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Abstract—The advancement in process technology has en-
abled integration of different types of processing cores into
a single chip towards creating heterogeneous Multiprocessor
Systems-on-Chip (MPSoCs). While providing high level of com-
putation power to support complex applications, these modern
systems also introduce novel challenges for system designers,
like managing a huge number of mappings (application tasks to
processing cores allocations) that increases exponentially with
the number of cores and their types. This paper presents a
mapping approach that computes multiple energy-throughput
trade-off points (mappings) at design-time and uses one of these
points at run-time based on desired throughput and current
resource availability while optimizing for the overall energy
consumption. While significantly reducing the complexity of
the design space exploration (DSE) to compute mappings at
design-time, the proposed strategy still evaluates mappings
for all the resource combinations of the platform, providing
efficient mapping solutions for all the scenarios of system
architecture at run-time. Moreover, the proposed approach
performs energy-aware mapping at run-time while utilizing the
DSE results. Experimental results show that proposed strategy
achieves better energy-throughput trade-off points, covers all
the resource combinations and reduces energy consumption up
to 24.93% at design-time and additionally 17.8% at run-time
when compared to state-of-the-art techniques.

Keywords-design space exploration; heterogeneous MPSoC;
mapping algorithm;

I. INTRODUCTION

Heterogeneous MPSoCs have recently become a promis-
ing production trend of chip vendors due to their high
computation potential and energy-savings ability [11]. These
systems contain different types of processing elements (PEs)
such as General Purpose Processor (GPP), hardware accel-
erators and programmable hardware for dedicated compu-
tation. Examples of such MPSoCs are Texas Instruments
OMAP [5], ST Microelectronics Platform 2012 [3], etc.
Multiple applications are expected to run on these systems
concurrently. Each application shows different performance
when utilizing different types of PEs. In order to support
applications on a heterogeneous MPSoC, efficient mapping
strategies need to be developed that can exploit the dis-
tinct advantages of heterogeneous PEs towards providing
increased energy savings and ensuring the throughput re-
quirement of all the applications.

There are mainly two kinds of mapping approaches:
design-time and run-time. The design-time strategies [1, 10,
12, 17] consider static workloads (predefined applications)

and thus cannot handle dynamic workload scenarios such
as insertion of a new application into the system at run-
time. On the other hand, run-time mapping [4, 18, 19, 30]
may not provide a mapping solution that can guarantee
the throughput requirement of applications due to limited
time and available computation power at run-time. To ad-
dress shortcomings of design-time and run-time approaches,
hybrid mapping strategies that use design-time analysis
results to support run-time decisions have been reported
[21, 27, 28]. The increased heterogeneity in the architecture
introduces new challenges for these mapping strategies. For
example, the number of mappings that need to be evaluated
increases exponentially with the number of PE types, i.e, the
design space becomes multi-dimensional, whereas it is linear
for the homogeneous case [23]. To overcome these issues,
some heuristic DSE approaches have been proposed to prune
the design space and thus reduce evaluation effort [23].
While pruning the design space, the existing approaches
discard evaluation of mappings for a significant number of
resource combinations. Consequently, the run-time mapping
process needs to find a mapping solution dynamically in
case of missing resource combinations during DSE. For
such situations, the run-time mapping process may take a
long time to find a mapping, which may violate the strict
timing deadlines imposed on the mapping time. Moreover,
existing strategies have focused mainly on improvement
of design time analysis (DSE), whereas little attention has
been paid on innovation of run-time techniques; although
such an improvement can significantly reduce the energy
consumption of the system. This paper proposes a mapping
strategy that addresses shortcomings of existing strategies
by providing following contributions:

• A design-time DSE technique that provide energy-
throughput trade-off points for all the possible hetero-
geneous resource combinations.

• A run-time mapping technique that chooses best trade-
off points from the design-time analysis results and con-
siders different mapping options on the fly to optimize
the energy consumption.

Most existing works usually consider only one perfor-
mance metric like energy or throughput when performing
optimization in DSE process [21, 23]. Hence, the best
mapping for each resource combination (generated by DSE)
may excel for one performance metric and show very bad



result for the other. In our strategy, both throughput and
energy have been used in optimization process to achieve a
balanced mapping solution for the system.

Recently, a large body of research works in mapping
strategies has focused on energy optimization. However,
most of them perform energy optimization either during
design-time DSE [20, 23] or at run-time [8, 24]. In contrast,
our approach perform energy optimization both at design-
time and run-time to achieving maximum energy savings.

Overview. Section II reviews history and trend of map-
ping strategies for MPSoCs. Section III introduces prelimi-
naries of multiprocessor and application model used in this
work Our methodology is highlighted in Section IV and
experimental results are presented in Section V to show the
efficiency of our method. Finally, Section VI concludes the
paper and provides directions for future work.

