instant t and the in-
stant of its effective impact on the scrubbing execution.
1The faults are not considered during each task execution
instance. Therefore, the user tasks execution time are omit-
ted.

The worst case scenario occurs when the change happens
in the beginning of the scrubbing schedule window. There-
fore, in this case the scrubbing reactivity time is 2 × Δ.
On the other hand, the best case occurs when the change
happens just before the beginning of one scrubbing schedule
window. In this case, the scrubbing reactivity time is Δ.

4.3 Illustrative example
In order to better understand this mechanism, please con-

sider a simple example. Three user tasks were implemented
on the FPGA, where the ICAP module can be 100% used
by the scrubbing mechanism. Table 1 presents the user task
set and the scrubbing task set parameters. Note that task τ1
is a sporadic task. Note also that all tasks will be scrubbed
every period, since the computed periods of the scrubbing
tasks are equal to the corresponding user task periods. Fig-
ure 4–I describes the user task execution. Note also that at
the instant 17, task τ2 is stopped (task jobs τ3

2 , τ
4
2 and τ5

2 are
not executed). Figure 4–II presents the proposed scrubbing
solution using the auxiliary window. The scrubbing schedule
window size considered in this example (Δ) is 9 time units.
As we can see, the most critical tasks are regularly scrubbed
and the change occurred on task τ2 is reflected on the scrub-
bing mechanism as the scrubbing schedule window 3. The
auxiliary windows (Ω = 3 time units) are represented in the
figure by the darker boxes. This mechanism improves the
scrubbing schedule, since all the scrubbing task activation
at the beginning of each window n that do not have enough
space to execute partially or totally in the window n are
executed in the window n − 1. Figure 4–III presents the
scrubbing schedule using the feedback execution of the user
sporadic tasks. As we can see, the deviation from the mit
on the execution of the task τ1 in window 0 will be reflected
on the scrubbing schedule of window 2. Similarly, the de-
viation occurred in window 1 is reflected on window 3. In
the window 5 and 6 the scrubbing requests sτ1 are already
synchronized with the task τ1 executions.

5. EXPERIMENTAL RESULTS
Experiments were conducted in order to better evaluate

the proposed scrubbing mechanism. The experiments were
based on a Virtex-6 LX240T SRAM-based FPGA with 28,464
configuration frames. It was assumed that each frame is
scrubbed at the maximum ICAP frequency (100MHz). There-
fore, each FPGA configuration frame requires 0.81μs to be
scrubbed. Moreover, for these experiments the FPGA device
was simulated to be placed in the space environment, sub-
jected to SEUs with a rate λ = 1

1Hour
[3]. The experiments

use task sets synthetically generated. The period (Ti/miti)
of each task τi assumes only values that are multiples of 5ms,
synthetically generated and uniformly distributed between
10ms and 50ms. The offset (Φi) assumes values uniformly
distributed between 0 and 20ms. For sporadic user tasks,
each job execution can suffer a deviation to the respective
mit uniformly distributed between 0 and 1ms. The number
of configuration frames (ηi) used to implement each task τi
assumes only values that are multiples of 100, synthetically
generated and uniformly distributed from 1, 000 and 2, 000,
corresponding to a scrubbing execution time (SCi) between
810μs and 1, 620μs, respectively. Moreover, the criticality
of the tasks are also synthetically generated and uniformly
distributed between 1 and 100.

The proposed window-based scrubbing schedule (wss) im-
proved by the auxiliary window (wssaw) and by the user
task feedback execution (wssaw+fe) are evaluated and com-

10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

Scrubbing Window Size (ms)

S
y
st
em

R
el
ia
b
il
it
y

wssaw

wssaw+fe

Santos[11]

Nazar[9]

Blind[4]

Figure 5: System reliability over the scrubbing
schedule window size.

