
ParaDiMe: A Distributed Memory FPGA Router
Based on Speculative Parallelism and Path Encoding

Chin Hau Hoo
Department of Electrical & Computer Engineering

National University of Singapore
Singapore

chinhau.hoo@u.nus.edu

Akash Kumar
Center for Advancing Electronics
Technische Universität Dresden

Dresden, Germany
akash.kumar@tu-dresden.de

Abstract—The increase in speed and capacity of FPGAs is
faster than the development of effective design tools to fully utilize
it, and routing of nets remains as one of the most time-consuming
stages of the FPGA design flow. While existing works have
proposed methods of accelerating routing through parallelization,
they are limited by the memory architecture of the system that
they target. In this paper, we propose a distributed memory
parallel FPGA router called ParaDiMe to address the limitations
of existing works. ParaDiMe speculatively routes net in parallel
and dynamically detects the need to reduce the number of
active processes in order to achieve convergence. In addition, the
synchronization overhead in ParaDiMe is significantly reduced
through a careful design of the messaging protocol where paths
to sinks are encoded in a space-efficient manner. Moreover, the
frequency of synchronization is tuned to ensure convergence
while minimizing the communication overhead. Compared to
VTR, ParaDiMe achieves an average speedup of 19.8X with 32
processes while producing similar quality of results.

I. INTRODUCTION

The increasing speed and capacity of FPGA have been made
possible by Moore’s law [1]. However, there has not been a
matching increase in design productivity. As a result, there
is a gap between the capacity of FPGAs and the ability to
utilize it effectively. The gap increases the development cost
and time-to-market of FPGA-based designs, and one of its
main causes is inadequate FPGA design tools. While there
are front-end design improvements such as IP-based design
methodology and high-level synthesis to bridge the gap, back-
end designs such as routing still remain as some of the most
time-consuming stages of the FPGA design flow.

It is possible to speed up FPGA routing through par-
allelization but it is non-trivial due to the nature of the
underlying algorithm [2]. Most FPGA routers are based on the
classic Pathfinder algorithm [3], which resolves congestion by
iteratively increasing the congestion cost of overused routing
resources (RRs). In order to reach a congestion-free state
when routing multiple nets in parallel, it is important for the
congestion costs to remain synchronized among threads or
processes to avoid misusing resources in congested regions.
Existing shared and distributed memory parallel routers em-
ploy different methods of synchronizing the congestion costs
depending on the memory architecture of the system that
they run on. The synchronization overhead of shared memory
routers is lower than that of distributed memory routers but the
relatively low number of processors in shared memory systems
limit the maximum achievable speedup of such routers. On
the other hand, distributed memory parallel routers are not
constrained in terms of computing resources but suffer from

high synchronization overhead due to the high remote memory
access latency.

In this paper, we propose a distributed memory FPGA router
called ParaDiMe that speculatively routes net in parallel with
various techniques to address the aforementioned problem of
high synchronization overhead. Our contributions are summa-
rized as follows.

• Speculative parallelism in a distributed memory architec-
ture with active process reduction to achieve high speedup
while ensuring convergence

• High-frequency synchronization to ensure that congestion
costs remain updated among processes

• Path encoding and route tree memoization to significantly
reduce the synchronization overhead

The rest of the paper is organized as follows. Section II and
III give an overview about FPGA routing and its related works.
Section IV, V, VI, and VII present the design of ParaDiMe.
Section VIII and IX describe the experiment methodology and
evaluation results. Section X concludes the paper.

II. BACKGROUND

The routing resources in an FPGA are usually modeled us-
ing a graph G(V, E) where V is the set of vertices (nodes) that
represent the routing resources (pins and prefabricated wires)
and E is the set of edges that represent the programmable
switches connecting the routing resources. Associated with
each vertex is a capacity that indicates the number of nets
that can use a routing resource simultaneously. The routing
problem can then be seen as a problem to find for each net, a
minimum delay tree, which is a subgraph of G, spanning the
source and sinks of the net. In addition, the union of all the
trees must not result in overuse of RR nodes.

Most FPGA routers such as VTR [4] solve the problem
using a variant of the Pathfinder algorithm [3]. The Pathfinder
algorithm works by gradually increasing the congestion cost of
using an overused RR node until all overuses are eliminated.
The congestion cost consists of two components – present
(first order) and historical (second order). The first order cost
is updated after routing each net while the second order cost
is updated at the end of every routing iteration. The second
order cost is crucial to ensure that the router converges to a
congestion-free state. On the other hand, the first order cost
poses a significant challenge to parallelizing FPGA routers.
Since it is updated after routing every net, the cost that is
seen when routing a net depends on the route taken by nets
that have been routed previously. In other words, the first order
cost introduces dependency among the nets.