II. RELATED WORK

Earliest DSE strategies that generate multiple mapping
have been reported in [7, 14, 15, 26]. By generating various
mapping solutions at design-time, they can provide sup-
porting information to handle the dynamism in application
throughput requirement and resource availability at run-
time. However, they suffer from several shortcomings. They
target only fixed architecture platform, do not scale well
with the number of tiles, and perform duplicate (similar
tasks to tiles allocations at different locations in the plat-
form (mapping)) evaluations for large-size platforms. The
duplications increase the number of evaluated mappings
significantly and thus the overall evaluation time. In order
to overcome the aforementioned limitations, our DSE strat-
egy considers a generic heterogeneous platform to provide
mapping solutions that are applicable to a variety of target
platforms, which is not possible while considering a fixed
platform. The generic platform contains tiles depending
upon the number of tasks in the application. A tile includes a
processing unit and other elements like memory or network
interface (NI). Processing Unit may have different hardware
realization such as general purpose processor (GPP), Graph-
ics Processing Unit (GPU), digital signal processor (DSP),
reconfigurable hardware (RH) , etc. and it determines the
tile type. The results of our DSE analysis for a platform can
be reused for multiple target platforms as long as the tile
types and the maximum distance between tiles of the target
platform are subset of those considered during DSE analysis.
Therefore, the analysis results are applicable to variety of
target platforms and repeated evaluations can be avoided.
Furthermore, duplications during the analysis are avoided
by not considering a bigger platform than required.

For run-time mapping, a large body of literature exists
[4, 18, 19, 30]. These early studies generate the mapping
solution on-line at the arrival of applications without any
prior analysis. Therefore, the result is usually not opti-
mal due to the limited computation resources at run-time.
Recently, mapping strategies have changed their focus to
hybrid approaches, which use the prior evaluation (done
at design-time) to support the mapping decision at run-
time [16, 21, 28, 29]. Most of these works perform the

optimization for only one performance metric like energy
consumption, throughput or resource usage. The method
in [21] provides the optimal mapping in term of average
power consumption only; therefore, it cannot guarantee the
throughput constraint of applications. In [16] and [29],
the DSE strategies take into account multiple quality pa-
rameters at design-time, but leave the resource constraint
problem for a controller at run-time. On the other hand,
our strategy produces mappings for all the possible resource
combinations, where the mappings at each resource combi-
nation represent trade-off between energy and throughput.
Therefore, it provides better mapping solutions for several
performance metrics. The strategies in [16, 21, 28, 29]
target a fixed platform, whereas our method is applicable to
generic platform. In [22], a general approach is considered
but it is applicable only to homogeneous platforms. In [23],
the authors target a generic heterogeneous platform, but
the DSE is conducted in terms of throughput optimiza-
tion only. In contrast, our design-time analysis takes both
throughput and energy consumption into account. Further,
DSE in [23] reduces the number of mappings significantly
while focusing on the high-quality (throughput) mapping
solutions. However, evaluation of mappings at a number of
resource combinations is discarded during the DSE process.
Therefore, the analysis results might not contain mapping
solutions for all the different resource combinations available
at run-time. Our proposed strategy addresses this problem
and reduces the energy consumption by mapping the highly
communicating tasks onto the available closest tiles.

III. PRELIMINARIES

A. Application Model
The applications are modeled as Synchronous Dataflow

Graphs (SDFGs) [13]. SDFGs facilitate for easier model-
ing of streaming multimedia applications with timing con-
straints. A SDFG model of H.263 decoder is shown in Fig.
1. The nodes (VLD, IQ, IDCT, & MC) and edges (e1, e2, e3,
& e4) model tasks and dependencies, respectively. The nodes
have been referred to as actors that communicate with tokens
sent from one actor to another through the edges. Each
actor is associated with its attributes: execution time and
memory requirement when mapped on a tile. If the actor has
many implementation alternatives (e.g., GPP, DSP, RH) then
it’s attributes are listed for each implementation alternative.
Implementation alternatives of actor refer to different types
of processing tiles on which the actor can be implemented.
Each edge has following attributes: size of a token, memory
needed on the tile when connected actors are allocated to
the same tile, memory needed in source and destination
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Figure 1. SDFG model of an H.263 Decoder



tiles when connected actors are allocated to different tiles
and respective bandwidth requirements between the tiles. An
actor fires (executes) when there are sufficient input tokens
on all of its input edges and sufficient buffer space on all of
its output connections. In each firing, the actor consumes a
fixed amount of tokens from the input edges (input tokens)
and produces a fixed amount of tokens on the output edges
(output tokens). These token amounts are referred to as rates.
An edge may contain initial tokens.

Throughput of an application is determined as the inverse
of the long term period, which is calculated as the average
time needed for one iteration of the application. An iteration
is defined as the minimum non-zero execution such that the
original state of the SDFG is acquired. For the example
H.263 decoder, period is equal to the summation of Exec-
Time(VLD), 2376×ExecTime(IQ), 2376×ExecTime(IDCT)
and ExecTime(MC), where ExecTime is the execution time
of respective actors. It should be noted that actors IQ and
IDCT have to execute 2376 times in one iteration and the
number of executions is referred to as repetition vector of
the actor. The calculated period does not include network
and memory access delays. An SDFG with a throughput of
1000 Hz takes 1 millisecond (ms) to complete one iteration,
i.e., its period is 1 ms.

