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Abstract—Fault-tolerance is emerging as one of the important
optimization objectives for designs in deep submicron technology
nodes. This paper proposes a technique of application mapping
and scheduling with checkpointing on a multiprocessor system
to maximize the reliability considering transient faults. The
proposed model incorporates checkpoints with imperfect fault
detection probability, and pipelined execution and cyclic depen-
dency associated with multimedia applications. This is solved
using an Artificial Intelligence technique known as Particle Swarm
Optimization to determine the number of checkpoints of every
task of the application that maximizes the confidence of the
output. The proposed approach is validated experimentally with
synthetic and real-life application graphs. Results demonstrate
the proposed technique improves the probability of correct result
by an average 15% with imperfect fault detection. Additionally,
even with 100% fault detection, the proposed technique is able
to achieve better results (25% higher confidence) as compared
to the existing fault-tolerant techniques.

I. INTRODUCTION

To accommodate the ever increasing computing demand
and to address scalability, multiple processing elements (PEs)
are interconnected using an interconnection network (such as
bus, networks-on-chip, etc.) to form multiprocessor systems-
on-chip (MPSoCs) [1]. Shrinking transistor geometries, in-
creasing transistor density, and aggressive voltage scaling are
negatively impacting the dependability of these processing
elements and the communication backbone by increasing the
probability of faults [2]1. Such faults can be classified as
transient, intermittent and permanent. This paper deals with
transient faults, which are temporary deviation of a circuit’s
output from its reference or expected output. These faults are
caused by single-event upsets due to particle strikes, electrical
noises, cross talks, or other environmental effects. A traditional
technique of transient fault-tolerance is to replicate some (or
all) the tasks of an application, with the different replicas of
a task being executed on different processing elements [3]–
[5]. Stringent area and power budget is prohibiting the use
of redundancy in today’s MPSoCs. One economic transient
fault-tolerant technique is checkpointing [6]–[13]. In this
process, the state of an executing task (known as checkpoint)
is periodically saved to a local or remote memory at regular
(or irregular) time intervals (known as checkpoint intervals).
When a failure is detected, the process rolls back to the last
valid checkpoint and resumes execution. Thus, checkpointing
allows task to progress execution in spite of failures.

Mapping and scheduling of real-time applications on mul-
tiprocessor platforms have been widely studied in literature

1This paper considers malignant faults i.e., the faults that are manifested
as errors in the system.

focusing on independent tasks as well as on tasks with
precedence constraints. These applications are characterized
by performance requirement, the violation of which is undesir-
able. Multimedia applications constitute a significant fraction
of these real-time applications. This class of application is
often associated with a throughput requirement, violation of
which impacts the quality-of-service provided to end users.
Pipelining is a technique to exploit temporal parallelism as-
sociated with these applications. Prior studies have confirmed
that pipelined scheduling of multimedia applications offer a
distinctive performance improvement over sequential schedul-
ing, and is therefore adopted as the scheduling technique for
this work. Determining the optimal number of checkpoints
for real-time applications that maximizes reliability while
satisfying the throughput requirement is an NP-hard problem.
Significant attention has been drawn over the past decades
to solve this problem efficiently. Most of these techniques
have focused on independent tasks [6]–[10]. Although there
are techniques for dependent tasks, such as [11]–[13], they
suffer from the following limitations.

First, in all the existing techniques, 100% fault detection
is assumed i.e., a fault is assumed to be detected completely
at the end of the checkpoint interval. In these models, a fault
always triggers the re-execution of the checkpoint segment.
This assumption is optimistic in determining the overhead
in execution time of a task with checkpoints, and leads
to sub-optimal scheduling for scenarios with imperfect fault
detection. On the contrary, this paper analyzes the execution
time of a task incorporating the probability of fault detection
in computing the overhead, and thus provides a realistic bound
on the schedules obtained. Second, all existing techniques
on checkpoint-based fault-tolerance consider directed acyclic
graphs (DAGs) with sequential application execution. Multi-
media applications require modeling cyclic dependency, multi-
input tasks, multi-rate tasks, and pipelined execution. In this
work, we consider synchronous data flow graphs (SDFGs)
that is generic to represent cyclic and acyclic dependencies.
This makes the proposed approach applicable for real-time
multimedia as well as non-multimedia applications.