III. RELATED WORKS

Despite the dependency imposed by the first order cost,
there are two ways in which existing works extract parallelism
from the Pathfinder algorithm. The first approach is by routing
nets with non-overlapping bounding boxes in parallel [5],
[6]. This method works because nets are only allowed to
use routing resources that are within their bounding boxes.
Therefore, nets with non-overlapping bounding boxes do not
depend on one another and can be routed in parallel. The
second approach is to relax the independent bounding box
requirement and speculatively route the nets in parallel [7].
When a contention on a routing resource is detected, the route
progress of the offending threads/processes is discarded, and
routing is restarted.

An example of the independent bounding box approach
is by Gort and Anderson [5] who proposed a distributed
memory version of the Pathfinder algorithm. Congestion costs
are synchronized among processors using the message passing
interface (MPI), and they are sent in a non-blocking manner
to other processors once a processor finishes routing a net.
Gort and Anderson also tried to further reduce the commu-
nication overhead by spatially partitioning the FPGA. Nets
whose bounding boxes are entirely within a partition (intra-
partition nets) can be routed without the need to communicate
with other processors while nets whose bounding boxes span
multiple partitions (inter-partition nets) need to synchronize
with other processors. Their router achieved a speedup of
2.85X with 8 processes.

Shen and Luo [6] also proposed a distributed memory
parallel router based on spatial partitioning that achieved a
speedup of 7.06X with 32 processes. In their approach, nets
spanning multiple partitions are routed sequentially before nets
that are entirely within a partition are routed in parallel. MPI
is used to distribute nets to the processors and transfer route
trees.

TDR [8] is also a distributed memory parallel router where
the routing resource graph is partitioned into disjoint sets. Each
processor is allocated a partition of the RR graph and a set of
nets to be routed. Since the RR partitions are independent due
to the properties of the disjoint switch box topology that TDR
specifically targets, there is no need to synchronize congestion
costs among processors during routing, and MPI is used only
to distribute nets to the processors.

Chan et al [9] analyzed how often the first and second order
congestion costs should be synchronized among processors
and built a distributed memory parallel router based on the
analysis. In their approach, the first order congestion costs are
synchronized as soon as a net is routed while the second order
congestion costs are synchronized only at the end of a routing
iteration.

The shared memory parallel router by Moctar and Brisk
[7] is an example of the aforementioned speculative approach.
Instead of being restricted to partitioning [5], [6], [8], multiple
threads speculatively perform VTR’s [4] maze expansion by
using thread-safe priority queues. The approach has a good
speedup of 5.46X with 8 threads.

Hoo et al [10] modeled the routing problem as a linear
program and decomposed it into independent sub-problems

Algorithm 1 ParaDiMe
1: function PARADIME(N , repartition)
2: i← 0
3: routed← false
4: idle← false
5: prev n overused←∞
6: n ranks← MPI Comm size()
7: rank ← MPI Comm rank()
8: route time← {}
9: P ← partition(N , n ranks, route time)

10: while i < max iterations and !routed and !idle do
11: if i == 1 and repartition then
12: P ← partition(N , n ranks, route time)
13: end if
14: for net ∈ P [rank] do
15: Rip up net
16: Broadcast rip up message of net . Section VII-A2
17: Non-blocking check for messages . Section VI
18: route net(net) . Algorithm 2
19: route time[net]← get route time(net)
20: end for
21: Broadcast trailer message . Section VII-A3
22: while not received trailer message from other ranks do
23: Blocking check for messages . Section VI
24: end while
25: Update second order congestion costs
26: n overused← get n overused nodes()
27: if n overused == 0 then
28: routed← true
29: else if n overused > prev n overused and

n ranks > 1 then
30: cnets← get congested nets(P )
31: n ranks← n ranks/2
32: P ← partition(cnets, n ranks, route time)
33: if rank ≥ n ranks then
34: idle← true
35: end if
36: end if
37: prev n overused← n overused
38: i← i+ 1
39: end while
40: end function

through Lagrangian relaxation. The sub-problems were solved
in parallel in a shared memory system, yielding a high speedup
of 7.05X with 8 threads. However, the method was shown to be
effective for the global routing problem instead of the detailed
routing problem. Another shared memory parallel router by
Hoo et al [11] uses a combination of fine-grained synchroniza-
tion and partitioning to achieve a significant speedup of 26.2X
with 8 threads relative to VTR. The super-linear speedup is
achieved because only congested nets are rerouted when there
is difficulty resolving congestion.

IV. PARADIME

The distributed memory parallel routers mentioned in the
previous section are based on either fine-grained or coarse-
grained partitioning of routing resources. However, there are
drawbacks to using partitioning for parallel routing. Routers
based on fine-grained partitioning [8] work only on a very
specific FPGA architecture because independent track domains
are formed (trivially) only when the switch box topology is
disjoint. On the other hand, routers based on coarse-grained
partitioning [5], [6] are not scalable because the number of



0
20
40
60
80
100

2 4 8 16 32

Pe
rc
en
ta
ge
	o
f	i
nt
ra
-p
ar
tit
io
n	

ne
ts

Number	of	partitions

stereovision1 LU8PEEng stereovision2 LU32PEEng

neuron stereo_vision segmentation denoise

Fig. 1: Percentage of intra-partition nets versus number of
partitions

intra-partition nets decreases as the number of spatial partitions
increases as shown in Figure 1. In other words, the amount
of parallelism decreases as the number of partitions increases.
While the figure assumes that the FPGA is partitioned into
equally sized segments, the same trend of decreasing number
of intra-partition nets is observed for the partitioning described
in [5] and [6].

