
ACCELERATION OF DISTANCE-TO-DEFAULT WITH HARDWARE-SOFTWARE
CO-DESIGN

Izaan Allugundu, Pranay Puranik, Yat Piu Lo and Akash Kumar

Department of Electrical & Computer Engineering
National University of Singapore

Singapore – 117583
Corresponding author email: akash@nus.edu.sg

ABSTRACT

The role of Credit Rating Agencies has come under in-
tense scrutiny in the recent past due to their failure to ac-
curately rate the issuers of debt obligations and instruments.
With growing uncertainty in the markets and the need for ac-
curate results, credit rating algorithms are getting more and
more complex by the day.

Distance-to-default (DTD), or the leverage indicator, is
one of the key indicators in credit research that determines
the probabilities-of-default of firms. The greater the amount
of historic data available for a given firm, the higher is the
accuracy of the DTD results. However, this directly trans-
lates to a higher processing time and increases the costs
of computation. The DTD computation features a linear
workflow that is suited for implementation on a Field Pro-
grammable Gate Array (FPGA) which could lead to a more
efficient and low-cost solution. Application of embedded
platforms in implementing such algorithms have the poten-
tial to reduce the power consumption through parallelism
and utilise an optimised solution offered by reconfigurable
logic and customized hardware. In addition to the hardware
solution, the right balance of software implementation can
give the performance of such complex and intensive pro-
cesses, an added boost. In this paper, we explore that very
prospect of a hardware-software co-design and suitably im-
plement a prototype of the DTD algorithm.

The software in our design is partly run on a 2.9GHz
Intel processor and the FPGA soft-core processor (Microb-
laze) which is implemented on a Xilinx Virtex-6 ML605
FPGA, accelerated by hardware coprocessors. This resulted
in a 16.6× and 317.17× speedup in the computation of the
implied asset value and the log-likelihood function respec-
tively as compared to a pure software implementation on a
2.9GHz Intel processor.

The authors would like to thank Dr. Oliver Chen and Mr. Chen Huanjia
from the Risk Management Institute for their assistance in helping them
understand the requirements and functionalities of the algorithm.

1. INTRODUCTION

Owing to the great amount of uncertainty in the financial
industry today, emphasis is being laid on detailed and ex-
tensive analysis of financial data. In such a volatile macro-
environment, the role of credit rating agencies (CRAs) be-
comes critical as they become key indicators that drive in-
vestor confidence. With significant changes taking place in
the regulatory framework in the credit rating space, credit
rating mechanisms and algorithms are constantly being up-
dated. Further, in order to make them reliable and foolproof,
an increasing amount of data is required.

Inherently, credit rating algorithms are computationally
intensive. With the addition of the voluminous data used
in this process, the resources required on CPUs and GPUs
increase significantly along with the amount of time taken
for these computations. A direct consequence of this is in-
creased cost and energy consumption. In such a scenario,
field programmable gate arrays (FPGAs), which are recon-
figurable in nature, prove to be a handy alternative. They not
only reduce the processing time, but costs are scaled down
as well.

In the past, FPGA designs have typically utilised a fixed
point arithmetic design and have been used to accelerate fi-
nancial algorithms. These algorithms have revolved around
single option pricing [1], credit derivative pricing [2], in-
terest rates [3], Value-at-Risk [4] and other similar Monte-
Carlo simulations. This paper takes a different approach to
computing a separate class of financial algorithms – Distance-
to-Default, using floating point arithmetic hardware, and com-
pares the performance of such a design to a high perfor-
mance vectorised MATLAB code.

Distance-to-default (DTD), also known as the leverage
indicator, is one of the twelve risk indicators of a model
which generates probabilities of default for over 50,000 firms
on a daily basis. It determines the time frame in which a
company is likely to default on its debt. In the existing set-
up, the computation of DTD for all firms takes almost two



days to complete.
In this paper, we propose a hardware-software imple-

mentation of the DTD model, which provides a significant
speedup over the software implementation by exploiting fine-
grain parallelism within the model. To our knowledge, we
are the first ones to implement such a system for the calcu-
lation of DTD. Our main contributions are:

• A methodology to design and implement the DTD
model with hardware-software codesign.

• A pipelined hardware implementation of various parts
of the DTD model, which includes the computation
of the implied asset value and log-likelihood compu-
tation.

• A system enabling off-chip data transfers and compu-
tations.

• A comparison between the software implementation
running on a 2.9GHz Intel processor and the software-
hardware implementation running on the Xilinx Virtex-
6 ML605 FPGA and the 2.9GHz Intel, resulting in a
16.6× and 317.17× speedup for two of the most com-
pute intensive functions of the algorithm.