10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

Scrubbing Window Size (ms)
S
y
st
em

R
el
ia
b
il
it
y

wss

wssaw

Santos[11]

Nazar[9]

Blind[4]

Figure 6: System reliability over the scrubbing
schedule window size (user task set composed only
by periodic tasks).

pared to the blind scrubbing mechanism [4], to the scrubbing
mechanism proposed by Nazar et al. [9] and to the scrubbing
schedule mechanism proposed by Santos et al. [11].

5.1 Reliability over the Schedule Window Size
The graph in Figure 5 shows the system reliability (given

by the Equation 3) for a user task set with 20 tasks over
the scrubbing schedule window size (Δ). The user task
set is composed by 10 periodic tasks and 10 sporadic tasks.
The window size (Δ) ranges from 10ms to 100ms. The 20
tasks use 100% of the resources (configuration frames) in the
FPGA and the ICAP utilization provided to the scrubbing
mechanism is 100%. As expected, the reliability of the sys-
tem using the proposed approach increases with the increase
of the scrubbing schedule window size. The proposed solu-
tion is evaluated using the auxiliary window mechanism and
the user task feedback execution mechanism. With an aux-
iliary window (Ω) equal to 25% of the main scrubbing sched-
ule window, the proposed approach performs almost equal
to the approach proposed by Santos et al. [11] for bigger Δs.
Adding to the proposed solution the user task feedback exe-
cution mechanism, the system reliability increases 5% in the
best case. Note that this improvement on the system relia-
bility can be even bigger depending on the deviation (jitter)
from the mit of the sporadic tasks activations. When the
deviation increases, the performance of the solutions Santos
et al. [11] and wssaw are increasingly worse.
For a fair comparison between the proposed scrubbing

mechanism and the technique proposed by Santos et al. [11],
please considerer a user task set only composed by strict pe-
riodic tasks. The technique proposed by Santos et al. [11]
is optimal for these scenarios, since it is based on the EDL
scheduling algorithm. As the previous experiment, Figure 6
shows the system reliability for a user task set with 20 peri-

100 90 80 70 60 50 40 30 20
0.2

0.4

0.6

0.8

ICAP Utilization

S
y
st
em

R
el
ia
b
il
it
y

wssaw

wssaw+fe

Santos[11]

Nazar[9]

Blind[4]

Figure 7: System reliability over the ICAP util.

odic tasks over the scrubbing schedule window size (Δ). As
we can observe, the proposed scrubbing solution improved
by the auxiliary window method (Ω = 0.25Δ) has almost the
same performance as the solution presented in [11] for bigger
Δs. Without the auxiliary window the proposed technique
performs 3% worse. When compared to the other scrubbing
mechanisms the proposed approach is always better. These
results prove the efficiency of the proposed mechanism, even
for purely periodic task sets.

5.2 Reliability over the ICAP Utilization
The graph in Figure 7 shows the system reliability for a

task set with 10 tasks over the maximum ICAP utilization
(uBound) provided to the scrubbing mechanism. The user
task set is composed by 5 periodic tasks and 5 sporadic tasks.
The provided ICAP utilization ranges from 20% and 100%.
The scrubbing schedule window size (Δ) was defined equal
to 20ms (very reactive). As we can see in the graph, the
proposed solution using an auxiliary window (Ω), which is
equal to 25% of the main window, has a very similar per-
formance when compared to Santos et al. [11]. Using the
user task feedback execution technique, the proposed solu-
tion achieves an improvement on the system reliability of 5%
in the best case. When compared to the other approaches,
the proposed solution always performs better.

5.3 Memory Overhead
This experiment compares the proposed approach to the

approach proposed by Santos et al.[11] in terms of mem-
ory overhead required to store the scrubbing schedule pro-
duced. For a fair comparison, the memory overhead was
measured considering a user task set with 20 periodic tasks
and a scrubbing schedule window size (Δ) equal to 100ms.
According to the first experiment, this is the biggest win-
dow considered that almost reaches the system reliability
obtained by Santos et al. [11]. In average the memory re-
quired by Santos et al. [11] to store the scrubbing schedule
is 21.3 KBytes. On the other hand, the memory required by
the proposed approach in this paper is 1.3 KBytes. There-
fore, there is an improvement of 16 times. The improvement
can be much significant, when smaller Δs are considered.