In order to overcome the limitations of partitioning, we
propose a new distributed memory parallel router called
ParaDiMe where each process speculatively routes a disjoint
subset of all the nets without partitioning. In ParaDiMe, each
process has a local copy of the first order congestion costs,
and it is synchronized using MPI’s non-blocking point-to-point
communication (MPI Isend and MPI Irecv) at different stages
of the routing process. Non-blocking communication is used
to allow overlap between communication and computation,
which improves speedup.

Algorithm 1 shows the pseudocode of ParaDiMe, and every
process runs the same copy of it. Therefore, the algorithm can
be understood by viewing it from the perspective of a single
process. It is important to note that the point of Algorithm 1 is
to highlight the features of ParaDiMe. Therefore, unnecessary
information is omitted if it does not affect the description
accuracy of the actual algorithm.

ParaDiMe starts by partitioning the set of nets to be routed,
N into n ranks number of partitions, which equals to the
number of processes running the router. During partitioning,
the netlist is sorted in decreasing number of sinks before being
distributed in a round-robin manner to n ranks processes.
Sorting the nets in this order achieves a relatively good
load balancing as shown in Section IX-D. If repartition
is set to true, the netlist is also repartitioned in the second
iteration (Line 12). The repartitioning aims to reduce the load
imbalance among the processes in the case where the number
of sinks, which was used in the initial partitioning, is not a
good measure for the actual route time. During repartitioning,
the nets are sorted in decreasing order of their route time,
which was obtained in the first iteration.

After partitioning the input netlist, each process starts rout-
ing the nets (Line 11 - 38) that are assigned to it until one of
these three conditions is satisfied – there are no overused RR
nodes, the maximum number of iterations is reached or the
current process is no longer active.

For each net, the existing route tree of the net is ripped
up, and the event is broadcasted to other processes based on
the protocol described in Section VII-A2. Then, the process

0 1 2 3 4 5 6 7

7 5 0 1 6 3

Idle Idle

7 5

0

6

1

3

List of nets

Sorted list of congested nets

Process 1 Process 2 Process 3

0 1 3 5 6 7

List of congested nets

Process 0

Cut active processes by 
half and dispatch nets

Sort

Filter

Fig. 2: Active process reduction and congested nets distribu-
tion

checks for incoming messages from other processes, and the
local first order congestion costs are updated based on the
content of the messages. Then, the route net function is called
to route the net, and its route time is stored to be used for
repartitioning in the second iteration.

After routing every net, a trailer message is broadcasted
to indicate that the current process has finished routing its as-
signed nets. The importance of the trailer message is discussed
in Section VII-A3. After broadcasting the trailer message, the
process check for messages from other processes so that by
Line 25, the first order congestion costs of all processes are
consistent. The check is blocking because the process has
finished routing its nets. After ensuring that the first order
congestion costs are consistent, the second order congestion
costs are updated as well.

Finally, ParaDiMe checks whether there are overused RR
nodes (Line 27). In the case where there is none, the routing
process is completed. If there are overused nodes, the current
number of such nodes is compared with that of the previous it-
eration to determine if reducing the number of active processes
is necessary. If the reduction is not required, ParaDiMe contin-
ues routing nets in the next iteration with the same number of
processes. The number of processes is reduced by half when
the number of overused nodes stops decreasing monotonically,
which is a sign that the router is having difficulty resolving
congestions. The difficulty is caused by outdated first order
congestion costs during routing, and it is more pronounced
when the router is in an almost congestion-free state. To
mitigate the outdated costs, the number of active processes is
cut by half. In addition, only congested nets from the current
iteration are rerouted after the reduction. The congested nets
are partitioned in the same way as the repartitioning in Line
12 in that the congested nets are sorted in decreasing order of
their route time. The active process reduction and congested
nets distribution is illustrated in Figure 2.

V. NET ROUTER

When multiple nets are routed in parallel speculatively as
described in the previous section, it is crucial for a processor to



Algorithm 2 Net Router
1: procedure ROUTE NET(net)
2: min heap← {}
3: route tree← {source of net}
4: for sink ∈ net.sinks do
5: Add route tree to min heap
6: count← 0
7: while !min heap.empty() and !found sink do
8: current← min heap.pop()
9: if current == sink then

10: found sink ← true
11: else if current.cost < state[current].cost then
12: state[current].cost ← current.cost
13: for n ∈ current.neighbors do
14: c cost← get congestion cost(n)
15: t cost← get timing cost(current, n)
16: n.cost ← get total cost(c cost, t cost)
17: min heap.push(n)
18: end for
19: if count > 0 and count%FREQ == 0 then
20: Non-blocking check for messages . Section

