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Abstract— Non-preemptive multi-processor platforms are in-
creasingly being developed to support the performance require-
ments of modern systems with multiple applications. Due to
a huge number of possible combinations of these multiple
applications, it becomes a challenge to predict their performance
in advance. This becomes even more important when applications
may be dynamically started and stopped in the system. Mis-
prediction may result in reduced quality of applications and lower
the user-experience. Since modern embedded systems allow users
to download and add applications at run-time, a complete design-
time analysis is not possible.

In this paper, we present a technique to accurately predict the
performance of applications at run-time before they execute in the
system. The technique uses performance expressions computed
off-line from the application specifications. A run-time iterative
probabilistic analysis is used to estimate the time spent by tasks
during contention phase, and thereby predict the performance
of applications. The performance values predicted vary from the
measured values by 2% on average and 3% at maximum. The
analysis takes 3ms on a 50MHz processor for 10 applications.
The approach is fast, yet extremely accurate.

Further, the prediction technique is used to design an admis-
sion controller that is completely implemented and tested on
FPGA. Besides the approach and results, we provide a fully
automated flow to generate such a controller on an FPGA
multiprocessor platform. In addition, we present a complete and
composable system design flow where applications may be added
at run-time.

Index Terms— Heterogeneous multiprocessor, synchronous
data flow graphs, multiple applications, admission controller,
FPGA, system-design, performance prediction.1

I. INTRODUCTION

Current developments in modern embedded devices like

set-top box and mobile phone, for media systems integrate

a number of applications or functions in a single device, some

of which are not even known at design time. Therefore, an

increasing number of processors are being integrated into a

1Some results, in particular Section IV of this research were published in
Proceedings of the ACM/IEEE Design Automation Conference (DAC) 2007,
pp. 726-731 [1]. This article presents several new contributions:

1) This article presents a new probabilistic technique which outperforms
our earlier technique by a factor of five.

2) The approach is used to implement an admission controller, that is
fully integrated in an FPGA MPSoC design flow.

3) A complete and composable system design flow is presented that allows
addition of applications at run-time.

single chip to build Multi-Processor Systems-on-Chip (MP-

SoCs). To achieve high performance in such systems, the

limited computational resources must be shared causing con-

tention. Modeling and analyzing this interference is essential

to building cost-effective systems which can deliver the desired

performance of the applications.

However, with increasing number of applications running

in parallel leading to a large number of possible use-cases,

their performance analysis becomes a challenging task [2]. (A

use-case is defined as a possible set of concurrently running

applications.) The problem is compounded by the fact that ap-

plications may be started and stopped by the user at run-time.

Future multimedia platforms may easily run 20 applications in

parallel, corresponding to an order of 220 possible use-cases.

It is clearly impossible to verify the correct operation of all

these situations through testing and simulation. The product

divisions in large companies already report 60% to 70% of

their effort being spent in verifying potential use-cases. This

has motivated researchers to emphasize the ability to analyze

and predict the behavior of applications and platforms without

extensive simulations of every use-case.

While this analysis is well understood (and relatively easier)

for preemptive systems [3][4][5], non-preemptive scheduling

has received considerably less attention. However, for high-

performance embedded systems (like cell-processing engine

(SPE) and graphics processor), non-preemptive systems are

preferred over preemptive scheduling for a number of reasons

[6]. In many practical systems, properties of device hard-

ware and software either make the preemption impossible or

prohibitively expensive. Further, non-preemptive scheduling

algorithms are easier to implement than preemptive algorithms

and have dramatically lower overhead at run-time [6]. Further,

even in multi-processor systems with preemptive processors,

some processors (or coprocessors/ accelerators) are usually

non-preemptive; for such processors non-preemptive analysis

is still needed. It is therefore important to investigate non-

preemptive multi-processor systems.

A. Need for Run-time

In modern multimedia systems, multiple applications are

executing concurrently. While traditionally a mobile phone had

to support only a handful of applications like communicating
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with the base station, sending and receiving short messages,

and encoding and decoding voice; modern high-end mobile

devices also act as a music and video player, camera and a

complete personal digital assistant. To further complicate mat-

ters, the user also expects to be able to download applications

at run-time that may be completely unknown to the system

designer, for example, a security application running in the

background to protect the mobile phone against theft. While

some of these applications may not be so critical for the user-

experience (e.g. browsing a web), others like playing video

and audio are some functions where a reduced performance is

easily noticed. Accurate performance prediction is therefore

essential to be performed at run-time before starting a new

application, and not always feasible at design-time.

To estimate the performance of multiple applications run-

ning concurrently, a design-time analysis has been pro-

posed [7]. While a design-time analysis can sometimes provide

good estimates for performance of all possible use-cases, it

becomes harder with the increasing number of applications

in the system. Further, it lacks the flexibility of adding new

applications that have not been analyzed. To allow for such

run-time addition of applications and deal with ever-increasing

number of use-cases, a prediction mechanism is needed to

ensure that when a new application is started, the existing

applications and the starting application can still meet their

performance requirements.

B. Our Contribution

In this paper, we propose a technique to accurately predict

performance of multiple applications executing on a multi-

processor platform. The approach is very fast and can be

used at run-time as has been demonstrated by our FPGA

prototype. In our analysis, we model the applications as

synchronous data flow (SDF) graphs, since this allows analysis

of application properties like throughput, buffer-requirement,

deadlock analysis, etc with ease. Each application contains a

number of tasks that have a worst-case execution time. Our

novel iterative probabilistic technique computes the expected

waiting time when multiple tasks share a processing resource

(The approach can be adapted for other types of resource

like communication and memory as well). These waiting

time estimates, together with the execution time are used to

estimate the performance of applications at run-time. This

performance prediction technique is used to implement an

admission controller. When a new job is to be started, the

admission controller checks the expected performance against

the desired performance and makes a decision whether to

admit the application or not.

This admission controller is integrated in MAMPS (Multi-

Application Multi-Processor Synthesis) - an FPGA-based mul-

tiprocessor system generation flow [8]. The hardware needed

for signaling and performance checking is also designed and

instantiated in the flow automatically for a complete system

generation. Further, this tool is available for use on-line, where

anyone can upload their application models and a complete

design for FPGAs (presently limited to Xilinx) is generated

which can be directly synthesized and executed on FPGA2 [9].

Following are the key features of our admission controller.

• Accurate: The performance values predicted vary from

the measured values by 2% on average and 3% at

maximum.

• Fast: The algorithm has the complexity of O(n), where

n is the number of actors on each processor.

• Scalable: The algorithm is scalable in the number of

actors per applications, the number of processing nodes

and the number of applications in the system.

• Suitable for Embedded Systems: The algorithm requires

very low memory and has low complexity making it ideal

for implementation in embedded platforms.

• Dynamic: Our flow allows applications to be added at

run-time without any prior knowledge at design-time.

• Fully Integrated in FPGA synthesis flow: The admission

controller has been fully implemented on FPGA and

integrated in automated MPSoC generation flow that

proves its suitability for embedded platforms.

The remainder of the paper is organized as follows. Sec-

tion II discusses related work about how performance analysis

is done using SDF graphs traditionally - for single and multiple

applications. Relevant research in resource management and

the use of probability is also discussed in the same section.

Section III explains how the system should be designed when

multiple applications are to be supported, and applications are

allowed to be added in the system at run-time. Section IV

explains the probabilistic approach that is used to predict

performance of multiple applications accurately. Section V

explains the iterative probability technique that builds upon

the probability technique to improve the accuracy of the

technique even more. Section VI explains how the admission

controller and the resource manager is integrated in the FPGA

implementation flow. Section VII describes the experimental

setup and results obtained, and finally, Section VIII presents

major conclusions and gives directions for future work.