B. Multiprocessor Platform Model
The multiprocessor platform used in this work is a tile-

based architecture as shown in an example platform of Fig.
2. The platform contains three tiles, which are connected by
an interconnection network in order to facilitate communica-
tion amongst the tiles. Each tile contains a processor (e.g.,
general purpose processor (GPP), digital signal processor
(DSP) or reconfigurable hardware (RH) as shown in Fig. 2),
a local memory (M) and a network interface (NI) containing
set of communication buffers that are accessed both by the
interconnect and the local processor. The interconnection
network provides end-to-end connections between the tiles.
However, the latencies of connections can be modeled for
different network-on-chips (NoCs).

IV. PROPOSED MAPPING STRATEGY

This section describes our mapping strategy. In contrast to
conventional existing mapping strategies, our strategy differs
in following aspects: 1) performs both energy and through-
put aware design-time DSE, 2) the DSE results contain
mapping solutions for all the possible resource combinations
to cater for different run-time resource availability aspects,
and 3) performs throughput and energy optimization during
the run-time process as well.

An overview of our mapping flow is presented in Fig. 3.
The overall flow has two main steps: 1) DSE phase at design-
time (Design-time DSE) to analyze the applications, and
2) run-time mapping of required applications by utilizing
the DSE results (Optimal Mapping Database) with the
help of a platform manager (Run-time Platform Controller
(RTPC)). In the DSE phase, multiple mapping solutions
are generated for each application to be supported onto a
hardware platform. The run-time phase takes the required
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applications, their throughput requirements, DSE results and
the current platform status (available resources) as input and
provides an energy optimized mapping.

A. Design-time DSE
The design-time DSE step takes the applications one

after another and evaluates a number of mapping solutions
for each of them. The evaluation finds different mappings
along with their throughput & energy consumption. For
each mapping, the platform resources are allocated to the
application: actors are bound to tiles while edges are bound
to connections between tiles or local memory of tiles.
Based on the resource allocations, the throughput and energy
consumption of the mapping are then computed.

Throughput Computation: For the mapping, first, static-
order schedule that orders the execution of bound actors on
each tile is constructed. Then, all the binding and scheduling
decisions are modeled in a graph called binding-aware
SDFG. Thereafter, throughput is computed by self-timed
state-space exploration of the binding-aware SDFG [6].

Energy Consumption Computation: The total energy
consumption for a mapping is computed as the sum of
communication and computation energy for one iteration
of the application. Communication energy is required to
transfer data (tokens) from source tile to destination tile and
computation energy is required to process the transferred
token on the destination tile. The communication energy for
each edge (e) mapped to a connection (c) is estimated as
product of the number of tokens (in bits) to be transferred
through c, delay (D) and power consumption (Pbit) for
transferring one bit through c. Total communication energy
for all the edges is estimated from (2). The number of
tokens for an edge is computed as the product of repetition
vector (repV) of source (or destination) actor and source
(or destination) port rate (1). The power required to transfer
one bit is denoted as Pbit [9]. Computation energy for each
actor (a) mapped to tile (t) is estimated as product of
the number of executions of a (repV [a]), execution time
(ET [a]) and power consumption (pow) on t. ET and pow
could be different for different types of tiles. Total com-
putation energy for all actors is estimated from (3). Power
consumption on a tile is estimated as C × v2 × f , where
C, v and f denote average load capacitance, supply voltage
and operating frequency, respectively. In our approach, we
focus on mapping of applications on the architecture after
it is designed. Therefore, we cannot optimize static energy
consumption and restrict our focus on optimizing only
dynamic energy consumption (Ecomm + Ecomp).

nrTokens[e] = repV [e→ srcActor]× (e→ srcPortRate) (1)

Ecomm =
∑

[{nrTokens[e]× tokenSize[e]} ×D × Pbit] (2)
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Ecomp =
∑

[repV [a]× (ET [a]→ t)× (pow → t)] (3)

The proposed DSE flow takes an application & a generic
platform model as input and performs exploration to eval-
uate mappings while optimizing for both throughput and
energy consumption (Fig. 3). A heterogeneous platform that
contains tiles depending on the number of actors (n) and
their implementation alternatives provided in the application
is considered. To cover all potential mappings for different
possible resource combinations, a platform with n tiles of
each implementation alternative is considered. Since the
chosen platform can exploit all the parallelism present in
the application, considering a bigger platform would not be
necessary. On the other hand, a smaller platform might not
exploit all the parallelism as concurrent executing tasks may
get mapped on the same tile.