VI
21: end if
22: count← count+ 1
23: end if
24: end while
25: Add path to sink to route tree
26: for node ∈ path to sink do
27: Update first order congestion cost of node
28: end for
29: Broadcast route message . Section VII-A1
30: Non-blocking check for messages . Section VI
31: min heap← {}
32: for node ∈ modified RR nodes do
33: state[node].cost ←∞
34: end for
35: end for
36: end procedure

read the most updated first order costs to achieve convergence.
Existing works [5], [9] synchronize the first order costs only
after routing every net instead of every sink. Therefore, when
routing large nets, a processor might see outdated congestion
costs while other processors are routing smaller nets. This
could lead to longer time for convergence as illustrated in
Section IX-F. In our approach, the first order costs are syn-
chronized while finding a path to the sink and after routing
every sink as shown in Algorithm 2.

Algorithm 2 is basically VTR’s net router [4] that is
modified to synchronize first order congestion costs among
processes. The synchronization while finding a path to the
sink happens in Line 19-21 where the net router starts a
non-blocking check for messages from other processes after
expanding the neighbors of every FREQ number of nodes.
The local first order congestion costs are then updated based
on the received messages. This is to ensure that the local first
order congestion costs stay updated even when it takes a long
time to find a path to a sink. The synchronization after routing
each sink happens in Line 29-30 where the path to the sink
is encoded in the format described in Section VII-A1 and
broadcasted using MPI Isend before checking for messages
from other processes.

0

1

3

2

4

6

5

7

8

9

0

Source Sink

Encoded path 
from source 
node 1 to sink 
node 9

1 1 0 1

Edge indicesNode 
index

Encode

Fig. 3: Path encoding

VI. RECEIVING MESSAGES

In Algorithm 1 and 2, messages from other processes
are received by calling MPI Irecv. Since the function
is non-blocking, its completion is determined by calling
MPI Testsome or MPI Waitsome. MPI Testsome returns a
flag immediately indicating whether the MPI Irecv has com-
pleted while MPI Waitsome waits until the MPI Irecv is com-
pleted before returning. When the MPI Irecv is completed, the
message received is handled based on the protocols described
in Section VII-A, and another MPI Irecv is started to continue
receiving messages from the same process if it has not sent a
trailer message.

VII. BROADCASTING MESSAGES

An important factor that affects the speedup of distributed
memory parallel router is the amount of data that is transferred
among the processors. The more the data transferred, the
higher the communication overhead and the lower the speedup.
Existing works [5], [6], [9] do not attempt to minimize
the message size when synchronizing congestion costs. In
ParaDiMe, the message is encoded to significantly reduce its
size. Furthermore, we keep track of the route tree of nets
routed by other processors so that ripping up those nets can be
done without the need for other processors to send the entire
route trees again.

In this section, we explain the design of ParaDiMe’s mes-
saging protocol and the choice of MPI functions to reduce the
communication overhead.

A. Protocol
Each message consists of a header and an optional payload.

The header carries a 4-bit Type field and a 28-bit NetIndex
field. The Type field indicates the message type while the
NetIndex field indicates the net that the message refers to.
The three types of messages (RipUp, Route, and Trailer) and
the need for the NetIndex field are explained in the following
subsections.

1) Route: The Route message is the only message type
with a payload. The payload is an encoded version of the path
to a sink. The motivation behind encoding the path to a sink
is to reduce the size of the Route message and minimize the
communication overhead. A path to a sink can be represented
as a list of RR nodes. However, sending the list directly as
a message is space-inefficient. It is possible to significantly
reduce the message size without losing the ability to recover
the path information. Since each process has access to the
full RR graph, only the first RR node in the path needs
to be sent as it is. Each subsequent RR node in the path
can be sent as an index of the edge that connects the RR



node and its predecessor. An example of how a path can
be encoded in shown in Figure 3. The reason this encoding
reduces the message size is that the maximum outdegree of a
RR graph is significantly smaller than the number of nodes.
For example, the RR graph of the FPGA used to implement
one of the largest Titan benchmarks (denoise) has around
3.8 million nodes but the maximum outdegree is only 154.
Therefore, the number of bits required to store each of the
second RR nodes onwards in the path is reduced by a factor of
3 (log2(3.8×106)/log2154). In general, the compression ratio
is Nlog2(order)

log2(order)+(N−1)log2(max outdegree) where order is the
number of nodes in the RR graph and N is the number of RR
nodes in the path. During initialization, ParaDiMe dynamically
calculates the minimum number of bits required to represent
the largest edge index in the input FPGA architecture.

When a process receives a Route message, the payload
is decoded, and the local first order congestion costs of the
RR nodes associated with the decoded path are updated. In
addition, the RR nodes are also added to the local route tree
of the net indicated by the NetIndex field so that they can be
used while processing the RipUp message as described in the
next subsection.

2) RipUp: The RipUp message informs a process that a
net has been ripped up. It does not have a payload because
ParaDiMe keeps track of the route trees of nets that are routed
by other processes as described in the previous subsection.
Therefore, the NetIndex field from the header is sufficient to
tell the receiving process which net to rip up, and the process
can easily refer to the corresponding route tree that was stored
earlier to update the associated local first order congestion
costs.