II. RELATED WORK

In [10], the authors propose to analyze performance of

a single application modeled as an SDF graph mapped on

a multi-processor system by decomposing it into an homo-

geneous SDF graph (HSDFG) [11]. This can result in an

exponential number of vertices [12], after which the through-

put is calculated based on analysis of each cycle in the

HSDFG [13]. Algorithms that have a polynomial complexity

for HSDFGs, therefore have an exponential complexity for

SDFGs. Algorithms have been proposed to reduce average

case execution [14], but it still takes in practice O(n2) time

where n is the number of vertices in the graph. Extra edges can

be added to model resource dependency such that a complete

analysis taking resource dependency into account is possible.

However, the number of ways this can be done even for a

single application is exponential in the number of vertices [2];

for multiple applications the number of possibilities is endless.

Further, only static order arbitration can be modeled using this

2A licensed Xilinx tool installation is still needed to synthesize the design
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technique while the best performance of SDFG applications

is obtained when actors are allowed to execute with least

contention on their own [11]. Our approach allows for that

behavior since no ordering is imposed.

For multiple applications, an approach that models resource

contention by computing worst-case-response-time for TDMA

scheduling (requires preemption) has been analyzed in [15].

This analysis also requires limited information from the other

SDFGs, but gives a very conservative bound. As the number

of applications increases, the bound increases much more

than the average case performance. Further, this approach

requires preemption for analysis. A similar worst-case anal-

ysis approach for round-robin is presented in [16], which

also works on non-preemptive systems, but suffers from the

same problem of lack of scalability. Real-time calculus has

also been used to provide worst-case bounds for multiple

applications [17][18][19]. Besides providing a very pessimistic

bound, the analysis is also very intensive and requires a very

high design-time effort. Our approach on the other hand is

very simple. However, we should note that above approaches

give a worst-case bound that is targeted at hard-real-time (RT)

systems, while our estimation approach is aimed at designing

soft-RT systems.

A common way to use probabilities for modeling dy-

namism in application is using stochastic task execution times

[20][21][22]. In our case, however, we use probabilities to

model the resource contention and provide estimates for the

throughput of applications. This approach is orthogonal to

the approach of using stochastic task execution times. In our

approach we assume fixed execution time, though it is easy

to extend this to varying task execution times as well. To

the best of our knowledge, there is no efficient approach of

analyzing multiple soft-RT applications on a non-preemptive

heterogeneous multi-processor platform.

Recently, quite some work has been in the context of re-

source management for multi-processor systems [23][24][25].

The work in [23] only considers preemptive systems, while our

work is targeted at non-preemptive systems. Non-preemptive

systems are harder to analyze since the interference of other

applications has to be taken into account. The work in [24]

presents a run-time manager for MPSoC platforms, but they

only consider one task mapped on one tile in the system;

they do not allow sharing of processors. In [25] the au-

thors deal with non-preemptive heterogeneous platforms where

processors are shared, but only discuss the issue of budget

enforcement and not of admission control.

The authors in [26] motivate the use of a scenario-oriented

(or use-case in our paper) design flow for heterogeneous

MPSoC platforms. They propose to analyze the scenarios at

design-time. However, with the need to add applications at

run-time, a design-flow is needed that can accommodate this

dynamic addition of applications. We present such a flow in

this paper.

III. DESIGNING SYSTEMS WITH MULTIPLE APPLICATIONS

In this section, we explain our proposed flow for designing

systems with multiple applications. The approach is designed

such that the system and the analysis remains composable. We

define composability as being able to reason about application

behaviour using as little information from the other applications

as possible. This allows applications to be analyzed largely

in isolation from other applications. The compute-intensive

property derivation can be done off-line since no information

from other applications is needed. These properties can then

be used by the run-time manager to determine the system

behavior when all the applications execute together.

As explained in Section I-A, it is often not feasible to know

the complete set of applications that the system will execute.

Even in cases, when the set of applications is known at design-

time, the number of potential use-cases (or scenarios) may be

large. We propose a combination of off-line and on-line (same

as run-time) processing, such that the design-effort remains

contained. Note that off-line is different from design-time;

while system design-time is limited to the time until the system

is rolled-out, off-line can also overlap with using the system.

In a mobile phone for example, even after a consumer has

already bought the mobile phone, he/she can download the

applications whose properties may have been derived after

the phone was already designed. In our methodology, all

applications may not be known at design-time either. In those

cases the properties of the applications are derived off-line, and

the run-time manager checks whether the given application-

mix is feasible.

As mentioned earlier in our analysis, we model the ap-

plications as a synchronous data flow (SDF) graph, since

this allows analysis of various application properties like

throughput, buffer-requirement, deadlock analysis, etc with

ease. The following sub-section gives a quick overview of SDF

graphs.

A. Synchronous Data Flow Graphs

1 1

1

1

2
2

100

50

100

A

a0

a1

a2

Fig. 1. Example of an SDF Graph

Synchronous Data Flow Graphs (SDFGs, see [27]) are often

used for modeling modern DSP applications [11] and for

designing concurrent multimedia applications implemented on

multi-processor system-on-chip. Both pipelined streaming and

cyclic dependencies between tasks can be easily modeled in

SDFGs. Tasks are modeled by the vertices of an SDFG, which

are called actors. SDFGs allow one to analyze a system in

terms of throughput and other performance properties, e.g.

latency, buffer requirements [28].

Figure 1 shows an example of an SDF Graph. There are

three actors (also known as tasks) in this graph. As in a typical
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data flow graph, a directed edge represents the dependency

between actors. Actors also need some input data (or control

information) before they can start and usually also produce

some output data; such information is referred to as tokens.

The number of tokens produced or consumed in one execution

of actor is called rate. In the example, a0 has an input rate of

1 and output rate of 2. Actor execution is also called firing.

An actor is called ready when it has sufficient input tokens on

all its input edges and sufficient buffer space on all its output

channels; an actor can only fire when it is ready.

The edges may also contain initial tokens, indicated by

bullets on the edges, as seen on the edge from actor a2 to

a0 in Figure 1. Buffer-sizes may be modeled as a back-edge

with initial tokens. In such cases, the number of tokens on

that edge indicates the buffer-size available. When an actor

writes data on a channel, the available size reduces; when

the receiving actor consumes this data, the available buffer

increases, modeled by an increase in the number of tokens.

One of the most interesting properties of SDFGs relevant to

this paper is throughput. Throughput is defined as the inverse

of the long term period, i.e. the average time needed for one

iteration of the application. (An iteration is defined as the

minimum non-zero execution such that the original state of

the graph is obtained.) This is the performance parameter that

we use in this paper. More information and formal definitions

can be found in Ref [7][11]. Following are the definitions most

relevant for this paper.

Definition 1: (ACTOR EXECUTION TIME) Actor execution

time, τ(a) is defined as the time needed to complete execution

of actor a on a specified node. τ(a0) = 100, for example, in

Figure 1.

Definition 2: (REPETITION VECTOR) Repetition Vector q
of an SDFG A is defined as the vector specifying the number

of times an actor in A is executed for one iteration of A. For

example, in Figure 1, q[a0 a1 a2] = [1 2 1].

Definition 3: (APPLICATION PERIOD) Application Period

Per(A) is defined as the time SDFG A takes to complete one

iteration on average. Per(A) = 300 in Figure 1. (Note that

actor a1 has to execute twice.) This is also equivalent to the

inverse of throughput. An application with a throughput of 50

Hz takes 20 ms to complete one iteration.

In the following sub-sections we explain how and which

properties are derived off-line from the applications, and how

they can be used at run-time.

B. Off-line Derivation of Properties

Figure 2 shows what properties from the application(s) are

derived off-line. Individual applications are partitioned into

tasks with respective program code tagged to each task and

communication between them explicity specified. A number

of techniques are present in literature to do this partitioning.

Compaan [29] is one such example that converts sequential

description of an application into concurrent tasks by doing

static code analysis and transformation. Sprint also allows code

partitioning by letting the users tag the functions which are to

be split into different actors [30]. Yet another technique has

been presented that is based on execution profile [31]. The

a1

a0

a2

...