The following section of the paper, Section 2, discusses
other notable financial algorithms which have been hard-
ware accelerated along with their benefits, effectiveness and
costs. Thereafter, Section 3 details how the DTD algorithm
works and focuses on the key components of this process.
Next, we move to Section 4, which gives an overview of the
entire system developed, details of the hardware-software
codesign and how the different components of the DTD al-
gorithm are implemented. Section 5 is an evaluation of our
system in which we look at the acceleration obtained in the
components of our design. The speedup achieved on our
software-hardware co-design is compared to the performance
of this algorithm on a 2.9GHz Intel processor in terms of the
time taken and the clock cycles along with a discussion of
the resources used to implement the design. The final sec-
tion, Section 6, sums up our results, the benefits of such a
concept and possible areas for further research in this unex-
plored field of credit rating algorithms.

2. RELATED WORKS

The focus of research in the area of financial algorithms on
FPGAs have been on the acceleration of Monte-Carlo based
financial models. Monte-Carlo computations are based on
repetitive random sampling which can be parallelised. A
loans portfolio simulator was accelerated through a similar
approach [5]. The simulator reflects changes in economic
conditions and behaviour of individual loans within a port-
folio. The hardware simulators were implemented using a

Virtex-4 xc4vsx55 device running at 233MHz, and com-
pared to four parallel software simulation threads running
in a quad-core Pentium-4 Core2 at 2.4GHz. The speedup
achieved was up to 100 times.

Another Monte-Carlo based simulation implemented us-
ing an FPGA accelerated model is the Collateralized Debt
Obligations pricing [2]. The speedup achieved was over 63
times when implemented on Xilinx XC5VSX50T as com-
pared to a software implementation on a 3.4 GHz Intel Xeon
Processor.

In the FPGA acceleration of mean variance framework
for optimal asset allocation, the design has combined soft-
ware and hardware implementation. The generation of in-
puts is by software implementation (on a host PC) while
the output is computed through hardware acceleration. The
speedup achieved was 221 times over a software implemen-
tation running on two 2.4 Ghz Pentium-4 CPUs [6]. The
methodology developed is similar to our approach of imple-
menting the DTD system.

Previous work detailing comparisons of floating point
and fixed point arithmetic operators used in financial ap-
plications reveal that fixed point implementations of algo-
rithms are about 36.7% faster than floating point implemen-
tations, and 46.5% faster compared to PC implementations
[2]. This implies that in cases where the dynamic range of
floating point values is required, good performance gains
can be obtained compared to PC software implementation.
This underlines that the trade-off between precision, speed
and computational resources used is still an open problem
and also strongly depends on the target application.

Our implementation of the hardware cores utilizes the
FloPoCo floating point arithmetic cores with an 8 bits ex-
ponential field and 23 bits significant field for compliance
with the single-precision IEEE754 standard. The FloPoCo
project [7] is a freely available arithmetic core generator
for FPGAs that provides more arithmetic operations such
as logarithm and exponential operations than what is pro-
vided by Xilinx’s floating point core generator [8]. The
FloPoCo cores also provides additional status bits optimized
for FPGA design usage.

3. DISTANCE-TO-DEFAULT (DTD) BACKGROUND

The DTD variable is one of the twelve risk indicators used
to compute the individual probabilities used in the overall
credit research model. The DTD computation used in the
CRI system is not a standard one. Standard computations
exclude financial firms, but excluding the financial sector
means neglecting a critical part of any economy. So the stan-
dard DTD computation must be extended to give meaningful
estimates for financial firms as well. The following section
first presents background information on the implied asset



In
Minimum

solver
for µ, σ,δ

Implied asset
value

computation

∑
Log-

likelihood
computation

Log-likelihood computation

Distance-to-
default

computation

Leverage
Indicator

non-
optimal

optimal

Fig. 1. Computation of the distance-to-default

value computation, followed by the log-likelihood function
and finally the minimum solver.

The computation of the distance-to-default first requires
the calibration of the firm’s parameters – µ, σ and δ, us-
ing a solver where the log-likelihood function is minimal.
Then, the distance-to-default value is computed using the
optimised set of variables along with the data gathered. As
is seen in Figure 1, the log-likelihood function requires the
computation of the implied asset value containing search
methods and numerical analysis methods. The distance-to-
default is currently computed with MATLAB on a grid of
several hundred computers administered by the NUS Com-
puter Centre. This set-up takes almost two days to carry out
the DTD computation.