6. CONCLUSIONS
In this paper, a new scrubbing mechanism is proposed in

order to dynamically adapt the scrubbing to the user task
reconfigurations/modifications at runtime. This new mech-
anism schedules the scrubbing executed based on the win-
dows with a pre-defined size. Conducted experiments show
the feasibility of the proposed approach. They show im-
provements on the system reliability comparing to the other
scrubbing mechanism when sporadic tasks are included in

the user task set. They also show a very small decrease on
the system reliability comparing to the optimal scrubbing
mechanism, when the user task set is only composed by pe-
riodic tasks. In terms of memory overhead, the proposed
solution performs at least 16 times better than the static
approach that also schedules the scrubbing executions, con-
sidering the highest level of system reliability.

7. REFERENCES
[1] C. Argyrides, D. Pradhan, and T. Kocak. Matrix

Codes for Reliable and Cost Efficient Memory Chips.
IEEE Transactions on Very Large Scale Integration
Systems (VLSI’11), 2011.

[2] P. Axer, M. Sebastian, and R. Ernst. Reliability
Analysis for MPSoCs with Mixed-critical, Hard
Real-time Constraints. In IEEE/ACM/IFIP
International Conf. on Hardware/Software Codesign
and System Synthesis (CODES+ISSS’11), 2011.

[3] C. C. Brendan Bridgford and C. W. Tseng.
Single-Event Upset Mitigation Selection Guide. Xilinx
Corporation. 2008.

[4] C. Carmichael, M. Caffrey, and A. Salazar. Correcting
Single-Event Upsets Through Virtex Partial
Configuration. Technical report, Xilinx, 2000.

[5] A. Das, A. Kumar, and B. Veeravalli. Aging-aware
Hardware-software Task Partitioning for Reliable
Reconfigurable Multiprocessor Systems. In IEEE
International Conf. on Compilers, Architectures and
Synthesis for Embedded Systems (CASES’13), 2013.

[6] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb. FPGA
partial reconfiguration via configuration scrubbing. In
IEEE International Conference on Field
Programmable Logic and Applications (FPL’09), 2009.

[7] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Kluwer Academic
Publishers, Norwell, MA, USA, 1st edition, 1997.

[8] M. Lanuzza, P. Zicari, F. Frustaci, S. Perri, and
P. Corsonello. A self-hosting configuration
management system to mitigate the impact of
Radiation-Induced Multi-Bit Upsets in SRAM-based
FPGAs. In IEEE International Symposium on
Industrial Electronics (ISIE’10), 2010.

[9] G. Nazar, L. Santos, and L. Carro. Accelerated FPGA
Repair Through Shifted Scrubbing. In IEEE
International Conference on Field Programmable Logic
and Applications (FPL’13), 2013.

[10] S. P. Park, D. Lee, and K. Roy. Soft-Error-Resilient
FPGAs Using Built-In 2-D Hamming Product Code.
IEEE Transactions on Very Large Scale Integration
Systems (VLSI’12), 2012.

[11] R. Santos, S. Venkataraman, A. Das, and A. Kumar.
Criticality-aware Scrubbing Mechanism for
SRAM-based FPGAs. In IEEE International
Conference on Field Programmable Logic and
Applications (FPL’14), 2014.

[12] L. Sterpone, M. Porrmann, and J. Hagemeyer. A
Novel Fault Tolerant and Runtime Reconfigurable
Platform for Satellite Payload Processing. IEEE
Transactions on Computers, 2013.

[13] S. Venkataraman, R. Santos, S. Maheshwari, and
A. Kumar. Multi-Directional Error Correction
Schemes for SRAM-Based FPGAs. In IEEE
International Conference on Field Programmable Logic
and Applications (FPL’14), 2014.