...

...
}

−Execution Times
−Actor Mappings (if any)
−Buffer Requirements
−Throughput Equations
−Performance Constraints

task a0(){

Fig. 2. Off-line application(s) partitioning and computation of application(s)
properties. Three applications - photo taking, bluetooth and music playing are
shown above. The partitioning and property derivation is done for all of them,
as shown for photo taking application, for example.

program code can be profiled (or statically analyzed) to obtain

execution time estimates for the actors. For this paper, we shall

assume that the application is modeled as a synchronous data

flow graph, i.e. the application is already split into tasks with

worst case execution time estimates.

Throughput computation of an SDF graph is very time

consuming as explained in Section II. This is therefore often

done off-line or at design-time for a particular graph. However,

if the execution time of an actor changes, the entire analysis

has to be repeated. Recently, a technique has been proposed to

derive throughput equations for a range of execution times at

design-time and these equations can be easily evaluated at run-

time to compute the limiting cycle and hence the period [32].

As shown in Figure 2, following information is extracted

from the application off-line.

• Partitioned program code into tasks

• SDF model of the application

• Mapping of these tasks on to the heterogeneous platform

• Buffer-sizes needed for the edges in the graph

• Throughput equations of the model

• Worst-case execution time estimates of each task

• Minimum performance (throughput) permissible for sat-

isfactory user-experience

Note that there may be multiple pareto points with different

mappings, buffer-sizes and throughput equations. Figure 3, for

example, shows how the application partitioning and analysis

is done for H263 decoder application. The sequential applica-

tion code is split into task-level description, and an SDF model

is derived for these communicating tasks. The corresponding

production and consumption rates are also mentioned along

the edges. The table alongside the figure shows the mapping

and worst case execution times of each task. The buffer-size

needed between each actor is also mentioned in the table.

There are two throughput expressions that correspond to this

buffer-size [28]. The minimum performance associated with

this application is 25 frames per second. This is the constraint

that should be respected when the application is executed.

For these initial execution time estimates, the first expression

forms the bottleneck and determines the period to be 646262

cycles. This implies that if each of these tasks is executed

on a processor of 50 MHz, the maximum throughput of the
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SDF ModelPartitioned into actors

Original Program

1

1

1

594

594

1

Overall Constraint: 25 fps

...
}

task IDCT(){

}

task IQ(){

...

...
task VLD(){

MC

task MC(){

IDCT

... IQ
}

VLD

}
...
...
...

task H263(){

}

T1 = 0 × tvld + 593 × tiq + 594 × tidct + 1 × tmc

T2 = 1 × tvld + 594 × tiq + 593 × tidct + 0 × tmc

Task Mapping Execution cycles Min outgoing buffer

VLD ARM7 26018 594 tokens

IQ ARM9 559 1 tokens

IDCT TIC67 486 594 tokens

MC TIC64 10958 –

Fig. 3. The properties of H263 decoder application computed off-line

application is 77 iterations per second3. Clearly, when this

application is executing concurrently with other applications,

it may not be possible.

An application can often be associated with multiple quality

levels as has been explained in existing literature [33][34].

Each quality of the application will in that case be depicted

with a different task graph with (potentially) different re-

quirements of resources and different performance constraints.

For example, a bluetooth application may be able to run

at a higher or lower data rate depending on the availability

of the resources. If a bluetooth device wants to connect to

a mobile phone which is already running a lot of jobs in

parallel, it may not be able to start at 3.0 Mbps (Bluetooth 2.0

specification [35]) due to degraded performance of existing

applications, but only at 1.0 Mbps (Bluetooth 1.2 specifica-

tion [35]). We consider these two as separate applications

(except that these two are unlikely to execute together).

C. On-line Resource Manager

A resource manager, as the name suggests, is needed for

managing the diverse resources available in the platform. Typ-

ically it takes care of resource assignment, budget assignment

and enforcement, and admission control. When an actor, for

example, can be mapped on multiple processors, or when

3In practice, the frequency of different processors may be different. In that
case, we should add time taken for each task in throughput expressions instead
of cycles.

there are multiple of the same processor instances available, it

chooses which one to assign the actor to. It also assigns and

enforces budgets on say, for example, shared communication

resources like a bus or on-chip network e.g. Æthereal [36].

However, for the scope of this paper, we focus on the task of

admission control, i.e. to determine if a particular application

should be admitted or not. Further, when an actor can be

mapped on multiple resources (either because it can be mapped

on different types of processors, or because there are multiple

instances of the type of processors it can be mapped on, or

both), we assume that the resource manager (or the com-

piler/designer) has already done the assignment. It is possible

that while assignment to one processor makes an application

non-admissible, another assignment would have potentially

allowed the application to be admitted. Heuristics to explore

mapping options are orthogonal to our approach and have been

left out of the scope of this paper. Such heuristics can be used

in combination with our approach. Here we assume that a

mapping is already provided, and we are interested in finding

out if the application can be admitted in the system with that

mapping.

Performance Predictor: The performance predictor runs as

part of admission controller and uses the off-line information

of the applications to predict their performance at run-time. For

example, imagine a scenario where you are in the middle of a

phone call with your friend and you are streaming some mp3

music via the 3G connection to your friend, and at the same

time synchronizing your calendar with the PC using bluetooth.

If you also wish to now take a picture of your surrounding,

traditional systems will simply start the application without

considering whether there are enough resources to meet the

requirements or not. As shown in Figure 4, with so many

applications in the system executing concurrently, it is very

likely that the performance of the camera and the bluetooth

application may not be able to match their requirements.

With the on-line predictor, using the properties of applica-

tions computed off-line, we can check what is the expected

performance before admitting the application. It can then be

decided to either drop the incoming application, or perhaps try

the incoming application (or one of the existing applications,

if allowed) at a lower quality level. As shown in Figure 4, if

the camera application is tested at 2.0 MPixel requirements,

all the applications can meet their requirements. It is much

better to know in advance and take some corrective measure,

or simply warn the user that the system will not be able to

cope up with these set of applications.

It can be seen how this flow allows addition of applications

at run-time without sacrificing predictability. The user can

download new applications as long as the application is

analyzed off-line and the properties mentioned earlier are

derived. Since the performance analysis is done at run-time,

no extensive testing is needed at design-time to verify which

applications will meet their performance requirements and

which not.

IV. PROBABILISTIC ANALYSIS

The on-line prediction mechanism needs a mechanism that

can predict accurately the performance of multiple applications
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Original Quality

Reduced Quality

Performance Predictor

Accepted camera application at reduced quality 

Existing Applications

2 Mbps64 kbps10.2 kbps

Performance Predictor

10.2 kbps 64 kbps

10.2 kbps 64 kbps 2.0 Mbps 2.0 MPixel

Incoming Application

3.0 MPixel 1.6 Mbps

10.2 kbps 64 kbps 1.6 Mbps 2.6 MPixel

2.6 MPixel

Current Approach

a1

a0

a2

−Properties and

Performance known beforehand

Constraints

Fig. 4. On-line predictor for multiple application(s) performance

1 1

1

1

1

1

1

1

2
2

2

2

100

50

100

A

100

100

50

B

a0

a1

a2 b0

b1

b2

Fig. 5. Two application SDFGs A and B

executing concurrently on a heterogeneous multiprocessor

platform. When multiple applications execute in parallel, it

causes contention for the resources. Our probabilistic mech-

anism predicts this contention before the applications are

actually executed. The time spent by an actor in contention is

added to the execution time, and the total gives the response

time. The equation below puts it more clearly.

tresp = texec + twait (1)

The twait is the time that is spent in contention when

waiting for the resource to become free. The response time,

tresp indicates how long it takes to process an actor after it

arrives on a node. When there is no contention, the response

time is simply equal to the execution time. Using only the

execution time gives us the maximum throughput that can be

achieved with the given mapping. At design-time, since the

run-time application-mix is not known, it is not possible to ac-

curately predict the waiting-time, and hence the performance.