Contributions: To summarize, this paper formulates the
task mapping and scheduling problem to determining the
optimal number of checkpoints for the constituent tasks with
imperfect fault detection. An Artificial Intelligence (AI) based
meta-heuristic technique called Particle Swarm Optimization
(PSO) is utilized to solve the same. Unlike Genetic Algo-
rithms, PSO does not rely on mutations of population, but
rather on the social behavior of the individuals. Following are
the key contributions in this respect.
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considering imperfect fault detection;
2. A PSO-based heuristic to solve the formulated problem;
3. A task mapping and scheduling problem considering

SDFG that allow modeling cyclic dependency, multi-
input tasks, multi-rate tasks, and pipelined execution.

Experiments conducted on a set of synthetic and real-life
SDFGs demonstrate that the proposed approach is able to
improve the reliability of an MPSoC by an average 15% by ex-
ploiting the performance slack with imperfect fault detection.
Additionally, even with 100% fault detection, the proposed
approach is able to improve the confidence of the produced
result by 25% as compared to the existing techniques.

The rest of this paper is organized as follows. A brief
introduction to the related works is presented in Section II.
This is then followed by preliminaries on checkpointing with
imperfect fault detection in Section III and the problem for-
mulation in Section IV. The PSO-based heuristic is introduced
in Section V. Experimental results are presented in Section VI
and the paper is concluded in Section VII.

II. RELATED WORKS

Transient faults have received significant attention in recent
years due to their adverse effects in deep sub-micron technol-
ogy nodes. Several techniques exist in literature for transient
fault-tolerance, such as replication [3]–[5], checkpointing [6]–
[13] and rollback recovery [11]–[13]. We consider checkpoint-
based transient fault-tolerance, which can be classified into
two categories – online and offline. Online checkpointing
techniques select the number and interval of the checkpoints
in an adaptive manner [14]. Offline techniques on the other
end adopt a task-centric view where the number and in-
terval of checkpoints for each task are determined offline.
Offline techniques can be further classified into techniques
dealing with independent [6]–[10] and dependent tasks [11]–
[13]. The techniques with independent tasks determine the
number of checkpoints for every tasks such that reliability
is maximized while satisfying their deadline requirements
(for real-time tasks). However, these techniques result in
sub-optimal solutions for applications with dependent tasks,
since optimum number of checkpoints for individual tasks do
not guarantee reliability optimality for the entire application.
Hence, references [11]–[13] are discussed in details. A Tabu
Search heuristic is proposed in [11] to statically schedule the
tasks of an application on a multiprocessor system. Several
policies are proposed, such as task re-execution, replication or
checkpointing. The heuristic selects the one that maximizes the
reliability of application execution. The proposed technique
selects sub-optimal checkpoints for the tasks to determine the
global reliability optimum point for the entire application. A
similar approach is proposed in [12] for mixed critical appli-
cations. A reliability analysis technique is proposed in [13]
to determine the schedulability of tasks with dependency
considering checkpoint-based transient fault-tolerance. Table I
summarizes the existing works.

III. CHECKPOINTING

This section formulates the checkpointing problem with
imperfect transient fault detection for a single task. This is
later extended to multiple tasks of a real-time application.
One important parameter of checkpointing is checkpoint

TABLE I
SUMMARY OF RELATED WORKS

Related Works Throughput
Degradation

Imperfect Fault
Detection

Application
Model

Huang et al. [5] ×
√

DAGs
Pop et al. [11] × × DAGs

Saraswat et al. [12] × × DAGs
Axer et al. [13]

√
× DAGs

Proposed
√ √
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Fig. 1. Checkpointing of a task

overhead, which is defined as the increase in the execution
time. This overhead is dependent on

1. number of checkpoints, N
2. time for checkpoint capture and storage, Ts
3. time for recovery from a checkpoint, Tr
4. fault arrival rate, λ
Following are the assumptions regarding checkpointing-

based transient fault-tolerance similar, to [6]–[13].
• Transient faults follow Poisson distribution with a rate of
λ failures per unit time.

• Transient faults are point failures i.e. these faults induce
an error in the system and disappear.

• The system rolls back to the last valid checkpoint as soon
as a fault is detected.

• The probability of multiple transient faults in each check-
point segment is negligible.