3.1. Implied Asset Value

The implied asset value takes in the set of equity values
based on the company’s market cap, debt and interest rate
along with the variables to be optimised to determine the
resultant asset value.

The computation of the implied asset value is done itera-
tively with numerical analysis methods such as bisection and
Newton-Raphson after determining the bounds of the func-
tion using an exponential-step initial search until the output
is stable. The model function is summarised in Figure 2.
The step size for Newton-Raphson or the midpoint value for
bisection for the step used in subsequent iterations is also
computed.

3.2. Log-Likelihood Function

The log-likelihood function is a part of a two-stage process
used in estimating the maximum likelihood of the unknown
parameters – µ, σ and δ. Given a set of observed equity val-
ues of a firm and the corresponding calculated asset values,
the likelihood of µ, σ and δ attaining certain values equals
the probability of the observed set of equity values given

Data
inputs \ Log + /

- Norm
CDF

Norm
CDF

×

×

×
+

Data
outputs

Fig. 2. Model transfer function for implied asset value

the parameter estimates. This probability, called the log-
likelihood function value, is then passed to the minimum
solver to complete the parameter estimation process.

3.3. Minimum Solver

The computation of DTD requires multiple maximum log-
likelihood estimations. The model involves a constrained
minimisation of these multiple estimations to determine the
parameters – µ, σ and δ, to be used for the computation
of the DTD. In the current CRI system, the MATLAB func-
tion ‘fmincon’ from the Optimisation Toolbox is used. Since
the optimization is over 13 dimensions, thousands of eval-
uations are required. Our new approach uses a C solver,
Mixed Integer Distributed Ant Colony Optimization (MI-
DACO) [9].

4. SYSTEM OVERVIEW

The acceleration layer is developed as hardware coproces-
sors that are attached to the main processor through direct
links as shown in Figure 3. The developed system utilises
two types of hardware computation cores developed specifi-
cally to compute the implied asset value and to compute the
sum of the log-likelihood function given the implied asset
values, and allows the use of multiple hardware acceleration
cores as needed by scaling up the number of cores and links.

The embedded system first receives the data-sets from
the ethernet source containing the firm observation values
on a daily basis. The software solver can decide the param-
eters µ, σ, δ by optimising the log-likelihood function and
proceed to compute the distance-to-default if minimal. The
processor also acts as an intermediate data storage device
and as a control unit for the hardware blocks.



Processor

Memory

Ethernet
In\
Out

Implied asset
computation core

∑
Log-likelihood

computation core

Cache Link

Bus

FIFO

FIFO

Fig. 3. System block diagram of the developed system

Data In

Stream
De-

Serialiser

Data
Feed

Control

Compute
Function

Data
Feed

Control

Stream
Serialiser
& Buffer

Data Out

Fig. 4. Implied asset computation data-path

4.1. Implied Asset Value Computation

The implied asset value computation core is a fully pipelined
design capable of producing up to 1 implied asset value per
clock cycle. It is built using the FloPoCo arithmetic cores
[7] with a few custom cores to provide functions such as
single-cycle absolute, negation, multiply and divide by 2.
Other crucial functions such as detecting the smallest differ-
ence of 2 floating-point numbers and the computation of the
normal cumulative distribution function are also used in the
development of the implied asset value data-path.

The process of computing the implied asset value begins
with reading the data from the FIFO link. The values read
are de-serialised and converted to the appropriate FloPoCo
format. The persistent nature of the computation loop im-
plies that the data feed control logic reads the new set of in-
put values only if the pipeline slot is not filled by data from
the previous iteration, else the write into the pipeline will be
delayed.

The compute function of the implied asset computation
data-path will compute the model transfer value, along with
the computation of the step size for Newton-Raphson or the
midpoint value for bisection for the step used in the subse-
quent iteration. In addition, the compute function will also
updates the bound of the function to a narrower range if we
are searching for the boundaries of the values or if bisection
has been used. The data output of the compute function will
then be checked by the data feed control which will output

the value to the FIFO link if the data is ready, or continue
through further iterations if otherwise.

4.2. Log-Likelihood Function Computation

The log-likelihood function utilises a software-hardware co-
design. The C segment which runs on the MicroBlaze, or-
ders and cleans-up data received from the PC. Hence, this
part is light in terms of the complexity of the operations and
the number of cycles they take. The hardware core carries
out the computationally intensive operations to calculate the
log-likelihood function value.This hardware core has been
developed using the FloPoCo arithmetic cores and the cus-
tomised normal cumulative distribution function core. There
are three key components of this core which have been de-
veloped on the basis of the three important values required
to compute the log-likelihood function value – sum Nd1,
sum logVA, sum sqterms.