In this section, we explain how this estimate is obtained using

probability.

We now refer to SDFGs A and B in Figure 5. Say a0 and b0

are mapped on a processor Proc0 and others have dedicated

resources. a0 is active for time τ(a0) every Per(A) time units

(since its repetition entry is 1). In Figure 5, τ(a0) = 100 time

units and Per(A) = 300 time units.

The probability that Proc0 is used by a0 at any given time

is 100

300
= 1

3
, since a0 is active for 100 cycles out of every 300

cycles. Since arrival of a0 and b0 are independent, this is also

the probability of Proc0 being occupied when b0 arrives at

it. Further, since b0 can arrive at any arbitrary point during

execution of a0, the time a0 takes to finish after b0 arrives on

the node is uniformly distributed from [0, 100]. Therefore, b0

has to wait for 50 time units on average if Proc0 is found

blocked. Since the probability that the resource is occupied is
1

3
, the average time actor b0 has to wait is given by 50

3
≈ 17

time units. The expected response time of b0 will therefore be

≈ 67 time units.

A. Generalizing the Analysis

This sub-section generalizes the analysis presented above.

As we can see in the above analysis, each actor has two

attributes associated with it: 1) the probability that it blocks

the resource and 2) the average time it takes before freeing

up the resource it is blocking. In view of this we define the

following terms:

Definition 4: (BLOCKING PROBABILITY) Blocking Prob-

ability, P (a) is defined as the probability that actor a of

application A blocks the resource it is mapped on. P (a) =
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0

1
τ(a)

.P (a)

yτ(a)

P (a)

1-P (a)

P (y)

Fig. 6. Probability distribution of waiting time another actor has to wait
when actor a is mapped on the resource.

τ(a).q(a)/Per(A). P (a0) = 1

3
in Figure 5. P (a) is also

represented as Pa interchangeably.

Definition 5: (AVERAGE BLOCKING TIME) Average

Blocking Time, µ(a) is defined as the average time before

the resource blocked by actor a is freed given the resource is

found to be blocked. Again, µ(a) is also represented as µa

interchangeably. µ(a) = τ(a)/2 for constant execution time.

In Figure 5, µ(a0) = 50.
If X denotes how long an actor b has to wait if the resource

b is requesting is being blocked by actor a, the probability
density function, w(x) of X can be defined as follows.

w(x) =

8

>

<

>

:

0, x ≤ 0
1

τ(a)
, 0 < x ≤ τ(a)

0, x > τ(a)

(2)

The average time b has to wait given resource is blocked, or
µa is therefore,

E(X) =

Z ∞

−∞

x w(x) dx

=

Z τ(a)

0

x
1

τ(a)
dx

=
1

τ(a)

»

x2

2

–τ(a)

0

=
τ(a)

2

(3)

Figure 6 shows the overall probability distribution of b waiting
for a resource that is shared with a. This includes a delta
function of value 1 − P (a) at the origin since that is the
probability of the resource being available (not being occupied
by a) when b wants to execute. Clearly, the total area under
the curve is 1, and the expected value of this variable gives
the overall expected waiting time of b and can be computed
as

twait(b) = E(Y ) =
τ(a)

2
.P (a) (4)

Let us revisit our example in Figure 5. Let us now assume
actors ai and bi are mapped on Proci for i = 0, 1, 2. The
blocking probabilities for actors ai and bi for i = 0, 1, 2 are

P (ai) =
τ(ai).q(ai)

Per(A)
=

1

3
for i = 0, 1, 2.

P (bi) =
τ(bi).q(bi)

Per(B)
=

1

3
for i = 0, 1, 2.

The average blocking time of actors in Figure 5 is

[µa0
µa1

µa2
] = [50 25 50] and [µb0 µb1 µb2 ] = [25 50 50]

1 1

1

1

1

1

1

1

2
2

2

2
117108

A

108

67

B

117

67

a1

a2 b0

b1

b2a0

Fig. 7. SDFGs A and B with response times

In this case, since only one other actor is mapped on every
node, the waiting time for each actor is easily derived.

twait(bi) = µ(ai).P (ai) and twait(ai) = µ(bi).P (bi)

twait[b0 b1 b2] = [
50

3

25

3

50

3
] and twait[a0 a1 a2] = [

25

3

50

3

50

3
]

Figure 7 shows the response time of all actors taking waiting

times into account. The new period of SDFG A and B is

computed as 359 time units for both. In practice, the period

that these application graphs would achieve is actually 300

time units. However, it must be noted that in our entire

analysis we have ignored the intra-graph actor dependency. For

example, if the cyclic dependency of SDFG B was changed

to clockwise, all the values computed above would remain

the same while the period of the graphs would change. The

period then becomes 400 time units. The probabilistic estimate

we have now obtained in this simple graph is roughly equal

to the mean of period obtained in either of the cases.

Further, in this analysis we have assumed that arrival of

actors on a node is independent. In practice, this assumption

is not always valid. Resource contention will inevitably make

the independent actors dependent on each other. Even so, the

approach works very well, as we see in Section VII. A rough

sketch of the algorithm used in our approach is outlined in

Figure 8.

1: aij is actor j of application Ai

2: for all actors aij do

3: P (aij) = BlockingProb(τ(aij), q(aij), Per(Ai))
4: end for

5: //Now use this to compute waiting time

6: for all Applications Ai do

7: for all Actors aij of Ai do

8: twait(aij) = WaitingTime(τ , P )

9: τ(aij) = τ(aij) + twait(aij)
10: end for

11: Per(Ai) = NewPeriod(Ai)

12: end for

Fig. 8. Algorithm for estimating Period using blocking probabilities

B. Extending to N Actors

Let us assume actors a, b and c are mapped on the same

node, and that we need to compute the waiting time for c. c
may be blocked by either a or b or both. Analyzing the case of

c being blocked by both a and b is slightly more complicated.
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There are two sub-cases for it - one in which a is being served

and b is queued, and another in which b is being served and

a is queued. We therefore have four possible cases.
Blocking only by a:

twait(c1) = µa.Pa.(1 − Pb)

Blocking only by b:

twait(c2) = µb.Pb.(1 − Pa)

a being served, b queued: The time spent by b waiting
behind a is given by µa.Pa. Therefore, the total probability of
b behind a is,

Pwait(c3) = µa.Pa.
q[b]

Per(b)
= Pa.Pb.

µa

2.µb

,

and the corresponding time is,

twait(c3) = Pa.Pb.
µa

2.µb

.(µa + 2µb)

b being served, a queued: This can be derived similar to
above as follows:

twait(c4) = Pb.Pa.
µb

2.µa

.(µb + 2µa)

The time that c needs to wait when two actors are in queue

varies depending on which actor is being served. For example,

if a is ahead in the queue, c has to wait for µa due to a, since

a is being served. However, since the entire b remains to be

served after a is finished, c needs to wait 2.µb for b. One can

also observe that the waiting time due to actor a is µa.Pa

when it is in front, and 2.µa.Pa when behind. Adding all the

above equations, we get

twait(c) =
1

2
.Pa.Pb.(

µ2
a

µb

+
µ2

b

µa

) + µa.Pa + µb.Pb

= µa.Pa.(1 +
µa

2µb

Pb) + µb.Pb.(1 +
µb

2µa

Pa)

In most cases, the execution time of actors are of similar
granularity. Further, we observe that the probability terms (that
are often < 1) are multiplied. To make the analysis easier,
we therefore assume that the probability of a behind b, and
b behind a are nearly equal (which becomes even more true
when tasks are of equal granularity, since then µa ≈ µb. This
assumption is not needed for the iterative analysis). Therefore,
the above equation can be approximated as,

twait(c) =
1

2
.Pa.Pb.(µa + µb) + µa.Pa + µb.Pb

= µa.Pa.(1 +
1

2
Pb) + µb.Pb.(1 +

1

2
Pa)

The above can be also computed by observing that whenever

an actor a is in the queue, the waiting time is simply µa.Pa,

i.e. the probability of a being in the queue (regardless of other

actors) and the waiting time due to it. However, when it is

behind some other actor, there is an extra waiting time µa,

since the whole of a has to be executed. The probability of a
being behind b is 1

2
.Pa.Pb and hence the total waiting time due

to a is µa.Pa.(1+ 1

2
Pb). The same follows for the contribution

due to b.