3) Trailer: Once a process has finished routing its nets,
it does not need to receive messages from other processes
immediately as long as the congestion costs are consistent at
the end of a routing iteration. Therefore, the Trailer message
tells other processes that multiple messages can be grouped
into one large message before sending. This has the advantage
of reducing the number of MPI Isend calls in other processes
while they are routing their remaining nets.

B. MPI function
There are three types of communication in MPI – point-to-

point, collective and one-sided. Currently, we have explored
both point-to-point and collective communication, and we plan
to experiment with one-sided communication, which enables
remote memory access, in the future.

There are two MPI collective functions that closely match
the requirements of ParaDiMe for broadcasting data –
MPI Ibcast and MPI Iallgatherv. Theoretically, these func-
tions are optimized for broadcasting by either offloading the
work to hardware or falling back to an optimal broadcast
tree (eg. binomial tree) when hardware acceleration is un-
available. However, they are restrictive in that one of the
input parameters require the knowledge of how much data
other processes are going to send. There are two workarounds
to this problem. The first workaround is to assume that all
processes are sending a constant amount of data. However, it
is very difficult to determine a good constant value because it
has to be large enough to fit all possible messages but small

TABLE I: Summary of benchmarks used in the experiments

Benchmark Total nets Total blocks Minimum channel width
stereovision1 10,797 1,217 104
LU8PEEng 15,990 2,373 114
stereovision2 34,501 2,926 154
LU32PEEng 53,199 7,536 174
neuron 54,056 3,512 206
stereo vision 61,883 3,434 228
segmentation 125,592 9,047 292
denoise 257,425 18,600 310

enough to minimize sending of unnecessary data. The second
workaround is a two stage approach where each process
broadcast in stage one, the amount of data that it is going
to send in stage two. This essentially doubles the amount of
required collective function calls. Unfortunately, none of these
workarounds yields a good parallel performance.

Due to the ineffectiveness of collective communication,
point-to-point communication is used for ParaDiMe, and the
functions involved are MPI Isend and MPI Irecv. Unlike
MPI Ibcast and MPI Iallgatherv, it is easy to send a variable
amount of data using MPI Isend and get the amount of data
received using MPI Get count.

VIII. EXPERIMENTAL SETUP

ParaDiMe was evaluated using a high performance comput-
ing (HPC) cluster with 16 nodes. Each node is equipped with
two Intel Xeon E5-2680 V3 and 128 GB of RAM. Hyper-
threading is disabled by the cluster administrator. The nodes
are connected together via Mellanox Technologies MT27600
Infiniband adapters. The operating system is Red Hat Enter-
prise 6.8 with Linux kernel version 2.6.32. Intel ICC compiler
version 16.0.2 with optimization flag O3 was used to compile
both ParaDiMe and VTR [4]. The MPI library used for
interprocess communication is MVAPICH2 2.2.

The benchmarks used for evaluation were obtained from the
VTR [4] and Titan [12] packages, and they are summarized
in Table I. Due to the limited amount of time that we have
on the HPC cluster, we chose only some of the largest
benchmarks from VTR and a subset of the benchmarks from
Titan. The Titan benchmarks were chosen to cover a wide
range of circuit sizes with neuron being the smallest and
denoise being the largest out of the 23 Titan benchmarks. The
benchmarks were packed and placed with default parameters
using VTR of the same version as the Titan paper [12] (7.0
r4292) because the release version of VTR (7.0) crashes when
loading Titan benchmarks due to a netlist loading bug. The
architecture files used are k6 frac N10 mem32K 40nm.xml
and stratixiv arch.timing.xml for VTR and Titan benchmarks
respectively.

IX. EXPERIMENTAL RESULTS

A. Overhead of intra/inter-node communication
ParaDiMe can be executed with different node configura-

tions in the HPC. For example, ParaDiMe using two processes
can be run with two processes on one node or two nodes
with one process each. However, different node configurations
lead to different communication overhead, which affects the
speedup.

Figure 4 shows the average speedup of ParaDiMe across the
benchmarks in Table I versus different node configurations.



0

2

4

6

8

10

2x1 1x2 4x1 2x2 1x4 8x1 4x2 2x4 16x1 8x2 4x4 16x2 8x4

2 4 8 16 32

Av
er
ag
e	
sp
ee
du
p

HPC	node	configurations

Fig. 4: Average speedup of ParaDiMe versus different node
configurations

TABLE II: Execution time (in seconds) of VTR and single
process ParaDiMe using different channel widths

VTR ParaDiMe
Benchmarks 20% 30% 40% 20% 30% 40%
stereovision1 12 11 11 10 10 10
LU8PEEng 54 51 58 48 45 52
stereovision2 94 99 97 80 77 66
LU32PEEng 392 466 462 376 416 471
neuron 718 686 853 306 369 337
stereo vision 414 476 462 199 198 201
segmentation 2130 3685 1928 1055 968 898
denoise 5361 3874 3728 2200 1785 1621