A. Confidence of Result with Imperfect Fault Detection
Figure 1 shows an example task execution with N check-

points. Let X be a random variable denoting the interval be-
tween two successive transient faults. The probability density
function (PDF) of X is fX(t) = λe−λt. Let τi define the ith
checkpoint interval (time between ith and i+ 1th checkpoint)
composed of the actual computation (denoted by Ii) and the
checkpoint overhead (To = Ts+Tr). The probability of failure
during this interval τi is Fi = Prob[X ≤ τi] = 1− e−λτi . Let
D denote the probability of fault detection2 i.e., (0 ≤ D ≤ 1),
and Ri the confidence of the output result i.e., the probability
of reliable result at the beginning of τi. Then, the reliability
at the beginning of τi+1 is the probability P (A ∪B), where
A is the event that the result is reliable at the beginning of τi
and no fault occurs and B is the event that faults occur in the
interval and gets detected triggering a restart recovery.

Ri+1 = Ri(1− Fi) +Ri+1FiD (1)

The above equation can be rewritten as

Ri+1 =
Ri(1− Fi)
1− FiD

(2)

The above equation is used recursively to determine the
probability of correct result with N checkpoints (EN+1) with
the initial condition E0 set to zero.

2D = 1 implies 100% fault detection.



B. Execution Time with Checkpoints
Let Yi denote the actual computation with one or more faults

in interval τi. The probability density function of Yi is

fYi(t) =
fX(t)

Fi
=

λe−λt

1− e−λτi
(3)

The mean of Yi (denoted as Ȳi) is

Ȳi =

∫ τi

0

tfYi(t)dt =
1

λ
− τie

−λτi

1− e−λτi
(4)

Let ωi denote the execution time from time t = 0 to the
completion of the ith checkpoint. Thus, ωi+1 = ωi+νi, ∀i ∈
[0, N ] (refer Figure 1), where νi is the length of the checkpoint
interval τi+1 determined probabilistically i.e.,

νi =

{
τi with probability (1− FiD)

Ȳi + To + νi with probability FiD
(5)

Using Equation 5 the following solution can be derived,

ωi+1 = ωi + τi +
FiD(Ȳi + To)

1− FiD
(6)

The above equation can be used recursively to determine the
mean execution time with N checkpoints as ωN+1 with initial
condition ν0 equal to 0. Clearly, the checkpoint intervals are
non uniform and is dependent on the fault coverage. A point
to note here is that when real-time applications are considered
with multiple tasks, a superscript (indicating the task id) is
introduced on ωN+1 and RN+1.

C. Difference with Existing Checkpointing Techniques
The existing works on checkpoints assume the following –

perfect fault detection (i.e. D = 1) and equidistant checkpoints
(i.e. ωi = i∗ω where ω is the average length of each segment);
both are difficult to achieve in reality. This work overcomes
these restrictions by considering imperfect fault detection and
non-uniform checkpoint intervals.

IV. PROBLEM FORMULATION

A. Introduction to Synchronous Data Flow Graphs
Synchronous Data Flow Graphs (SDFGs, see [15]) are often

used for modeling modern DSP applications [16] and for
designing concurrent multimedia applications implemented on
multiprocessor systems. Both pipelined streaming and cyclic
dependencies between tasks can be easily modeled in SDFGs.
SDFGs allow analysis of a system in terms of throughput
and other performance properties e.g., latency and buffer
requirements [17].

The nodes of an SDFG are called actors; they represent
functions that are computed by reading tokens (data items)
from their input ports and writing the results of the compu-
tation as tokens on the output ports. The number of tokens
produced or consumed in one execution of an actor is called
port rate, and remains constant. The rates are visualized as
port annotations. Actor execution is also called firing, and
requires a fixed amount of time, denoted with a number in the
actors. The edges in the graph, called channels, represent
dependencies among different actors.

Figure 2 shows an example of a SDFG. There are three
actors in this graph. In the example, a0 has an input rate of
1 and output rate of 2. An actor is called ready when it

1 1

1
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Fig. 2. Application SDFG.

has sufficient input tokens on all its input edges and sufficient
buffer space on all its output channels; an actor can only fire
when it is ready. The edges may also contain initial tokens,
indicated by bullets on the edges, as seen on the edge from
actor a2 to a0 in Figure 2. Formally, an SDFG is a directed
graph Gapp = (A,C) consisting of a finite set A of actors and
a finite set C of channels.