TABLE I

PROBABILITIES OF DIFFERENT QUEUES WITH a

Queue Probability (excl Pa) Extra waiting prob

a (1 − Pb)(1 − Pc)
ab Pb(1 − Pc)/2
ba Pb(1 − Pc)/2 Pb(1 − Pc)/2
ac Pc(1 − Pb)/2
ca Pc(1 − Pb)/2 Pc(1 − Pb)/2
abc-acb Pb.Pc/3
bca-cba 2

3
Pb.Pc

2
3
Pb.Pcbac-cab

Total 1
2
(Pb + Pc) −

1
3
Pb.Pc

For three actors waiting in the queue, it is best explained

using a table. Table I shows all the possibilities of queue with

a in it. The first column contains the ordering of actors in

the queue, where the leftmost actor is the first one in the

queue. All the possibilities are shown in it together with their

probabilities. Please note that since a is in all the queues, the

probability component Pa has been excluded. For the cases

when a is not in front, the waiting time is increased by µa.Pa,

and therefore, those probability terms are added again. The

same can be easily derived for other actors too. We therefore

obtain the following equation.

µabc.Pabc =µa.Pa.
“

1 +
1

2
(Pb + Pc) −

1

3
Pb.Pc

”

+ µb.Pb.
“

1 +
1

2
(Pa + Pc) −

1

3
Pa.Pc

”

+ µc.Pc.
“

1 +
1

2
(Pa + Pb) −

1

3
Pa.Pb

”

(5)

It can be further generalized for n actors a1, a2, . . . an

mapped on a resource to give

µa1...anPa1...an =

n
X

i=1

µai
Pai

“

1 +

n−1
X

j=1

(−1)j+1

j + 1

Y

j
(Pa1

. . . Pai−1
Pai+1

. . . Pan)
”

(6)

where
∏

j
(x1, ..., xn) is an elementary symmetric polynomial

defined in [37]. We observe that as the number of actors

mapped on a node increases, the complexity of analysis also

becomes high. To be exact, the complexity of the above

formula is O(nn+1), where n is the number of actors mapped

on a node. Since this is done for each actor, the overall

complexity becomes O(nn+2). In the next sub-section we

show how this complexity can be reduced.

C. Complexity Reduction

The complexity of the analysis plays an important role when

putting an idea to practice. The total complexity for analysis

in Equation 6 is O(nn+2). Using some clever techniques for

implementation the complexity can be reduced to O(n2 +nn)
i.e. O(nn). This can be achieved by modifying the equation

such that we first compute
∏

j
(Pa1

, Pa2
. . . Pan

) including

Pai
. The extra component is then subtracted from the total for

each ai separately.

However, this is still infeasible and not scalable. An impor-

tant observation that can be made is that higher order terms
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start to appear in our analysis. The number of these terms in

Πj in Equation 6 increases exponentially. Since these terms

are products of probabilities, higher order terms can likely be

neglected. To limit the computational complexity, we provide

a second order approximation of the formula.

µa1...anPa1...an ≈

n
X

i=1

µai
Pai

“

1 +
1

2

n
X

j=1,j 6=i

(Paj
)
”

The complexity of the above formula is O(n3), since we

have to do it for n actors. For the above equation, we can

modify the summation inside the loop such that the complexity

is reduced. The new formula is re-written as

µa1...anPa1...an ≈

n
X

i=1

µai
Pai

“

1 +
1

2
(Tot Summ − Pai

)
”

(7)

where

Tot Summ =
n

X

j=1

Paj

This makes the overall complexity O(n2). In general, the

complexity can be reduced to O(nm) for m ≥ 2 by using

m-th order approximation. In Section VII we present results

of second and fourth order approximations.

1) Composability-based Approach: In this approach, two

actors are composed into one actor such that the properties

of this new actor can be approximated by the sum of their

individual properties. In particular, if we have two actors a and

b, we would like to know their combined blocking probability

Pab, and combined waiting time due to them µab.Pab. We

further define this composability operation for probability by

⊕ and for waiting time by ⊗. We therefore get,

Pab = Pa ⊕ Pb = Pa + Pb − Pa.Pb (8)

µab.Pab = µa.Pa⊗µb.Pb = µa.Pa.(1+
Pb

2
)+µb.Pb.(1+

Pa

2
) (9)

(Strictly speaking ⊗ operation also requires individual prob-

abilities of the actors as inputs, but this has been omitted

in the notation for simplicity.) Associativity of ⊕ is easily

proven by showing Pabc = Pab ⊕ Pc = Pa ⊕ Pbc. Operation

⊗ is associative only to second order approximation. This

can be proven in a similar way by showing µabcPabc =
µabPab ⊗ µcPc = µaPa ⊗ µbcPbc.

Associative property of these operations reduces the com-

plexity even further. Complexity of Equation 8 and 9 is clearly

O(1). If waiting time of a particular actor is to be computed,

all the other actors have to be combined giving a total

complexity of O(n2), which is equivalent to the complexity

of second-order approximation approach. However, in this

approach the effect of actors is incrementally added. Therefore,

when a new application has to be added to the analysis and

new actors are added to the nodes, the complexity of the

computation is O(n) as compared to O(n2) in the case of

second-order approximation, for which the entire analysis has

to be repeated.

2) Computing inverse of Formulae: The complexity of this

Composability-based approach can be further reduced when

we can compute the inverse of the formulae in Equation 8

and 9. When the inverse function is known, all the actors can

be composed into one actor by deriving their total blocking

probability and total average blocking time. To compute the

individual waiting time, only the inverse operation with their

own parameters has to be performed. The total complexity of

this approach is O(n) + n.O(1) = O(n). The inverse is also

useful when applications enter and leave the analysis, since

only an incremental add or subtract has to be done to update

the waiting time instead of computing all the values.

The inverse for both operations are given below.

Pa1...anb = Pa1...an ⊕ Pb

⇒ Pa1...an = Pa1...anb ⊕
−1

Pb =
Pa1...anb − Pb

1 − Pb

(Pb 6= 1)

(10)

µa1...anbPa1...anb = µa1...anPa1...an ⊗ µbPb

⇒ µa1...anPa1...an = µa1...anbPa1...anb ⊗
−1

µbPb

⇒ µa1...anPa1...an =
µa1...anbPa1...anb − µb.Pb(1 +

Pa1...an

2
)

1 + Pb

2
(11)

It should be mentioned that the inverse formula can only be

applied when Pb 6= 1.

V. ITERATIVE ANALYSIS

The iterative analysis takes advantage of two facts observed

in the previous sections.

• An actor contributes to the waiting time for another actor

in two ways - while it is being executed, and while it is

waiting for the resource to become free.

• The application behavior itself changes when executing

concurrently with other applications. In particular the

period of the application changes (increases as compared

to original period) when executing concurrently with

interfering applications.

The increase in application period implies that the actors

request the resource less frequently than analyzed in the earlier

analysis. The application period as defined in Definition 3 is

modified due to the difference in actor response times leading

to a change in the actor blocking probability. Further, an actor

can block another actor in two ways. Therefore, we define two

different blocking probabilities.

Definition 6: (EXECUTION BLOCKING PROBABILITY) Ex-

ecution Blocking Probability, Pe(a) is defined as the prob-

ability that actor a of application A blocks the re-

source it is mapped on, and is being executed. Pe(a) =

τ(a).q(a)/PerNew(A). Pe(a0) = 100

359
in Figure 5, since

PerNew(A) = 359.