The considered platform contains tiles that are sepa-
rated by a fixed distance from each other, referred to as
hop distance in this work. Initially, the hop distance is
considered as one. However, at run-time, a real-life platform
might have available tiles at varying hop distances, for
example, a 2×2 grid (mesh) of tiles platform may have
few available tiles separated by a hop distance of 1 while
others at a hop distance of 2. To cope with the distance
variation between available tiles at run-time, our DSE flow
is repeated for all possible hop distances in the expected
target hardware platform at run-time. For example, two
available tiles of a 4×4 mesh platform may have the hop
distance varying from 1 to 6, so our DSE is repeated 6
times (while considering hop distance 1 to 6) to account
for varying resource availability scenarios that might incur at
run-time. By performing the DSE with higher hop distances,
the applicability of the DSE results increases even for bigger
platforms, but the evaluation time increases. For example,
DSE results (evaluated mappings) with hop distance value
of 8 are applicable to any platform where maximum sep-
aration between the tiles is less than or equal to 8 hops

such as mesh of 2×2, 3×3, 4×4, and 5×5 tiles platforms.
The main steps of the DSE flow (projected in Fig. 3) are
described subsequently.

1) Single tile-type evaluation: The mappings using the
single tile type (homogeneous tiles) are generated by using
the DSE strategy proposed in [22] as it discards evaluation
of inefficient mappings (providing less throughput) and
performs faster evaluation without missing the efficient map-
pings. First, 1 actor-to-1 tile mapping is evaluated, where
n actors of the application are mapped onto n homogeneous
tiles so that each tile contains exactly one actor and the
edges are mapped onto connections. Then, mappings using
reduced number of tiles (p = n − 1) are evaluated by
taking the best mapping using (p + 1) tiles as input. For
each pair of (p + 1) tiles, all the actors from one tile are
moved to another to generate a new mapping. A total of
(p + 1)-choose-2, i.e., (p+1)C2 unique pairs are found for
p + 1 tiles and the same number of mapping using p tiles
are evaluated. Out of all the evaluated mappings using p
tiles, the best mapping is chosen to evaluate mappings at
further reduced tile count, i.e. mappings using p − 1 tiles
by following the similar steps. The same process is repeated
until the mapping using one tile gets evaluated. Thus, all the
mappings using different number of tiles are evaluated. The
strategy in [22] chooses the maximum throughput mapping
as the best one as their optimization goal is only throughput.
In contrast, we choose the best mapping as the one having
maximum throughput/energy in order to perform throughput
and energy aware exploration. Similar exploration process
is applied by considering different types of tiles one after
another to get the homogeneous tiles mappings for each tile
type.

2) Multiple tile-type evaluation: Our strategy finds the
most efficient mappings for all heterogeneous resource com-
binations by using the homogeneous tiles mappings calcu-
lated in the earlier step. In a general platform architecture
(A) with m tile-types, all the resource combinations are rep-
resented by m-dimensional array A(t1, t2, · · · , tm), where ti
is the number of used tiles of tile-type ith. If we call p(k,n)
as the number of ways to partition n balls into k slots; then
the number of resource combination in our generic platform
with m tile-types that can cover n-actors applications is
n∑
k=1

P (k, n). For example, Table I presents all the possible

resource combinations when a 5-actors application and 3
tile-types (GPP, DSP,RH) are considered.

Table I
EXAMPLE OF 5 ACTORS AND 3 TILE-TYPES

GPP DSP RH GPP+DSP DSP+RH GPP+RH GPP+DSP+RH
A(5,0,0) A(0,5,0) A(0,0,5) A(4,1,0) A(0,4,1) A(1,0,4) A(3,1,1)

A(3,2,0) A(0,3,2) A(2,0,3) A(2,2,1)
A(2,3,0) A(0,2,3) A(3,0,2) A(2,1,2)
A(1,4,0) A(0,1,4) A(4,0,1) A(1,1,3)

A(1,2,2)
A(1,3,1)

A(4,0,0) A(0,4,0) A(0,0,4) A(3,1,0) A(0,3,1) A(1,0,3) A(2,1,1)
A(2,2,0) A(0,2,2) A(2,0,2) A(1,1,2)
A(1,3,0) A(0,1,3) A(3,0,1) A(1,2,1)

A(3,0,0) A(0,3,0) A(0,0,3) A(2,1,0) A(0,2,1) A(1,0,2) A(1,1,1)
A(1,2,0) A(0,1,2) A(2,0,1)

A(2,0,0) A(0,2,0) A(0,0,2) A(1,1,0) A(0,1,1) A(1,0,1)
A(1,0,0) A(0,1,0) A(0,0,1)



Algorithm 1 Procedure Generate[A(..., ti, ..., tj , ...)− >
A(..., ti − 1, ..., tj + 1, ...)]

