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Abstract—Approximate computing is gaining more and more
attention as potential solution to the problem of increasing
energy demand in computing. Several recent works focus on
the application of deterministic approximate computing to arith-
metic computations. Circuits for addition and multiplication are
simplified, trading exactness for energy and/or speed. Recent
approximation techniques for adders focus on modifications of
individual full adders’ truth tables or shortening carry chains.
While the resulting error is usually characterized with statistical
measures over the range of possible input/output combinations,
the actual adder is a static nonlinear system regarding arithmetic
operations and signal processing. The resulting unexpected ef-
fects present a challenge for adopting approximate computing
as a widespread and standard application-level optimization
technique. This paper focuses on the deterministic effects of
approximate multi-bit adders, which are especially evident for
certain input data in an otherwise well specified systems, showing
the necessity to look beyond purely statistical measures. We
show which fundamental principles are violated depending on
the chosen approximation scheme, and how this choice affects
practical applications. This can serve as a basis for designers to
make informed decisions about the use of approximate adders
at the application level.

I. INTRODUCTION

Lately, the domain of inexact computing, or approximate
computing received a lot of attention [1], [2] as a possible
solution to the post-Dennard scaling challenges [3] in terms
of area, power and performance of digital circuits. While some
techniques focus on implementing hardware with probabilistic
or non-deterministic inexact behavior [4], many approaches
modify existing circuits in a way where the results are not
exact, but perfectly reproducible. This paper focuses on the
effects of errors generated by these deterministic approximate
computations, specifically on the effects of addition, since
it plays a fundamental role in virtually all relevant data
processing applications.

Since approximate computing is a highly application-
dependent technique, it is not obvious which kind of degra-
dation can be accepted, and if so, to what degree. To address
that, several metrics have been developed [5], [1] for com-
paring different implementations regarding their suitability for
different applications. We show that difficulties arise when
applying these measures blindly for increasing computation
efficiency.

In their treatment of quantization noise, the authors of [6]
acknowledged that traditional analyses depend upon the noise
source being independent of the input. This is not the case
for deterministic approximation techniques in general, where
the error always depends on the input. Their focus on spectral
characteristics also cannot describe the effects of nonlinear
signal processing. As Sec. IV-B shows, spectral properties

cannot completely describe all effects related to employing
deterministic approximation.

Up until now, the metrics developed for approximate com-
puting focus solely on statistical properties, like Error Rate,
Mean Error Distance, Peak Signal-to-Noise Ratio. While these
are relevant for many quality metrics, deterministic approxi-
mate arithmetic functional units are actually nonlinear static
systems, leading to the violation of fundamental assumptions
of arithmetic operations. This paper focuses on addition as the
basis of all arithmetic calculations.

Figs. 1 (f) through (i) show an example where the simple
approximate addition of a horizontal and a vertical gray-scale
gradient image from Fig. 1 (a) and (b) generates unwanted
patterns. Perhaps acceptable in terms of mean error energy, the
human brain is specialized at recognizing patterns, rendering
these image sums unacceptable. This is a problem of the
combination of chosen approximate adder and input signal.
For more "irregular" inputs, the result might be acceptable.

II. RECENTLY PROPOSED ADDER DESIGNS

Since multi-bit adders are the fundamental building block
of any signal processing system, focus has been on improving
area, delay or performance by applying approximate compu-
tation. The proposed techniques we consider here fall into two
categories:

1) Simplifying the individual full adders, thereby modify-
ing the associated truth tables [7], [8], [9].

2) Breaking the carry chain to decrease critical path length
[10]. This technique can be augmented with optional
correction logic.

See [11] for a detailed comparison of recently proposed
approximate adder implementations and their PDP (Power-
Delay-Product) values.