Definition 7: (WAITING BLOCKING PROBABILITY) Wait-

ing Blocking Probability, Pw(a) is defined as the probabil-

ity that actor a of application A blocks the resource it is

mapped on while waiting for it to become available. Pw(a) =

twait(a).q(a)/PerNew(A). Pw(a0) = 8

359
in Figure 5.
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τ(a)

.Pe(a)

yτ(a)

Pe(a)

Pw(a)1-Pe(a)-Pw(a)
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Fig. 9. Probability distribution of waiting time another actor has to wait when
actor a is mapped on the resource with explicit waiting time probability.

When an actor arrives at a particular processor, it can either

find a particular other actor being served, waiting in the queue

or not in the queue at all. If an actor arrives when the other

actor is waiting, then it has to wait for the entire execution

time of that actor (since it is queued at the end). On the other

hand when the actor is being served, the average waiting time

due to that actor is half of the total execution time as shown

in Equation 3.

There is a fundamental difference with the analysis pre-

sented in Section IV. In the earlier analysis an actor had two

states - requesting a resource and not requesting a resource. In

this analysis, there are three states - waiting in queue on the

resource, executing on the resource and not requesting it at all.

This explicit state of waiting for the resource, combined with

the updated period, makes the blocking effect on another actor

more accurate, and also understanding the analysis easier.

Figure 9 shows the updated probability distribution of the

waiting time contributed by an actor with three explicit states.

There is now an extra delta function at τ(a) due to the waiting

state of a as compared to the earlier distribution in Figure 6.
Taking the example above as shown in Figure 7, the new

periods as computed from the probabilistic analysis in earlier
section are 359 time units for both A and B. So, we obtain

Pe[a0 a1 a2] = [
100

359

100

359

100

359
], Pe[b0 b1 b2] = [

100

359

100

359

100

359
]

Pw[a0 a1 a2] = [
8

359

34

359

17

359
], Pw[b0 b1 b2] = [

34

359

8

359

17

359
]

This gives the following waiting time estimates.

twait[a0 a1 a2] =[11.7 16.2 18.6] and

twait[b0 b1 b2] =[16.2 11.7 18.6]

The period for both A and B evaluates to 362.7 time

units. Repeating this analysis for another iteration gives the

period as 364.3 time units. Repeating the analysis iteratively

gives 364.14, 364.21, 364.19, 364.20, and 364.20 thereby

converging at 364.20. In this example, we started our iterative

analysis from the basic probabilistic estimate. If we simply

start the analysis from the original graph, i.e. assuming no

waiting time for the first iteration, we obtain the periods as

358.33, 362.79, 364.26, 364.14, 364.21, 364.20 and 364.20

again converging at 364.20 in about the same number of

iterations. Figure 10 shows the updated application graphs

after the iterative technique is applied.
For three actor system, when waiting time of an actor c

has to be computed like above, the following formula can be
derived from Figure 9. Note that τ(a) = 2.µa.

twait(c) = µa.Pe(a) + 2.µa.Pw(a) + µb.Pe(b) + 2.µb.Pw(b)

1 1

1

1

1

1

1

1

2
2

2

2

A B

111.5 118.9

66.9 111.5

66.9 118.9

a0

a1

a2 b0

b1

b2

Fig. 10. SDF application graphs A and B updated after applying iterative
analysis technique

For N actors the waiting time becomes as follows.

twait =

n
X

i=1

“

µai
Pe(ai) + 2µai

Pw(ai)
”

(12)

Compute 

Throughput and 

blocking 

probabilities

Continue 

Iterating?

Processor 

Level Prob 

Analysis

Updated 

Waiting Time

Send to Admission 

Controller

Yes

No

Application:

Throughput 

Equations

Actor:

Exec Time

Mapping

Actor:

Exec Time

Exec Prob

Wait Prob

Fig. 11. Iterative Probability Method. Waiting times and throughput are
updated until needed.

The change in period as mentioned earlier leads to a change

in the execution and waiting probabilities of actors. This in

turn, changes the response times of actors, which in turn may

change the period. This very nature of this technique defines

its name iterative probability. The cycle is therefore repeated

until the period of all applications stabilises. Figure 11 shows

the flow for iterative probability approach. The input to this

flow is the output of the off-line flow - namely the application

throughput expressions, and the execution time and mapping

of each actor in all the applications. These, like in the

approach mentioned earlier, are first used to compute the

base period (i.e. the minimum period without any contention)

and the blocking probability of the actor. Using the mapping

information, a list of actors is compiled from all the applica-

tions and grouped according to their resource mapping. For

each processor, the probability analysis is done according to

Equation 12. The waiting time thus computed are used again

to compute the throughput of the application and the blocking

probabilities. The analysis can be run for a fixed number of

iterations or terminate using some heuristic e.g. the maximum

or average change in application period.

A. Conservative Iterative Analysis

For some applications, the user might be interested in having

a conservative bound on the period. In such cases, we provide

here a conservative analysis using our iterative technique. The
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Pw(a)1-Pe(a)-Pw(a)
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Fig. 12. Probability distribution of waiting time another actor has to wait
when actor a is mapped on the resource with explicit waiting time probability
for the conservative iterative analysis.

motivation behind this analysis is that for some applications,

it is better to have a less accurate pessimistic estimate than

an accurate optimistic estimate; a much better quality than

predicted is more acceptable as compared to even a little worse

quality than predicted.
In earlier analysis, when an actor b arrives at a particular

resource and finds it occupied by say actor a, we assume that a
can be anywhere in the middle of its execution, and therefore,
b has to wait on average half of execution time of a. In the
conservative approach, we assume that b has to always wait for
full execution of a. In the probability distribution as presented
in Figure 9, the rectangular uniform distribution of Pe(a) is
replaced by another delta function at τ(a) of value Pe(a). This
is shown in Figure 12. The waiting time equation is therefore
updated to following.

twait =

n
X

i=1

2µai

“

Pe(ai) + Pw(ai)
”

(13)

Applying this analysis to our earlier example starting from

original graph, we obtain the periods as 416.7, 408, 410.3,

409.7, 409.8 and settles at that value. Starting from proba-

bilistic analysis values it also settles at 409.8 in 5 iterations.

Note that in our example, the actual period will be 300 in the

best case and 400 in the worst case. The conservative iterative

analysis correctly finds the bound of about 410, which is only

2.5% more than the actual worst case. If we apply real worst-

case analysis in this approach, we would then get a period of

600 time units, which is 50% over-estimated.

In the following section, we explain the hardware imple-

mentation of the resource manager including the admission

controller.

VI. IMPLEMENTATION

We implemented the proposed resource manager with the

admission controller on an FPGA-based multiprocessor design

flow [8]. The flow is named MAMPS for Multi-Application

Multi-Processor Synthesis. An overview of the existing flow

is presented in Figure 13.

The flow generates multiprocessor systems from a specifica-

tion of multiple applications. Applications are described in the

form of SDF graphs in xml format. A snippet of application

specification of Appl0 is shown in Figure 14, corresponding

to the application in Figure 13. The specification file contains

details about how many actors are present in the application,

and how they are connected to the other actors. The execution

time of the actors and their memory usage on the processing

Topology
Software Project 
for Processors

Design
Project

A1 FIFO

A0 FIFO

1
1

2

1 21
1

11

2

a0

c0

b0

d0

SDF

2

2

22

2

2
a1

b1c1

Proc 0

b0, b1

Proc 1

c0, c1

Proc 2Proc 3

d0

a0, a1

MPSoC Platform

Application Specification

Appl0 Appl1

Hardware

Platform Description

Fig. 13. Design flow

core is also specified. For each channel present in the graph,

the file describes if there are any initial tokens present on it.

The buffer capacity of a particular channel is specified as well.