One of the most interesting properties of SDFGs relevant to
this thesis is throughput. Throughput is defined as the inverse
of the long term period i.e., the average time needed for one
iteration of the application. (An iteration is defined as the
minimum non-zero execution such that the original state of the
graph is obtained.) This is the performance parameter used in
this thesis. The following properties of an SDFG are defined.

Definition 1: (REPETITION VECTOR) Repetition Vector
RV of an SDFG, Gapp = (A,C) is defined as the vector
specifying the number of times actors in A are executed
for one iteration of SDFG Gapp. For example, in Figure 2,
RV [a0 a1 a2] = [1 2 1].

Definition 2: (APPLICATION PERIOD) Application Pe-
riod Per(A) is defined as the time SDFG, Gapp = (A,C) takes
to complete one iteration on an average.

The period of an SDFG can be computed by analyzing the
maximum cycle mean (MCM) of an equivalent homogeneous
SDFG (HSDFG). The period thus computed gives the min-
imum period possible with infinite hardware resources e.g.
buffer space. If worst-case execution time estimates of each
actor are used, the performance at run-time is guaranteed to
meet the analyzed throughput. Self-timed strategy is widely
used for scheduling SDFGs on multiprocessor systems. In this
technique, the exact firing of an actor on a core is determined
at design-time using worst-case actor execution-time. The
timing information is then discarded retaining the assignment
and ordering of the actors on each core. At run-time, actors
are fired in the same order as determined from design-time.
Thus, unlike fully-static schedules, a self-timed schedule is
robust in capturing the dynamism in actor execution time. The
self-timed execution of an SDFG consists of a transient phase
followed by a periodic or steady-state phase [18].

A point to note is that, the conversion of an application to
an equivalent SDFG is not the focus of this paper. Interested
readers can refer to [19]. Instead, this paper focuses on the
reliability optimization methodology as outlined below.

An SDFG is mathematically represented as a directed graph
Gapp = (Vapp, Eapp, Tc), where Vapp is the set of nodes
representing tasks of the application, Eapp is the set of edges
{eij | 1 ≤ i, j ≤ |Vapp|}, representing data dependency
among tasks and Tc is the throughput constraint of Gapp. Let
napp = |Vapp|. Each task vi ∈ Vapp is a tuple 〈ti, Di〉, where
ti is the execution time of vi and Di is the data produced at
every iteration of vi. Di is the set {dij | 1 ≤ j ≤ |Vapp|},



representing the data produced on edge eij .
The architecture model for this work consists of homoge-

neous cores interconnected in a mesh-based topology. Such
an architecture is represented as a graph Garc = (Varc, Earc),
where Varc is the set of nodes representing processors and
Earc is the set of edges representing communication channels
among the processors. Let narc = |Varc|.

Denoting RkNc(k) as the probability of erroneous output
of task vk with Nc(k) checkpoints, the overall optimization
problem becomes

Minimize
∏napp
k=1 R

k
Nc(k)

Subject to
• All tasks meet their respective deadlines
• All control/data dependencies are satisfied
• Application throughput constraint is satisfied

where napp = |Vapp| is the number of tasks of application.

V. OPTIMIZATION TECHNIQUE

The proposed optimization problem formulation can be
solved using standard solvers. However, the execution time
grows super exponentially with the number of tasks and cores.
This paper proposes a fast heuristic to solve the optimization
problem using particle swarm optimization to determine the
number of checkpoints for each task that maximizes the
confidence of the result under imperfect fault detection while
satisfying performance.

A. Particle Swarm Optimization
Particle Swarm Optimization (PSO) is an artificial intel-

ligence technique [20] influenced by the social behavior of
animals, such as flocking of swarms and schooling of fish.
Since its introduction, PSO has been used extensively in
solving linear and nonlinear optimization problems. A PSO
system is characterized by the existence of a number of
particles, analogous to populations in genetic algorithms.
However, unlike the genetic algorithm, PSO does not rely
on mutation of population, but rather on the movement of
the particle swarms, which is coordinated by its position and
velocity. In the quest for an optimal landing position, a particle
adjusts its position according to its local experience (best
position of the particle, pbest) and global experience (best
position by the flock of particles, gbest). A fitness function
is used to evaluate the metric of interest corresponding to the
positions of the particles. Thus, each particle has a fitness
value assigned to it at every generation of the algorithm.
The velocity and the position of a particle are determined
according to the following equations (refer [20]).