A. Truth-table modifying adders
This technique reduces circuit area and power of multi-bit

adder circuits. A multi-bit adder is split into an exact and an
inexact part, where the lower k significant bits are computed
by approximate half- and full adders, and the higher significant
n− k bits by exact implementations. For these adders, all the
relevant properties can be derived from the truth tables that
result from the circuit simplifications. The truth tables used in
this paper are reproduced in Table I. They are: AXA1 from [7],
InXA1 - InXA3 from [8], and AMA1 from [9].

B. Adders with reduced carry chain length
This technique reduces the maximum carry chain length of

multi-bit adders, decreasing critical path delay and allowing



(a) First input image (b) Second input image (c) Exact result of image ad-
dition

(d) 5 lower bits replaced by
noise (PSNR = 29 dB)

(e) 5 lower bits truncated
(PSNR = 29 dB)

(f) 5 lower bits approx. by
InXA2 (PSNR = 33 dB)

(g) 5 lower bits approx. by
InXA1 (PSNR = 27 dB)

(h) approximated by GeAr1
(PSNR = 28 dB)

(i) 5 lower bits approx. by
InXA3 (PSNR = 33 dB)

Fig. 1. Image addition problem: the two 8-bit 256 by 256 gray-scale input images are added to produce the resulting image. Noisy addition, truncating bits,
and using approximate adders produces visible artifacts.

faster circuit operation. One prominent example is GeAr [10],
which provides a general configurable model for overlapping
carry chain splitting adders. Here we cannot consider the
individual truth tables because more than one adder is involved
in a particular result bit. Instead, full range simulations of the
specific configurations must be performed. For our simula-
tions, we used one of the configurations that are proposed
in [10] adapted to 8-bit values. The parameters are N = 8,
R = 2, and P = 2, which represents 3 overlapped 4-bit
adders with 2 bits of extra carry prediction. We refer to this
configuration as GeAr1.

III. CONSEQUENCE OF VIOLATING BASIC ADDITION

PROPERTIES

Depending on the specific chosen adder, following funda-
mental properties are violated by some, but not all, specific
approximate adder implementations.

• A. Identity relation with neutral element: x+ 0 = x
• B. Commutativity: x+ y = y + x
• C. Associativity: x+ (y + z) = (x+ y) + z

Some of these characteristics can be checked by inspecting
the modified truth table of the underlying full-adders. Using
AMA1 from [9], e.g., will result in 1+ 0 = 0, and 0+ 1 = 2,
violating properties A and B at the same time.

On the level of signal operations, other important charac-
teristics are not guaranteed anymore:

• D. E[x+ y] = 0 if E[x] = 0 and E[y] = 0
• E. Linearity

where E stands for the expected value, and can more
informally be seen as the average value of a signal.

A. Identity Relation
Fig. 2 shows the outputs of different approximate 8-bit

adders when one input is held at zero, which can be considered
the transfer function of the static system given by f(x) = x+0.

Expecting this relation to hold for all adders, Fig. 2 shows
that of the three chosen adders only InXA3 exhibits correct
behavior. We call this property zero-input correctness, which is
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Fig. 2. Transfer Functions of different 8-bit inexact adders, where 4 bits are
approximated, input 2 held at zero. In this example, InXA3 exhibits correct
behavior.

important for systems employing negative feedback, typical for
control systems, where a stable point is found by subtracting
two signals and feeding back the resulting error. If the system
responds incorrectly with non-zero values, stability cannot be
reached.

B. Commutativity

Adders like AMA1 [9] contain asymmetrical entries in the
truth tables which always lead to violation of commutativity:
If even the lowest result bit is not independent of addend
order, the whole addition is non-commutative, which leads
to grave restrictions for design automation tools: A synthesis
tool cannot assume the two inputs to be equal, which reduces
the degrees of freedom in layout optimization. To satisfy
commutativity, following properties of a one-bit full-adder
must hold:

1) Sum(X,Y,Cin) = Sum(Y,X,Cin)
2) Cout(X,Y,Cin) = Cout(Y,X,Cin)

for Cin = [0, 1], X = 1, Y = 0
Of the adders from Table I, only AMA1 violates commu-

tativity.