<application id="Appl0">

<actor name="a0">

<port name="d0" type="in" rate="2"/>

<port name="b0" type="out" rate="1"/>

<executionTime time="1200"/>

<memoryUsage byte="200"/>

</actor>

<actor name="b0">

<port name="a0" type="in" rate="1"/>

<port name="c0" type="out" rate="1"/>

<port name="d0" type="out" rate="2"/>

<executionTime time="9600"/>

<memoryUsage byte="600"/>

</actor>

Fig. 14. Snippet of Appl0 application specification.

From these application-descriptions, a multiprocessor sys-

tem is generated. For processors that have multiple actors

mapped onto them, an arbitration scheme is also generated.

All the edges in an application are mapped on a unique

FIFO channel. This creates an architecture that mimics the

applications directly. Unlike processor sharing for multiple

applications, the FIFO links are dedicated as can be seen

in Figure 13. As opposed to a network or a bus-based

infrastructure, the dedicated links remove the possible sources

of contention that can limit the performance. Since we have

multiple applications running concurrently, there is often more

than one link between some processors. Even in such cases,

multiple FIFO channels are created. This avoids head-of-line

blocking that can occur if one FIFO is shared for multiple

channels [38].

In addition to the hardware topology, the software for each

processor is also generated. The software simulates the SDF

model of the actor execution and the arbitration. If the source

code of an actor is available it may also be inserted in the

description. Other miscellaneous files that are necessary for
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synthesis are also generated. An example of this in case of

FPGA is the pin-constraints file.

A. Resource Manager

b2

b0
a0

Proc 0 Proc 1

RM

Proc 2

Proc 3

Communication Network

I/O

Fig. 15. Architecture with Resource Manager

The design is extended to allocate one processor for the

resource manager (RM). Figure 15 shows the modified archi-

tecture when resource manager is used in the system. The

FIFO links in Section 2.2 are abstracted away with a commu-

nication fabric. The application description and properties like

the actor execution times, mapping and throughput expressions

are stored in a CF card.

���������
	��
�

�
�����
����������
���
�

�
�����
���������
���
�

��������
�����
�
����������

�������
�����
�����
���
����
������

�������

����������
��
������

��
����
�����
���������
��

Fig. 16. An overview of the design flow to analyze the application graph
and map it on the hardware.

Figure 16 shows the flow that is used to do the experiments.

For each application, as explained in Section III-B, the buffer-

sizes needed for the required performance are computed. These

sizes are annotated in the graph description and used for

the hardware flow described above. These buffer-sizes are

modeled in the graph using a back-edge with the number of

initial tokens on that edge equal to the buffer-size needed on

the forward edge as explained above in Section III-A. Further,

we limit the auto-concurrency of actors to 1 since at any point

in time, only one execution of an actor can be active. These

constraints are modeled in the graph before the parametric

throughput expressions are derived. Note that the graph used

for computing the parametric expressions is not the same as

the one that is mapped to architecture, but it leads to the same

application behavior since the constraints modeled in the graph

come from the architecture itself.

Admission controller: Figure 17 shows a simple admis-

sion controller that we implemented. The controller takes

the expected and required performance of all applications as

input. For each application, it is checked whether the expected

performance of the application meets the desired performance.

If the performance of any of the applications is not expected

to meet the requirement by adding a new application, the new

application is rejected (or retried at a lower quality level),

and otherwise accepted. This analysis can also be adapted to

include some margin for error. For example, if x% margin

is desired, the comparison function can be adapted to check

(100 − x)/100.exp(i) ≥ reqd(i) for a pessimistic analysis.
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Fig. 17. A simple admission controller

If an application is to be started and the controller concludes

that it is safe to admit the new application, the program code

has to be transferred to the relevant processors and connections

setup for communication. This is abstracted in our system and

the actor behavior is already defined on the processor in the

system, and the applications are simply disabled at system-

startup. As and when an application is admitted in the system,

the resource manager signals the relevant processors to enable

the application.

VII. EXPERIMENTS

In this section, we describe our experimental setup and

some results obtained both for basic probability, as explained

in Section IV. The iterative technique as explained in Sec-

tion V improves upon this. First, we only show results of

basic probability analysis since iterative analysis results are

almost exactly same as the measured results. Superimposing

iterative analysis results on the same scale makes the graph

difficult to understand. In basic analysis results, the graph is

scaled to the original period, while in iterative analysis it is

scaled to the measured period. The results for the hardware

implementation of the admission controller are also provided.

For some experiments, we were limited by FPGA synthesis

time. Therefore, we developed another tool using POOSL [40]

to provide quick simulation results.

A. Setup

In this section we present the results of above analysis

obtained as compared to simulation results for a number of

use-cases. For this purpose, ten random SDFGs were generated

with eight to ten actors each using the SDF 3 tool [39],

mimicking DSP and multimedia applications. Each graph is
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Fig. 18. Comparison of period computed using different analysis techniques
as compared to POOSL simulation result (all 10 applications running concur-
rently). The periods obtained through analysis and simulation are normalized
to the original period.

a strongly connected component i.e. every actor in the graph

can be reached from every actor. The execution time and the

rates of actors were also set randomly. The SDF 3 tool was

also used to analytically compute the periods of the graphs.

Using these ten SDFGs, over a thousand use-cases (210) were

generated. Simulations were performed using POOSL [40]

to give actual performance achieved for each use-case. Two

different probabilistic approaches were used - the second order

and the fourth order approximations of Equation 6. Results

of worst-case-response-time analysis [16] for non-preemptive

systems are also presented for comparison.

The simulation of all possible use-cases, each for 500,000

cycles took a total of 23 hours on a Pentium 4 3.4 GHz with 3

GB of RAM. In contrast, analysis for all the approaches was

completed in only about 10 minutes.

B. Results and Discussion - Basic Analysis

Figure 18 shows a comparison between periods computed

analytically using different approaches as described in the

paper (without the iterative analysis), and the simulation result.

The use-case for this figure is the one in which all applications

are executing concurrently. This is the case with maximum

contention. The period shown in the figure is normalized to the

original period of each application that is achieved in isolation.

The worst case observed in simulation is also shown.

A number of observations can be made from the figure. We

see how the period is much higher when multiple applications

are run. For application C, the period is six times the original

period, while for application H , it is only three-fold (simula-

tion results). The analytical estimates computed using different

approaches are also shown in the same graph. The estimates

using the worst-case-response-time [15] is much higher than

that achieved in practice and therefore, overly pessimistic. The

estimates of the two probabilistic approaches are very close to

the observed performance.
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Fig. 19. Inaccuracy in application periods obtained through simulation and
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We further notice that the second order estimate is always

more conservative than the fourth order estimate, which is

expected, since it overestimates the resource contention. The

fourth order estimates of probability is the closest to the

simulation results except in applications C and H .

Figure 19 shows the variation in period that is estimated

and observed as the number of applications simultaneously

executing in the system increases. The metric displayed in the

figure is the mean of absolute differences between estimated

and observed period. When there is only one application active

in the system, the inaccuracy is zero for all the approaches,

since there is no contention. As the number of applications

increases, the worst-case-response-time estimate deviates a lot

from the simulation result. This indicates why this approach is

not scalable with number of applications in the system. For the

other three approaches, we observe that the variation is usually

within 20% of simulation result. We also notice that the second

order estimate is almost exactly equal to the composability-

based approach - both of which are more conservative than

the fourth-order approximation. The maximum deviation in the

fourth order approximation is about 14% as compared to about

160% in the worst-case approach - a ten-fold improvement.

C. Results and Discussion - Iterative Analysis

Figure 20 shows the strength of the iterative analysis. The

results are now shown with respect to the results achieved in

simulation as opposed to the original period. The fourth-order

probability result are also shown on the same graph to put

things in perspective since that is the closest to the simulation

result. As can be seen, while the maximum deviation in fourth-

order is about 30%, the average error is very low. The results

of applying iterative analysis starting from fourth order, after 1,

5 and 10 iterations are also shown. The estimates get closer to

the actual performance after every iteration. After 5 iterations,

the maximum error that can be seen is in Application H of

about 3%, and the average error is to the tune of 2%.