V k+1(i) = W ∗ V k(i) + c1 ∗ rnd1
(
pbesti − Posk(i)

)
+c2 ∗ rnd2

(
gbest− Posk(i)

)
(7)

Posk+1(i) = Posk(i) + V k+1(i)

where V k(i) and Posk(i) are respectively, the velocity and
position of ith particle in generation k, W is the inertial
weight, ci, c2 are the acceleration coefficients, and rnd1 and
rnd2 are random numbers in [0, 1].

B. Mapping Problem in PSO System
Figure 3 shows an example transformation of a task map-

ping instance to a position in the PSO system. The problem
consists of mapping three tasks (denoted as v1, v2, v3) to an
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Fig. 3. Transforming to PSO system

ALGORITHM 1: FEval: Fitness Evaluation
Input: Application and architecture graph G = [Gapp, Garc] and mapping M
Output: Fitness value Rb

1 Nc[1 : napps] = 0 and δ = SDF 3(G,M)− Tc;
2 while δ > 0 do
3 for vi ∈ Gapp do
4 Nc(i) = Nc(i) + 1, ti = ωiNc(i) and determine EiNc(i) ∀i;
5 δi = SDF 3(G,M)− Tc;
6 Ri =

∏napp

i=1

∏RV (i)

j=1
RiNc(i) //RV (i) denotes the number of

invocations of task vi in one period of the application;
7 Define gradi =

Ri
δi

if δ > 0 or −∞ otherwise;
8 Nc(i) = Nc(i)− 1;
9 end

10 Determine actor j such that gradj is maximum;
11 Nc(j) = Nc(j) + 1, tj = ωj

Nc(j)
;

12 Rb =
∏napp

i=1

∏RV (i)

j=1
RiNc(i);

13 δ = SDF 3(G,M)− Tc;
14 end

architecture consisting of two cores c1 and c2. A mapping
in the task mapping domain corresponds to a position in the
PSO System. The number of dimensions of the PSO system
is equal to the number of tasks (three in this example). The
cores to which the tasks are mapped, form the coordinate of
the particle’s position. As an example, the three tasks in the
first mapping are mapped to c1, c1 and c2, respectively. This
corresponds to (1, 1, 2) in the PSO coordinate system. The
particle moves to its new position (2, 1, 2) in accordance with
Equation 7. This corresponds to the new mapping where the
three tasks are mapped to c2, c1 and c2, respectively.

C. Fitness Evaluation
The reliability evaluation corresponding to a mapping

(or equivalently, the position of a particle) is performed
by a fitness function, which incorporates an existing tool
(SDF 3 [21]) to determine the schedule of an SDFG. The
throughput slack from the resultant pipelined scheduling is
exploited to selectively insert checkpoints in the tasks. The
overall reliability of the output result is determined and
returned as fitness value. This is shown as pseudo-code in
the Algorithm 1. The algorithm iterates as long as there is
throughput slack available (outer while loop lines 2 - 14). At
each iteration, the algorithm checks the impact of increasing
the number of checkpoints of every task of the set Gapp to
evaluate a metric grad, defined as the reliability per unit
throughput slack (lines 4 - 8). The grad value is assigned
−∞ when the throughput is violated. The algorithm selects
the task for which grad is maximum (line 10). The number
of checkpoints for the corresponding task is incremented, and
reliability and the throughput slack are re-computed (lines 11



ALGORITHM 2: Particle Swarm Optimization
Input: Application and architecture graph G = [Gapp, Garc], set of particles

Sp and maximum generations MGen
Output: Best position gbest

1 for pi ∈ Sp do
2 Pos(i, j) = rand(1 : napp);
3 Initialize V (i) and pbesti = Pos(i);
4 end
5 gbest = Pos(j) s.t. FEval (G,Pos(j)) is maximum;
6 while NGen ≤MGen do
7 for pi ∈ Sp do
8 Determine V (i) and Pos(i) according to Equation 7;
9 if FEval (G,Pos(i)) > FEval (G, pbesti) then

10 pbesti = Pos(i);
11 end
12 end
13 gbesttemp = pbestj s.t. FEval(G, pbestj) is maximum;
14 if FEval(G, gbesttemp) > FEval(G, gbest) then
15 gbest = gbesttemp;
16 end
17 NGen = NGen+ 1;
18 end

- 13). The probability of fault and the modified execution time
for a task with checkpoints are determined using Equations 2
and 6, respectively.