Input: Best mapping for A(..., ti, ..., tj , ...)
Output: Best mapping for A(..., ti − 1, ..., tj + 1, ...)
bestMapping = 0, max = 0 ;
Find free tile p ∈ jth tile-type
for u = 1 to ti do

Move all actors from tile u to tile p to generate new mapping b
Compute throughput and energy for b
Compute metric µ = throughput

energy
if µ > max then
max = µ
bestMapping = b

end if
end for
Store bestMapping as optimal solution for A(..., ti − 1, ..., tj + 1, ...)

To analyze the heterogeneous tiles mappings, we in-
troduce a heuristic approach to find the most efficient
mapping for all resource combinations while evaluating
a manageable number of mappings. The essence of our
heuristic is the generation step denoted by procedure
Generate[A(..., ti, ..., tj , ...)− > A(..., ti−1, ..., tj+1, ...)],
which is presented in Algorithm 1. This procedure takes
the best mapping of the previous resource combination
A(..., ti, ..., tj , ...) as input and construct the best mapping
for the later resource combination A(..., ti−1, ..., tj+1, ...)].
In each execution of generation procedure, there will be a
tile-type with incremented number of used tiles (destination
tile-type jth) while another tile-type have its used tile-
number decremented (source tile-type ith).

Given the best mapping for a resource combination, the
algorithm will find the first empty tile p of destination tile-
type. Thereafter, mappings for new resource combination
are generated by moving all actors from each tile of source
tile-type to the destination tile p. The throughput, energy and
metric µ for each mapping is computed, stored into our map-
ping database and compared with the current best mapping
solution (bestMapping). If the current mapping has better
result than bestMapping, it will become the bestMapping
and is used to compare with subsequent mapping options.
At the end of the generation procedure, the most efficient
mapping for new resource combination will be bestMapping
and is stored in the Optimal Mapping Database. By selecting
the mapping having maximum µ ( throughputenergy ) at different
stages, our heuristic can avoid evaluating a large number of
inefficient mappings. Hence, the evaluation time is reduced
significantly.

Our strategy to evaluate mappings using different type of
tiles is presented in Algorithm 2. First, the heuristic iterate
through all resource combinations with different number of
tile-types m′ and total number of used tiles, referred to
as tile count. tile count varies from number of actors in
application n down to number of used tile-type m′. Then we
consider all the resource combinations that use m′ tile-types
from given m tile-types. The amount of such combinations
will be mCm′ . Thereafter, the algorithm will conduct the
generation procedure for tile-type i1 and tile-type im′ . We
define q as the total number of tiles used in i1 tile-type
and im′ tile-type; hence tile count − q is the number of

Algorithm 2 Algorithm for multiple tile-type combination
Input: Best GPP tile mapping from database
Output: Most efficient mapping for multiple tile-type

for m′ = 2 to m do
for tile count = n downto m′ do

for all combination of m′ used tile-type from m tile-types do
if m′ = 2 then

for ti1 = tile count downto 2 do
ti

m′
= tile count− ti1

Generate[A(..., ti1 , ..., tim′
, ...) −→ A(..., ti1 −

1, ..., ti
m′

+ 1, ...)]
end for

else
for q = tile count−m′ + 2 downto 2 do

for all partition ways of (tile count − q) tiles into (m − 2)
tile-types do

for ti1 = q downto 2 do
ti

m′
= q − ti1

Generate[A(..., ti1 , ..., tim′
, ...) −→ A(..., ti1 −

1, ..., ti
m′

+ 1, ...)]
end for

end for
end for

end if
end for

end for
end for

tiles available for the rest (m′ − 2) tile-types. To cover all
the resource combinations, the main generation procedure
(explained previously) Generate[A(..., ti1 , ..., tim′ , ...)− >
A(..., ti1 − 1, ..., tim′ + 1, ...)] should be repeated for all
partitions of (tile count − q) tiles into (m′ − 2) tile-types
that do not participate into the generation step. In case
of m′ = 2, partition P (m′ − 2, tile count − q) is not
available, so the generation step is done outside the loop (
if m′ = 2). Algorithm 2 ensures that all the input mappings
for generation steps are available in the optimal mapping
database before used.

3) DSE complexity: The complexity of our algorithm
depends on the number of actors n, the number of tile-types
m, and maximum hop distance h considered for the DSE.
Table II introduces the notations to be used for complexity
calculation. The complexity has been calculated in terms
of the number of evaluated mappings during the DSE. The
number of homogeneous tiles mappings is calculated by (4).
In heterogeneous case, the number of mappings is computed
based on the observation that in each generation step, the
number of evaluated mappings is the same as the number of
used tiles of source tile-type. The number of heterogeneous
mappings for 2 tile-types combination is calculated by (5).
Generally, number of mappings is calculated by (6), where
P (m′−2, tile count−q) is the number of ways to partition
(tile count− q) tiles into (m′ − 2) tile-types if (m′ > 3);
otherwise, P (m′−2, tile count−q) = 1. The total number
of mapping is calculated as the sum of all homogeneous and
heterogeneous tiles mappings by (7).