The speedup is measured by running ParaDiMe with 20%
higher than the minimum channel width listed in Table I
and without repartitioning in the second iteration. The first
number in each node configuration is the number of nodes
while the second number is the number of processes per
node. For example, 2x1 means two nodes with one process
in each node. Due to the memory requirements of larger
benchmarks, the maximum number of processes per node
is limited to four. Intuitively, it is expected that increasing
the number of nodes decreases the speedup because inter-
node communication has a higher overhead than intra-node
communication. However, the results in Figure 4 shows the
opposite. This is because inter-node communication in MPI
utilizes the remote direct memory access (RDMA) capability
of Infiniband adapters, which allows communication to be
done in parallel with routing. On the other hand, intra-node
communication in MPI requires processors to be actively
involved in the transfer of messages via a shared memory
kernel module. Therefore, the processors are not free to route
nets while intra-node communication is happening. As a result,
increasing the number of nodes actually allows more MPI
communications to be offloaded to the Infiniband adapter, and
thus increases the speedup.

In order to fully utilize the RDMA capabilities of the Infini-
band adapter, the results in subsequent sections are obtained
by using one process per node for all number of processes (1,
2, 4, 8, 16) except for 32 processes where two processes per
node are used due to the limited number of nodes (16) in the
HPC cluster.

B. Speedup across different benchmarks
Table II shows the execution time of VTR and single

process ParaDiMe while Figure 5 shows the speedup of VTR
and ParaDiMe relative to single process ParaDiMe across
different benchmarks. In order to evaluate the performance

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Sp
ee
du
p

VTR 2 4 8 16 32

Fig. 5: Speedup of ParaDiMe across different benchmarks

of ParaDiMe under a high-stress condition where routing
resources are limited, the values in the figure are obtained by
running ParaDiMe with only 20% higher than the minimum
channel width listed in Table I instead of 30% and 40% in
existing works. Moreover, repartitioning in the second iteration
(Section IV) is disabled because ParaDiMe actually performs
better without repartitioning as explained in Section IX-E.

Since benchmarks in Figure 5 are sorted in increasing order
of the number of nets, it can be seen that smaller benchmarks
such as stereovision1 and LU8PEEng have the lowest speedup
among all benchmarks. In addition, their speedups do not
scale well with the number of processes. In fact, the speedup
of LU8PEEng with 32 processes is lower than that with 16
processes. Larger benchmarks do not suffer from this problem
because the overhead of MPI communication is amortized over
the larger amount of time spent routing.

For Titan benchmarks, ParaDiMe is around 2X faster than
VTR. We observed that VTR spends a significant amount of
time resolving congestion at the output pin when routing Titan
benchmarks. This is because the architecture used to map Titan
benchmarks allow multi-fanout nets to use multiple output pins
to reach their sinks. This flexibility increases the congestion at
the output pins, which are limited in numbers. In order to solve
the problem, ParaDiMe has an enhancement that is similar
to [5] where multi-fanout nets are restricted to using only
one output pin to reach their sinks. Therefore, ParaDiMe is
faster than VTR in routing Titan benchmarks. Another reason
for ParaDiMe’s significant speedup over VTR is that Titan
benchmarks are harder to route and ParaDiMe transitions to
rerouting only congested nets earlier while VTR continues
to reroute every net. Although the number of processes is
recursively reduced by half when rerouting only congested
nets, the reduction in workload outweighs the decrease in
processing power.

C. Critical path delay

Since ParaDiMe routes multiple nets in parallel, the nets
might contend for the same routing resources and affect the
critical path delay if they are on the critical path. There-
fore, using VTR as a baseline for comparison and the same
ParaDiMe configuration as the previous section (20% and
no repartitioning), we evaluate the effect of the number of
processes on the critical path delay.



0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

No
rm

al
ize

d	
cr
iti
ca
l	p
at
h	
de
la
y

1 2 4 8 16 32

Fig. 6: Normalized critical path delay of ParaDiMe for differ-
ent benchmarks

0

10

20

30

40

50

60

70

w/o	
repart

w/o	
repart	
+	ds

w/	
repart

w/o	
repart

w/o	
repart	
+	ds

w/	
repart

w/o	
repart

w/o	
repart	
+	ds

w/	
repart

w/o	
repart

w/o	
repart	
+	ds

w/	
repart

w/o	
repart

w/o	
repart	
+	ds

w/	
repart

2 4 8 16 32

Pe
rc
en
ta
ge
	o
f	s
in
gl
e	
pr
oc
es
s	P

ar
aD

iM
e	

ex
ec
ut
io
n	
tim

e

ideal converge sync wait

Fig. 7: Execution time profile of ParaDiMe

As shown in Figure 6, the quality of result of ParaDiMe is
relatively independent of the number of processes. In addition,
ParaDiMe produces critical path delays that closely matches
that of VTR’s except for stereo vision with one process.