D. PSO-Based Algorithm

Algorithm 2 provides the pseudo-code of the PSO. The first
step in the algorithm is to initialize the dimensions of the
particles and their corresponding velocity and best position.
The best position in the set is recorded. Following this, the
algorithm iterates for a maximum number of generations. At
each generation, the position Pos and the velocity V are
updated according to Equation 7 and the local and global best
are determined. Interested readers can refer to [20] for general
PSO algorithm.

VI. RESULTS

Experiments are conducted with synthetic and real-life ap-
plication SDFGs on Intel Xeon 2.4 GHz server running Linux.
Fifty synthetic SDFGs are generated with the number of tasks
in each application selected randomly from the range 8 to
100. Additionally, fifteen real-life applications are considered
with seven from streaming and the remaining eight from non-
streaming domain. The streaming applications are obtained
from the benchmarks provided in the SDF 3 tool [21]. These
are H.263 Encoder, H.263 Decoder, H.264 Encoder, MP3
Decoder, MPEG4 Decoder, JPEG Decoder and Sample Rate
Converter. The non-streaming application graphs considered
are FFT, Romberg Integration and VOPD from [22] and
one application each from automotive, consumer, networking,
telecom and office automation benchmark suite [23]. These
applications are executed on an MPSoC consisting of 9
homogeneous cores arranged in a 3× 3 mesh-based topology.

A. Complexity Analysis

The complexity of the Algorithm 1 is computed as follows.
Let η denotes the average number of times the outer loop is
executed. The complexity of Algorithm 1 is therefore

C1 = O
(
η ×O

(
SDF 3

))
= O (η × napp × narc) (8)

where the complexity of the SDF 3 tool is given by
O (napp × narc) (refer [17]). This fitness evaluation algorithm
is called in the main PSO algorithm (Algorithm 2) for each
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Fig. 4. Performance with varying fault detection

particle in each generation. Therefore, the complexity of
Algorithm 2 is

C2 = (|Sp| ×MGen× η × napp × narc) (9)

Rest of the results section is organized into three sections
– comparison of the proposed checkpointing technique with
(1) other fault-tolerant techniques considering imperfect fault
detection; (2) existing checkpointing techniques with 100%
fault detection; and (3) other heuristics (alternative to PSO) to
establish its superiority for the problem class.

B. Results With Imperfect Fault Detection
Figure 4 plots the performance of the proposed technique

with varying fault detection for four synthetic task-graphs
selected randomly from the set of 50 graphs considered. The
number of tasks in each graph is indicated in the corresponding
name of the graph and the results are average of 20 runs. The
result of the proposed technique is compared with a technique
with no transient fault-tolerance incorporated (indicated as
no FT in the figure), the technique of task duplication with
imperfect fault detection [5] (referred in the figure as TD) and
the tabu-search based technique of [11] (referred to as TS). The
TS technique assumes 100% fault detection. The reliability
results obtained using this technique is multiplied with the
fault detection probability to obtain the actual reliability (this
is indicated as TS (actual) in the figure). The probability of
correct result for no FT technique is (1 - probability of fault)
and is independent of the fault detection. The fault arrival
rate (λ) is 10−6 (similar to that considered in [3]–[14]). The
parameters used for PSO are as follows: number of particles =
number of tasks and number of generations = 20. The choice
of these parameters are justified in later subsections. It can be
seen from the figure that, as the probability of fault detection
decreases, there is a decrease in the probability of correct
result (for TS, TD and proposed). This is expected because
with decrease in the probability of fault detection, the number
of silent faults (those that are undetected by fault detection
mechanisms) increases. Therefore, there is a higher probability
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that the output result is erroneous. This trend is consistent
with that predicted from Equation 2. The proposed technique
achieves 1% to 37% higher reliability than TD (average 15%
for all 50 applications). In comparison with TS, the proposed
technique achieves on average 20% higher reliability.

C. Results with Perfect Fault Detection
As established previously, all the existing checkpointing

techniques consider 100% fault detection. To establish a fair
comparison of the proposed technique with these techniques,
the fault detection is assumed to be 100% in the proposed
formulation (i.e. D = 1). Figure 6 plots the throughput
slack and reliability improvement of the proposed technique in
comparison to the tabu-search based checkpointing technique
of [11] (referred in the figure as TS) for 8 applications (5
streaming and 3 non-streaming). Results reported in this figure
are the average of 20 runs. A point to note here is that,
the TS technique is applicable to Directed Acyclic Graphs
(DAGs) only and therefore all the streaming SDFGs are first
converted to homogeneous SDFG (HSDFG) representation
before applying TS on them. The conversion of SDFGs to
HSDFGs is known to be of exponential complexity and results
in an exponential increase in the number of tasks in the
resultant HSDFG. Therefore, the proposed technique is the
first checkpointing technique for SDFGs.