Table II
NOTATIONS TO BE USED

Notation Meaning
m total number of tile-types in platform
n total number of tile-types in platform
m′ number of used tile-types
tc number of used tiles in platform
ti1 number of used tiles of i1 − th tile-type
q number of used tiles of i1-th tile-type

and im-th tile-type



Table III
COMPLEXITY

m P (m− 2, n) Ref. [2] Θ(P (m− 2, n)) M(m,n) Θ(M(m,n))

1 na 0 M(1, n) = n3−n+6
6

n3

2 na 0 M(2, n) = n3+n2−2n+4
2

n3

3 1 c M(3, n) = n4+26n3+23n2−50n+72
24

n4

4 bn
2
c+ 1 n M(4, n) n5

5 { (n+3)2

12
} n2 M(5, n) n6

6 {(n + 5)(n2 + n + 22 + 18bn
2
c)/144} n3 M(6, n) n7

7 {(n + 8)(n3 + 22n2 + 44n + 248 + 180bn
2
c)/2880} n4 M(7, n) n8

C(1,m, n) = m ∗ [1 +

n−1∑
p=1

(
p+1

C2)] = m ∗ [1 +
n3 − n

6
] (4)

C(2,m, n) =
(m

2

) n∑
tc=2

tc∑
ti1

=2

ti1 =
m2 −m

2
∗
n3 + 3n2 − 4n

6
(5)

C(m
′
,m, n) =

(m
m′

) n∑
tc=2

tc−m′+2∑
q=2

P (m
′ − 2, tc− q) ∗

q2 + q − 2

2
(6)

M(m,n) =

m∑
m′=1

C(m
′
,m, n) (7)

It can be seen from (6) that the total number of mappings
is related to the partition problem solution. Therefore, the
general expression for M(m,n) can be derived if the analyt-
ical formula of P (k, n) is available. Based on formulas of
P (k, n) reported in [2], Table III presents the complexity
of our algorithm for m = 1 to 7, where Θ(M(m,n))
and Θ(P (m − 2, n)) presents the complexity of the whole
algorithm and the partition problem respectively.
B. Run-time mapping

Run-time mapping of applications onto a platform is
handled by the Run-time Platform Controller (RTPC) (Fig.
3). In the platform, one processor is used as the RTPC (man-
ager) that is responsible for actor mapping, actor scheduling,
platform resource control and configuration control. The
resources’ status is updated at run-time when an actor is
loaded in the platform. The RTPC maps the applications on
the platform one after another till all the applications are
mapped. The sequential mapping is scalable as it avoids

Algorithm 3 Run-time Mapping
for tile count = 1 to Max Used Tiles do

for each mapping µ using tile count tiles in OMDb do
Select closest available tile count tiles used by µ in the platform;
max hop = findMaximumHop(selected tiles);
Mapping list = Find all throughput satisfying mappings that use
tile count tiles separated by max hop and have the same resource
combination as µ;
if Mapping list! = NULL then

Select the mapping having minimum energyConsumption;
Edge list = Find edges mapped to connections in mapping;
Sort Edge list in descending order of number of transferred bits;
for each edge e in Edge list do

Allocate connected actors of e on tiles in close proximity based on
the allocations in mapping;

end for
Terminate algorithm;

end if
end for

end for

the overhead for considering large number of scenarios
containing different simultaneously active applications. For
each application, the RTPC takes its desired throughput,
platform with updated resources’ status and the optimal
mapping database (OMDb) as input (Fig. 3) and selects the
best mapping satisfying the desired throughput by following
Algorithm 3.

The algorithm selects a mapping having minimum
energyConsumption from the OMDb by iterating from
tile count one to Max Used T iles. The provided map-
ping by this kind of iteration uses minimum possible
number of tiles, resulting in improved resource utilization.
Max Used T iles is considered as min(number of actors
in the application, number of available tiles) to restrict
unnecessary search in OMDb. The existing approaches al-
locate actors to tiles based on a selected mapping but
do not consider relative position of actors, which might
require a large amount of communication energy to facilitate
communication amongst them through the edges. In our
approach, we allocate highly communicating actors in close
proximity by following the Algorithm 3 in order to save the
communication energy. If a throughput satisfying mapping
is not found then the application cannot be supported with
available platform resources. In general, throughput com-
putation for a mapping is a time consuming process. Our
approach just selects the best mapping without involving
throughput computation at run-time and thus accelerates the
overall run-time mapping process. Further, our approach
uses minimum possible number of tiles and performs energy
aware allocation towards facilitating efficient mapping.

Fig. 4 demonstrates an example of run-time mapping of
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Figure 5. Throughput and energy of MPEG at all resource combinations for different flows

H.263 decoder on a platform when employing existing and
our approach. Although the communication overhead (in
bits) of e3 (between RH (containing MC) and GPP (con-
taining IDCT)) is greater than the communication overhead
(in bits) of e4 (between DSP (containing IQ, VLD and RH
(containing MC)), the existing work assigns the connected
actors onto two tiles with hop distance=2. In contrast, our
strategy considers communication overhead between actors
and tries to map highly communicating actors (on RH and
GPP) close to each other, so that energy consumption can
be further reduced.