D. Bottlenecks
In order to determine the bottleneck that limits the speedup

of ParaDiMe, different aspects of the execution time are
measured and shown in Figure 7. ideal is the percentage
of single process time that ParaDiMe spends routing nets
with N number of processes assuming perfect parallelization
is possible, and it is calculated by 100%/N . For example,
the ideal percentage for two-process ParaDime is 50%. In
practice, it is difficult to achieve the ideal percentage because
of the overheads incurred by parallelization. These overheads
are represented by the converge, sync and wait percentages.

Despite the measures taken in ParaDiMe to ensure that
the congestion costs remain as updated as possible, there is
a possibility for a process to read outdated congestion costs
when routing multiple nets in parallel due to the delay in re-
ceiving messages from other processes. This causes ParaDiMe
to spend extra time in converging to a congestion-free state.
The extra time is represented as the converge percentage in
Figure 7.

sync is the percentage of single process time that ParaDiMe
spends synchronizing congestion costs. In other words, sync
measures the communication overhead in ParaDiMe.

Lastly, wait is the percentage of single process time that
ParaDiMe spends idling due to the load imbalance caused by
sub-optimal partitioning.

In this section, we explain only the bottlenecks for
ParaDiMe without repartitioning. The observations for the

0

2

4

6

8

10

2 4 8 16 32

Av
er
ag
e	
sp
ee
du
p

Number	of	processes

w/o	repart w/o	repart	+	ds w/	repart

Fig. 8: Average speedup comparison of different versions of
ParaDiMe

other two version of ParaDiMe are described in subsequent
sub-sections. The advantage of encoding the path to sink in
ParaDiMe is obvious from Figure 7 where the sync percentage
does not increase significantly even when the number of
processes is increased to 32. In addition, the simple approach
of load balancing by partitioning the nets in decreasing order
of the number of sinks works relatively well as shown by the
low wait percentages. Unfortunately, the converge percentage
increases as the number of processes increases.

An interesting observation is that the ideal percentage is
less than the theoretical minimum (50%) when ParaDiMe
is run with two processes. This is because of the reduction
in workload when ParaDiMe only reroutes congested nets
after detecting that the amount of congestion stop reducing
monotonically.

E. Repartitioning

Intuitively, repartitioning at the second iteration should yield
better speedup because it is based on the actual route time of
nets from the first iteration instead of an approximation with
the number of sinks. However, the results in Figure 8 show
otherwise where ParaDiMe with repartitioning consistently
performs worse than ParaDiMe without repartitioning. This is
because sorting the nets in decreasing order of route time dur-
ing repartitioning causes some high fanout nets with low route
time to be routed later in the iteration. Routing high fanout
nets later generally increases the effort required to resolve
congestion, which is why VTR routes high fanout nets first.
As a result, ParaDiMe with repartitioning spends more time
achieving convergence than ParaDiMe without repartitioning.
This is in line with the results in Figure 7 where the converge
percentage for ParaDiMe with repartitioning is higher than
without. Moreover, the load balancing of ParaDiMe is already
relatively good even without repartitioning as shown by the
very low wait percentage in Figure 7.

In addition, we observed that in certain benchmarks such as
LU32PEEng, the route time of some nets changes significantly
after the first iteration. Therefore, repartitioning based on
the route time from the first iteration is ineffective in some
cases. It is possible to repartition more than once but the
overhead of doing so needs to be taken into account. We will
explore the tradeoffs between better load balancing and higher
repartitioning overhead in future works.



0
5
10
15
20
25
30

20% 30% 40% Gort	
(30%) 

Shen	
(40%) 

Moctar	
(40%) 

ParaLaR ParaFRo	
(20%) 

ParaFRo	
(40%) 

ParaDiMe	w/o	repartitioning Existing	distributed	
memory	routers

Existing	shared	memory	routers

No
rm

al
ize

d	
sp
ee
du
p

2 4 8 16 32

Fig. 9: Speedup comparison of ParaDiMe with existing works

F. Delayed synchronization
ParaDiMe synchronizes congestion costs more frequently

than existing works [5], [6], [9] as explained in Section V. In
this section, we show the advantage of doing so by comparing
with a delayed synchronization (DS) version of ParaDiMe that
only synchronizes congestion costs after routing every net.

From Figure 8, ParaDiMe DS only performs better than
ParaDiMe when run with two processes. The first reason
is the reduction in workload due to the earlier switch to
rerouting only congested nets as described previously. The
reduction in route time shown in Figure 7 for ParaDiMe
DS versus ParaDiMe confirms this reasoning. The second
reason is that the delayed synchronization reduces the number
of MPI calls during routing, which reduces the amount of
communication overhead as shown in Figure 7. Moreover,
the delayed synchronization does not significantly increase the
staleness of the first order congestion costs, which is known
to increase the converge percentage, because there are only
two processes.