TABLE I. Truth tables of recently proposed adder designs. Bold entries deviate from the correct truth table.

X Y Cin Sum Cout Sum Cout Sum Cout Sum Cout Sum Cout Sum Cout

(AXA1) (AXA1) (InXA1) (InXA1) (InXA2) (InXA2) (InXA3) (InXA3) (AMA1) (AMA1)
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 0 1 0 1 1 1 0 1 0 1 0
0 1 0 1 0 0 1 1 0 1 0 1 0 0 1
0 1 1 0 1 1 0 0 1 1 1 0 1 0 1
1 0 0 1 0 0 1 1 0 1 0 1 0 0 0
1 0 1 0 1 1 0 0 1 1 1 0 1 0 1
1 1 0 0 1 0 1 0 0 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

C. Associativity
Associativity, is guaranteed by: (x+y)+z = x+(y+z). This

is important whenever operations are going to be reordered.
Compilers frequently reorder the sequence of operations, both
for sequential computer programs and during hardware syn-
thesis. Different orderings will then output different sequences
for the same input sequence of values. Thus, application-
dependent resiliency must now be taken into account at one of
the last steps in the design flow. All deterministic approximate
adders violate associativity in the general sense.

D. Non-Zero Expectation Value
A different effect also follows from the aforementioned

asymmetry: If positive and negative errors generated over all
different input combination do not cancel each other out, any
random input signal will lead to a non-zero expectation value
in the output, producing a DC component. (See Fig. 3).
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Fig. 3. DC component generated over all input codes for 8-bit numbers,
showing the increase in average error for increasing number of approximate
bits for different implementations.

This shows that e.g. AMA1, while violating commutativity,
produces no DC component when applied to random input. We
performed experiments where the addition of two sinusoidal
signals led to the generation of a DC component in addition
to the approximation error. While the approximation error
manifests as quasi-random high frequency distortions, the DC
component may be a real problem in signal processing systems
that would normally not generate a DC component. Additional
effort might be required to filter out this component, which
competes with the original goal of reduced effort computation.

E. Linearity
Linear systems respond to any sum of inputs with the

sum of the individual inputs’ response. This is known as the
superposition principle. Generally, an adder is considered to
be a linear system, such that:
f(a ∗X + b ∗ y) = a ∗ f(X) + b ∗ f(Y )
While no real adder can satisfy this property completely

due to quantization effects, approximate adders reduce the

threshold at which this becomes evident in applications. As an
example, repeat the addition of all possible inputs to a constant
value for the GeAr1 adder. In contrast to Sec. III-A the constant
input is not 0 but 255. For this experiment the value 255 is
the worst case input, guaranteed to trigger the maximum error
resulting from the simplified carry chain. The resulting input-
output relation is shown in Fig. 4. All considered approximate
adders are nonlinear, since the only way to obtain correct
results for all input codes is to perform an exact addition.
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Fig. 4. Output of adding the constant value 255 to the input range (0 to 255)
of the GeAr1 adder. For reference, the straight line shows the exact result.

F. Discussion
The effects of approximating addition are similar to the

general problem of limited precision for computing in general.
However, while usually values are quantized with sufficient
dynamic range to abstract away from these problems, intro-
ducing deterministic errors in the lower significant bits shifts
these effects from the noise range into the signal range. While
probabilistic approximate adders add uncorrelated error into
the system – manifesting as a 6 dB per bit Signal-to-Noise
Ratio decrease – the use of deterministic approximate adders
requires careful consideration of all effects associated with
nonlinear systems. This does not preclude the fact that for a
certain combination of approximate systems and input signals,
the generated error does indeed exhibit noise-like behavior.