V. PERFORMANCE EVALUATION

Our strategy has been implemented as an extension of
the tool set SDF3, which is publicly available [25]. The
experiments are conducted on a Core i5 processor running
at 2.4 GHz. As a benchmark, models of real-life multimedia
applications H.263 decoder (4 actors), H.263 encoder (5
actors), MPEG-4 decoder (5 actors), JPEG decoder (6 actors)
and sample rate converter (6 actors) have been considered
to examine the efficiency of proposed strategy. MPEG-4
decoder, JPEG decoder, and sample rate converter will also
be referred to as MPEG, JPEG, and samplerate respectively.
All the applications are considered to be mapped onto a
generic platform with 3 tile-types: GPP, DSP and RH. Larger
number of tile-types can also be considered as explained
earlier. We assume that all actors of applications can be
implemented in these tile-types and their execution times
on different tile-types are known a priori. Since we con-
sider a generic platform as mentioned in Section IV, the
maximum number of processing elements in the platform
depends on the number of actors in evaluated applications.
In the experiments, we compare our approach with the flows
reported in [26] and in [23]. Since the strategy in [26]
considers mapping for scenario, we applied it to a single
scenario, i.e., a single version of the application that has
always the same behavior. The approach in [23] performs
optimization similar to that of ours, thus has been considered
for the comparison. Therefore, we have fair comparison for
all approaches. Several experiments have been performed
to evaluate these strategies in term of throughput, energy
consumption and execution time.

The throughput and energy of mappings produced by
different DSE flows are calculated by the SDF3 tool set

[25], which is modified according to evaluated mapping
algorithms. The results for MPEG-decoder at different pos-
sible resource combinations are illustrated in Fig. 5. In this
experiment and later in Fig. 7, P0, P1, P2 represent 3 types
of Processing Elements (PEs): GPP, DSP and RH; while
each resource combination is referred as “iP0+jP1+kP2”,
where i, j, k are the number of PEs of each type. Our
strategy provides throughput and energy values at all the
resource combinations, which has been shown by two
continuous lines. In contrast, other flows cannot cover all
the resource combinations so they provide discrete points
of throughput and energy values, and there are no values
at uncovered resource combinations. It can be seen that
mappings from our strategy have lower energy consumption
while maintaining the throughput almost at the same level
as that of other flows. Moreover, we have computed the
energy saving of our DSE over the DSE strategy in [23]
to illustrate the improvements. The results have shown that
our DSE strategy reduces the energy consumption of H263
Decoder, H263 Encoder, JPEG, MPEG, and Samplerate by
11.32%, 12.63%, 8.26%, 24.93%, and 14.45%, respectively.

For different multimedia applications, Table IV shows the
number of resource combinations covered by different DSE
flows. The number of resource combinations depends on
the number of actors in applications. The strategy in [26]]
missed a large number of resource combinations since they
look only load balanced mappings and there are a lot of
duplications generated by their flow. The strategy in [23] has
better result but still missing about 40% and 50% resource
combinations in case of 5 actors (H263 Encoder, MPEG) and
6 actors (JPEG, Samplerate) respectively. In contrast, our
approach is designed to cover all the resource combinations
for all the applications. The number of covered resource
combinations is important for hybrid mapping strategy since
it decides the flexibility for Platform Manager at run-time
under the resource constraint. Since our flow provides more
mapping options for run-time, the RTPC can be better
supported.

Table IV
COVERED RESOURCE COMBINATIONS

Applications Our Flow Flow in [23] Flow in [26]
H263 Decoder 34 24 10
H263 Encoder 55 34 10
MPEG 55 34 11
JPEG 83 44 11
Samplerate 83 42 10



One of the most important features that define the ef-
ficiency of a DSE strategy is the number of evaluations
performed by the strategy. A DSE with exhaustive search
analyzes all the possible mappings for each resource com-
bination. Therefore, it cannot scale well with the number
of actors in application or the number of tile types in
platform. Moreover, large number of evaluations require
more computation power, evaluation time at design time, and
more storage memory, more searching time in the memory
at run-time. On the other hand, heuristic DSE approaches
significantly reduce the number of evaluated mappings but
might not provide an optimal mapping for run-time [26] or
might discard mappings at several resource combinations
[23]. Table V shows the number of mappings evaluated
by different DSE strategies when three types of tile are
considered.