Results of conservative version of the iterative technique

are also shown on the same graph. This is the result obtained
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after ten iterations of the conservative technique. The estimate

provided by this technique is always above the simulation

result. On average, in this figure the conservative approach

over-estimates the period by about 8% - a small price to pay

when compared with the worst-case bound that is 162% over-

estimated.

Figure 21 shows the results of iterative analysis with in-

creasing number of iterations for application A. Five dif-

ferent techniques are compared with the simulation result -

iterative technique starting from the original graph, second

order probabilistic estimate, fourth order probabilistic estimate

and worst case initial estimate, including the conservative

analysis of iterative technique starting from the original graph.

While most of the curves converge almost exactly on the

simulation result, the conservative estimate converges on a

value slightly higher, as expected. Similar graph is shown for

another application C. In this application, it takes somewhat

longer before the estimate converges. For this application the
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TABLE II

MEASURED INACCURACY FOR PERIOD IN % AS COMPARED WITH

SIMULATION RESULTS FOR ITERATIVE ANALYSIS. BOTH THE AVERAGE

AND MAXIMUM ARE SHOWN.

Iterations 2nd Order 4rth Order Worst Case Original Conser.

0 22.3/44.5 9.9/28.9 72.6/83.1 163/325 72.6/83.1
1 6.2/19 6.7/17.6 88.4/144 12.6/36 252/352
2 3.7/13.3 3.5/11.9 6.3/17.6 6.7/23.2 7.9/23.2
3 3/7.7 2.9/6.2 4.5/11.9 4.3/13.3 8.8/24.7
4 2.2/6.2 2/4.8 2.5/7.7 3.1/9.1 8.4/23.2
5 2.2/4.8 1.9/3.9 2.2/4.8 2.5/6.2 8.3/23.2
6 1.7/3.6 1.6/3.6 1.7/3.4 2/4.8 8.1/21.8
7 1.8/4 1.9/4 1.8/3.4 1.7/3.9 8/21.8
8 1.7/3.6 1.7/3.6 1.7/3.4 1.8/3.6 8/21.8
9 1.8/3.4 1.9/3.4 1.7/3.6 1.7/3.4 8/21.8
10 1.6/3.3 1.7/3.4 1.3/3.1 1.9/3.4 8.1/21.8
20 1.7/3 1.4/2.9 1.4/2.9 1.5/3 8.1/21.8
30 1.4/3 1.6/3 1.6/3 1.4/3 8.1/21.8

conservative estimate is almost exactly equal to the simulation

result.

A couple of observations can be made from this graph. First,

the iterative analysis approach is converging. Regardless of

how far and which side the initial estimate of the application

behavior is, it converges within a few iterations close to the

actual value. Second, the final value estimate is independent of

the starting estimate. The graph shows that iterative technique

can be applied from any initial estimate (even the original

graph directly) and still achieve accurate results. This is a

very important observation since this implies, that if we have

constraints on program memory, we can manage with only the

iterative analysis technique. If there is no such constraint, one

can always start with the fourth-order estimate in order to get

faster convergence. (This is probably only suitable for cases

when applications have a large number of throughput equa-

tions, and when throughput computation takes more cycles

than fourth order estimate.)

The error in the iterative analysis (defined as mean absolute

difference), is averaged and presented in Table II. In general, as

the number of iterations increase the error decreases. Different

starting points for iterative analysis are taken. As can be seen,
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TABLE III

THE NUMBER OF CLOCK CYCLES CONSUMED ON A MICROBLAZE

PROCESSOR DURING VARIOUS STAGES, AND THE PERCENTAGE OF ERROR

(BOTH AVERAGE AND MAXIMUM) AND THE COMPLEXITY.

Algorithm/Stage Clock cycles Error (%) Complexity
avg/max

Load from CF Card 1903500 - O(N.n.k)
Throughput Computation 12688 - O(N.n.k)
Worst Case 2090 72.6/83.1 O(m.M)
Second Order 45697 22.3/44.5 O(m2.M)
Fourth Order 1740232 9.9/28.9 O(m4.M)
Iterative - 1 Iteration 15258 12.6/36 O(m.M)
Iterative - 1 Iteration* 27946 12.6/36 O(m.M + N.n.k)
Iterative - 5 Iterations* 139730 2.2/3.4 O(m.M + N.n.k)
Iterative - 10 Iterations* 279460 1.9/3.0 O(m.M + N.n.k)

*Including throughput computation time
N -number of applications
n-number of actors in an application
k-number of throughput equations for an application
m-number of actors mapped on a processor
M -number of processors

the fourth order initial estimate converges the fastest among

all approaches. If we define 2% error margin as acceptable,

we find that fourth order estimate requires only 4 iterations to

converge while others require 6 iterations.

D. Hardware Implementation Results

The proposed admission controller is fully implemented on

a processor as described in Section VI. All the algorithms

were ported to Microblaze; this required some extra tuning to

optimize the implementation for timing and reduced memory

use. Table III shows the time taken during various stages

and algorithms. The algorithmic complexity of each stage and

also the error as compared to the simulation result is also

shown. The default time taken for second and fourth order,

for example, was 72M and 11M cycles respectively.

The error in various techniques as compared to the perfor-

mance achieved is also shown in Table III. As can be seen the

basic probability analysis with fourth order gives an average

error of about 10% and maximum error of 29%. The iterative

technique after just five iterations predicts performance that is

within 2% of measured performance on average and has only

3% maximum deviation in the entire set of applications.

This system consisted of the same 10 applications as used in

the previous sub-section. The loading of application properties

from the CF card took the most amount of time. However,

this is only done at the start of system, and hence does

not cause any bottleneck during admission control. On our

system operating at 50 MHz, it takes about 40ms to load the

applications-specification. Parametric throughput computation

is quite fast, and takes about 12K cycles for all 10 applications.

The analysis itself for all the applications is quite fast, except

the fourth-order analysis.

For the iterative analysis, each iteration takes only 15K

cycles i.e. 300 micro-seconds. If 5 iterations are carried out, it

takes a total of 140K cycles for all 10 applications including

the time spent in computing throughput. This translates to a

latency of about 3 ms in starting of applications when 10

applications’ performance is to be computed and checked.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a probabilistic technique to

estimate the performance of applications when sharing re-

sources. An iterative analysis is presented that can predict

the performance of applications very accurately. Besides, a

conservative flavour of the iterative analysis is presented that

can also provide conservative prediction for applications for

which the mis-prediction penalty may be high. Further, we

proposed an admission controller to estimate the performance

of multiple applications before they execute on the system.

The basic probability analysis gives results with average

error of 10%, and the maximum error of 29%. The average

error in prediction using iterative probability is, however,

only 2% and maximum of about 3%. Further, it takes about

four to six iterations for the prediction to converge. The

execution-time complexity of the algorithm is low, and the

area overhead of the admission controller is at most 7%. The

latency in starting applications is very low - only 3ms with 10

applications on a 50MHz processor.

We also present a flow for designing systems with multiple

applications, such that the entire analysis remains composable.

This allows easy and quick analysis of an application-mix

while properties of individual applications are derived in iso-

lation. Our flow also allows addition of unknown applications

at run-time, even when little is known about their properties

at design-time.

One of the limitations of this approach is that it does not

provide any guarantees. In future, we intend to extend our

technique to provide guarantees for soft real time tasks using

probability. Further, in this approach we have considered first-

come-first-serve arbitration mechanism implicitly in the anal-

ysis. A more predictable arbitration mechanism, for example,

credit-based priority, may be more suitable for tasks with

varying priority, and we would like to extend our analysis

to such arbitration mechanisms.
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