There are a few trends to follow from this figure. First of
all, pipelining results in significant increase in the throughput
obtained especially for the streaming applications (H.264 Enc,
JPEG Dec, MPEG4 Dec, MP3 Enc and SRC). This is shown
as the increases in the throughput slack (throughput constraint
– throughput obtained) in Figure 6(a) with pipelining. On av-
erage, for all the streaming applications considered (including
those not shown in the figure), pipelining results in an average
3 fold increase in throughput slack as compared to the se-
quential execution. This is crucial as the slack is exploited for
improving the quality of result. For non-streaming applications
such as Consumer, Security and Telecomm, pipelining is not
able to exploit higher slacks as these are highly sequential
applications. On average, pipelining is able to extract 30%
higher throughput slack. Secondly, the reliability (i.e. the prob-
ability of correct result) is higher in the proposed technique
as compared to TS. For streaming applications, the proposed

technique improves reliability by 3% to 60% (average 25%
for all applications). This improvement can be attributed
primarily to the higher slack (due to pipelining) and in parts
to PSO-based optimization. For non-streaming applications,
the proposed technique increases reliability by 1% to 19%
(average 10% for all applications). This improvement can be
attributed mostly to the PSO-based technique as the throughput
slack improvement for these applications is nominal. The
important conclusion to make from these observations is that,
the combination of pipelining and PSO-based optimization
improves confidence of the produced result significantly for
both streaming and non-streaming applications.

D. Convergence of PSO
To establish the suitability of the PSO-based optimization

for the problem class, experiments are conducted with the
same set of applications using the standard meta heuristics
– Simulated Annealing (SA), Tabu-Search (TSearch), Genetic
Algorithm (GA) and a greedy search heuristic (GS) similar to
the one proposed in [24]. These heuristics are implemented
using the same fitness function as the one for the PSO
(ref Algorithm 1). The following parameters are used for
GA: Crossover Probability = 0.9 and Mutation Probability =

1
number of tasks . The size of the population is same as that of PSO
i.e. twice the number of tasks in each application. Candidates
are selected using Roulette wheel based selection and the best
solution is preserved across generations. Further, NSGA-II is
used to solve the problem and it replaces Algorithm 2. For
SA, the following parameters are used: initial temperature =
100, end temperature = 10−5, cooling rate = 0.95 and the
number of random moves for each temperature = 100. The
SA is solved using Matlab integrating Algorithm 1 for fitness
evaluation. These parameters are chosen based on extensive
evaluation and the results are omitted here. For TS and GS, the
parameters are same as that used in [11] and [24] respectively.

As can be seen from the figure, the GA achieves better result
(higher probability of correct result) among all the alternative
heuristics. The PSO-based optimization achieves better results
(for H.264 Dec) than GA. For the remaining 3 applications,
the result of PSO and GA are the same. Among all 65
applications considered (synthetic and real) including those
shown on the figure, PSO and GA achieves similar results for
43 applications (35 synthetic and 8 real-life). For the remaining
22 applications, PSO achieves higher probability of correct
result by an average 5%. Another important consideration to
make is that, the number of generations of GA is usually
higher than that of PSO by an average 20%. This results in
a higher execution time of GA as compared to PSO. These
results justifies the selection of PSO for this problem class.

VII. CONCLUSION

This paper presents an artificial intelligence based task
mapping technique to determine the number of checkpoints of
a real-time application mapped on a homogeneous multipro-
cessor system with imperfect fault detection. Experiments con-
ducted with synthetic and real-life application graphs demon-
strate that the proposed technique improves the probability
of correct result by 15% with imperfect fault detection. Even
with 100% fault detection, the proposed technique is able to
improve the confidence of the produced result by an average
25% and outperforms other meta-heuristic/greedy approaches
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Fig. 5. Convergence of the proposed PSO technique

in terms of solution quality and/or execution time. As a future
extension, heterogeneous architectures can be considered.
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