It can be seen from Table V that the number of mappings
evaluated by exhaustive DSE (EDSE) increases exponen-
tially with the number of actors. Therefore, when number
of actors is large (greater than 10), the exhaustive flow
cannot be executed within a reasonable time. The flow in
[26] significantly reduces the number of mappings when
compared to EDSE. However, they still perform a large
number of mappings in comparison with our strategy and
strategy in [23]. Although strategy in [23] is better flow
in term of number of mappings, it does not cover all the
resource combinations. The number of mappings by our
strategy is in between that of flow [26] and flow [23], but our
flow provides mappings with better quality as demonstrated
previously. The number of mappings is closely related to
the execution time of the strategies. Fig. 6 shows execution
time of different DSE strategies for different applications.
Our strategy provides speed up over the strategy in [26], but
spends more time to analyze mappings for all the resource
combinations when compared with strategy in [23].

To show the improvement of our flow in term of energy
consumption, we compare our results with existing hybrid
approach of [23]. Our design-time DSE approach shows
significant energy savings for all the considered applica-
tions when compared to existing approaches as mentioned
earlier. Table VI presents the energy saving at run-time
obtained by our flow for mapping different applications
when compared with the flow in [23]. At run-time, the
main goal of our technique is to reduce the communication
energy by allocating highly-communicating actors close to
each other. Our technique provides energy savings over
existing techniques when at least 3 tiles are used in the

Table V
NUMBER OF MAPPINGS WITH THREE TILE-TYPES

Number EDSE Strategy Strategy Our
of Actors in [26] in [23] strategy
1 3 3 3 3
2 12 42 10 12
3 57 180 25 38
4 309 372 51 90
5 1,866 615 91 178
6 12,351 918 148 313
7 88,563 1281 225 507
8 681,870 1704 325 773
9 5,597,643 2187 451 1125
10 48,718,569 2730 606 1578
14 461,101,962,108 5502 1576 4735
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Figure 6. Execution time of different DSE strategies

mapping. If less than 3 tiles are used, there is no edge
for which communication overhead can be reduced and our
approach provides similar results as that of [23]. Especially,
in applications (H263 Encoder, JPEG, Samplerate) where
the communication overhead is high, our technique has
better improvement on energy savings (up to 17.8%). Similar
improvements are obtained for other applications (Table VI).

We also have evaluated the efficiency of choosing param-
eter µ( throughputenergy ) in the optimization process. We evalu-
ated our strategy with three different optimization criteria:
throughput, energy, and µ. Fig. 7 shows throughput and
energy for the best mappings at different resource combina-
tions for H263 decoder when different parameters are cho-
sen. The DSE optimized by energy always provides better
results than DSE with Throughput Optimization in term of
energy consumption. Similarly, reverse implication can be
made when throughput is chosen as the optimization criteria.
When we choose the optimization criteria µ, for energy, the
results lie between the Throughput and Energy Optimization
and almost overlap the result of Energy Optimization. If
we consider throughput as the guideline of optimization
process, the µ option sometimes obtain better results over the
Throughput Optimization approach. Due to the heuristic be-
havior of our approach, the Throughput Optimization might
drop several mapping options and miss some optimal points
which can be found by the µ-Optimization. Therefore, using
µ as the guideline for optimization process not only achieves
better trade-off between throughput and energy, but also
provides better throughput at several resource combinations.

Table VI
ENERGY SAVING USING OUR RUNTIME TECHNIQUE

Application Number Energy consumption (mJ) Percent of
of tiles Strategy Our improvement

in [23] Strategy (%)
H263 Decoder 4 tiles 2.909 2.872 2.82

3 tiles 2.827 2.786 1.45
H263 Encoder 5 tiles 6.072 5.038 17.03

4 tiles 5.814 4.779 17.80
3 tiles 5.038 4.521 10.26

JPEG 6 tiles 0.365 0.334 8.56
5 tiles 0.360 0.328 8.89
4 tiles 0.354 0.323 8.76
3 tiles 0.344 0.318 7.56

MPEG 5 tiles 8.131 7.86 3.33
4 tiles 8.053 7.821 2.88
3 tiles 8.015 7.783 2.89

Samplerate 6 tiles 5.857 5.323 9.12
5 tiles 5.768 5.234 9.26
4 tiles 5.590 5.145 7.960
3 tiles 5.501 5.056 8.09
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Figure 7. Throughput and energy consumption for H263 Decoder at different resource combinations for different optimization criteria

VI. CONCLUSION

This paper presents an efficient mapping strategy for
heterogeneous MPSoC platform. Our DSE approach covers
all the resource combinations at design-time within a small
evaluation time. The qualities of the mappings in term of
throughput and energy are proven by experiments on a series
of real-life streaming applications. Especially, our DSE
takes the trade-off between throughput and energy as the
optimized criteria; so that the mapping results can achieve
more balance performance. Moreover, our run-time mapping
technique further improves the energy consumption of the
system by consider communication overhead in real time.
The experimental results show that our approach provides
better energy savings and performance in comparison to
existing approaches. In future, based on the DSE strategy,
we plan to develop an analytical approach for evaluating the
mappings at design-time to further reduce the exploration
time. Another improvement that we would like to consider
is to allow resource sharing between applications.
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