On the other hand, ParaDiMe performs better than
ParaDiME DS when run with eight or more processes. The
MVAPICH implementation of MPI has different protocols for
transferring messages of different sizes. The first protocol is
called eager, and it is used to send small messages below
a predefined threshold. The eager protocol is a one-way
protocol where the sender simply assumes that the receiver
has sufficient buffer space to store the incoming message. The
second protocol is a two-way protocol called rendezvous that
is used for messages that are larger than the threshold. In
rendezvous, the large message is broken down into smaller
chunks and the receiver has to acknowledge the receipt of
a chunk before the sender continues sending the remaining
chunks. It is obvious that the eager protocol has a lower
overhead than the rendezvous protocol. Since ParaDiMe DS
only synchronizes costs after routing a net, the message size
generally exceeds the eager threshold. Therefore, the overhead
of sending such messages is higher than ParaDiMe, which
sends frequent but smaller messages that are below the eager
threshold. The higher overhead of ParaDiMe is reflected in
the wait percentage instead of the sync percentage in Figure
7 because the send requests are queued during routing but
completed only after all the nets are routed.

G. Comparison with existing works
Figure 9 shows the speedup of ParaDiMe compared to

existing works. The values are normalized to baseline VTR

so that a fair comparison can be made (Speedup values in
previous sections are self-relative). In addition, ParaDiMe
was also executed with 30% and 40% higher than minimum
channel width to allow for easier comparison with existing
works. ParaDiMe achieves an average speedup of 3.62X,
6.68X, 11.4X, 16X, 19.8X with 2, 4, 8, 16, 32 processes
respectively and 30% higher than the minimum channel width.
From Figure 9, ParaDiMe significantly outperforms the dis-
tributed memory router by Shen and Luo [6]. As compared
to the distributed memory router by Gort and Anderson [5],
ParaDiMe demonstrates better scalability from 8 processes
onwards. The reason is because the amount of parallelism in
[6] and [5] is limited by the availability of intra-partition nets.

Compared to existing shared memory routers, ParaDiMe is
faster than the router by Moctar and Brisk [7] and ParaLaR
[10] even though ParaDiMe has higher synchronization over-
head due to the use of distributed memory systems. However,
ParaDiMe is slower than ParaFRo [11], which uses fine-
grained synchronization with very low overhead.

X. CONCLUSION

In conclusion, we have proposed a distributed memory
FPGA router based on speculative parallelism and path encod-
ing. ParaDiMe scales well with the number of processes and
achieves a speedup of 19.8X with 32 processes. In addition,
the high speedup is achieved without sacrificing quality of
result where ParaDiMe produces similar critical path delays
as VTR.

ACKNOWLEDGMENT

This work is supported in part by the German Research
Foundation (DFG) within the Cluster of Excellence “Center
for Advancing Electronics Dresden” (cfaed) at the Technische
Universität Dresden.

REFERENCES

[1] “Introducing innovations at 28 nm to move beyond moores laws,” Altera,
Tech. Rep. WP-01125-1.2, 2012.

[2] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo et al.,
“The tao of parallelism in algorithms,” ACM Sigplan Notices, vol. 46,
no. 6, pp. 12–25, 2011.

[3] L. McMurchie and C. Ebeling, “PathFinder: a negotiation-based
performance-driven router for FPGAs,” in ACM/SIGDA FPGA, 1995.

[4] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed et al., “VTR 7.0: Next generation
architecture and CAD system for FPGAs,” TRETS, vol. 7, no. 2, p. 6,
2014.

[5] M. Gort and J. H. Anderson, “Accelerating FPGA Routing Through
Parallelization and Engineering Enhancements, Special Section on PAR-
CAD 2010,” IEEE TCAD, vol. 31, no. 1, pp. 61–74, 2012.

[6] M. Shen and G. Luo, “Accelerate fpga routing with parallel recursive
partitioning,” in ICCAD. IEEE, 2015, pp. 118–125.

[7] Y. O. M. Moctar and P. Brisk, “Parallel FPGA Routing based on the
Operator Formulation,” in DAC. ACM, 2014, pp. 1–6.

[8] L. A. Cabral, J. S. Aude, and N. Maculan, “TDR: A distributed-memory
parallel routing algorithm for FPGAs,” in Field-Programmable Logic
and Applications: Reconfigurable Computing Is Going Mainstream.
Springer, 2002, pp. 263–270.

[9] P. K. Chan, M. D. Schlag, C. Ebeling, and L. McMurchie, “Distributed-
memory parallel routing for field-programmable gate arrays,” IEEE
TCAD, vol. 19, no. 8, pp. 850–862, 2000.

[10] C. H. Hoo, A. Kumar, and Y. Ha, “Paralar: A parallel fpga router based
on lagrangian relaxation,” in FPL. IEEE, 2015, pp. 1–6.

[11] C. H. Hoo, Y. Ha, and A. Kumar, “Parafro: A hybrid parallel fpga router
using fine grained synchronization and partitioning,” in FPL. IEEE,
2016, pp. 1–11.

[12] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Timing-
driven titan: Enabling large benchmarks and exploring the gap between
academic and commercial cad,” TRETS, vol. 8, no. 2, p. 10, 2015.