IV. COMPARISON OF DETERMINISTIC APPROXIMATION,
TRUNCATION, NOISE

A. Image Addition
To compare the "acceptability" subjectively, Figs. 1 (d) - (i)

show different image addition results with modifications in
the lower 5 bits of the result, except for Fig. 1(h), for which
the GeAr1 configuration was again used. Of all the results the
InXA results were chosen because the InXA1 image sum has a
similar PSNR value as the noise and truncation sum with 5 bits
of approximation. Choosing a horizontal and a vertical gray-
scale gradient as inputs ensures using the whole operational
range of the adder.



Fig. 1 shows that statistical measures fail to capture
application-specific error criticality. While the images in
Figs. 1 (d), (e), (g), (h) exhibit similar PSNR values, the result
of the noisy addition is most similar to the exact result, and
in print almost indistinguishable. Figs. 1 (c), (f) have worse
subjective quality than Fig. 1(d), despite having higher PSNR
values, typically indicating better quality. Truncation is per-
ceived as "poor quality", while the approximate versions
generate visible artifacts. In the context of images, the gen-
erated systematic error competes with the image content,
while the random error is generated in the "noise domain" of
the application. We did not consider any more sophisticated
image quality measures, and only some example adders. The
important point here is that the generation of errors happens in
different "domains" for different quality reduction techniques.
The noisy image is easily accepted by a viewer, while for the
GeAr1 result the artifacts may be unacceptable.

B. IIR Filtering
As a second example we chose a second order digital

high-pass filter, a fundamental block in signal processing
applications. Because it is a feedback system, substitution of
linear for nonlinear operations is expected to lead to stability
problems.

We ran simulations on all the truth-table modifying adders,
where we applied a 2nd high pass filter (Direct Form I) using
the different approximate adders for the summing nodes. The
multiplication was assumed to be exact, input and coefficients
were quantized to 8 bits. We used dirac impulses, unit steps
and mixtures thereof as input signals. In the response, we
looked for two things: change of the form of impulse/step
response and stability. The resulting approximate filters are
nonlinear systems, thus spectral analysis and transfer functions
generally cannot be used for characterization. We inferred
(input-specific) stability from constant-input responses: if the
signal does not remain constant, limit cycles exist. In an audio
applications, these are prone to be audible.

In addition to the exact step response, Fig. 5 shows the
responses for the following modifications of the lower 4 bits:
truncated, noisy, and approximated. The chosen approximate
responses are representative for all considered adders. Noisy
addition had the expected effect of adding noise to the re-
sponse, without influencing filter characteristics. Using trun-
cated addition changed the filter characteristics by a compar-
atively small amount, while the response remain stable. AXA1
changed the characteristics and introduced instability, while
InXA3 also changed characteristics, without introducing insta-
bility. While no relationship was observed between stability,
number of approximated bits, input signal and approximation
type, it demonstrates that using such components requires
careful case-by-case analyses when employing approximation.
Choosing a deterministic approximate with sufficient SNR can
still introduce unwanted zero-input limit cycles.

V. CONCLUSION

We showed that using deterministic approximate adders can
have unforeseen effects on the acceptability of an application
result, not only the reduction of some quality measure. This
cannot be captured only by the statistical metrics that have
been proposed up to now, and is an obstacle for widespread
adoption of approximate computing.
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Fig. 5. Step responses of different adders inside the same second order IIR
filter. (a) exact response, (b) noisy addition, (c) truncated addition, (d) AXA1-
approximated, (e) InXA3-approximated. The shape of the initial sinusoidal
peaks relates to the filter characteristics, while the flat region shows the steady-
state behavior.

The susceptibility to these problems depends on the applica-
tion and/or the input data. If it is known on which fundamental
assumptions an application depends, it will be much easier
to make the optimum choice of approximation technique.
In the presented examples, the generation of patterns was
a criteria for evaluating image addition, while stability was
one of the defining properties of IIR filtering. None of these
characteristics relate to any of the existing statistical measures.
Error, resulting from deterministic approximation, is not guar-
anteed to exhibit noise-like behavior. Especially regular inputs
may generate artifacts that compete with information in an
application domain.
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