The data to be fed into the core is read via the FIFO link.
The 12 input variables are required at the same time for com-
putation and are pumped into the computation core, as soon
as they are all read. Thereafter, they are converted to the re-
quired FloPoCo format and pushed into the three individual
components. Given that there are n number of valid observa-
tions, with each observation consisting of 12 variables, each
of these components will produce n outputs every 12 cycles,
which will be added to three different accumulators to sum
up the results. Since each individual component has a dif-
ferent pipeline length, the three final outputs, which are the
results from each individual accumulator, are produced at
different times. However, they are pumped out of the core,
after conversion to the IEEE754 format from the FloPoCo
format, only when the final result from the component with
the longest pipeline is ready.

It is important to note here that the final results will only
be ready once all the n observations are processed. Till then,
the results which are already processed are stored in regis-
ters, as shown in Figure 5. Hence, it is intuitive that the
FIFO link keeps pumping in data every 12 cycles (that is, af-
ter every set of 12 new variables is received), irrespective of
whether the previous variables have produced the required
outputs, as long as it belongs to a single given firm. These
three values which are pumped out of the core and into the
C program are then used to compute the final log-likelihood
function value.

4.3. Solver for Firm Parameters

The solver is utilised to determine the estimates of firm pa-
rameters – µ, σ and δ , from a specified range to be used
for the computation of DTD. The parameters are established
by constrained minimisation of the log-likelihood function.
This process involves thousands of evaluations of the log-



Log-Likelihood Computation (HDL)

Nd1

SqTerms

LogVA

∑
Nd1

∑
SqTerms

∑
LogVA

Synchronise Final Results

Log-
Likelihood
Function
(C code)

MicroBlaze

Fig. 5. Log-likelihood computation data-path

likelihood function. Our new approach uses a C solver, MI-
DACO. It is an innovative optimization solver of industrial
strength for continuous and mixed integer problems. The
underlying algorithm is based on a stochastic Gauss approx-
imation technique and its combination with the novel oracle
penalty method. The solver has been adapted to our ap-
proach for the DTD computation which is a combination
of software and hardware implementation. In this unique
set-up, the optimisation of the log-likelihood function for
parameters, within a specified range, is performed through
a software implementation on the CPU. However, the eval-
uation of each log-likelihood function is performed on the
Microblaze processor.

5. EVALUATION

This section presents the test environment in order to ana-
lyze the performance of the hardware implementation, and
compare the results obtained to the existing approach com-
puted on a PC to analyse the performance improvements of
the implementations.

5.1. Experimental Setup

In order to conduct a fair performance assessment of the de-
veloped hardware logic cores, we compare the results ob-
tained running the software code with the developed hard-
ware cores to the results obtained with a MATLAB imple-
mentation of the functions.

The hardware cores are tested and benchmarked on the
Xilinx Virtex6 ML605 development board running at 100MHz
with the throughput-optimised variant of the MicroBlaze pro-
cessor and the developed hardware core. The MATLAB

Table 1. Normal cumulative distribution performance
Platform PC FPGA
Type MATLAB Virtex6 (C) Virtex6 (HDL)
Values computed 511
Values per Second 221,136 566 2,154,718
Cycles taken 6.76× 106 9.023× 107 2.372× 104

Cycles per Value 13,232 176,585 46
Relative performance 1.00× 0.00256× 9.74×

0 2 4 6 8 10 12

FPGA(Virtex6-HDL)

FPGA(Virtex6-C)

MATLAB

9.74

2.56 · 10−3

1

Relative Performance

Fig. 6. Normal cumulative distribution computation perfor-
mance

tests are run on a 2.9GHz Intel processor with 8GB of mem-
ory with the MATLAB code set to single precision, and
threading limited to 1 to ensure consistent performance over
runs.

5.2. Experimental Results

5.2.1. PC-FPGA Interface

The transfer of data between the CPU and Virtex-6 partition
is managed through the Ethernet bus using TCP/IP packets.
The connection is initiated on the CPU side with socket pro-
gramming libraries and is established on the FPGA MicroB-
laze Processor. The MicroBlaze Processor is instrumental in
shuffling data between the computation cores and the exter-
nal ethernet data source. It manages data transfer from the
ethernet source using LwIP, a lightweight TCP/IP protocol
suite that is suited for use with embedded platforms. The
processed data is sent back to the main system through the
Ethernet bus.

In our system, an input data array of size 214,880 bytes
is required for the system to compute DTD. This data is
transferred through the socket with a bitrate of over 375,000
bits per second and stored in main memory of the FPGA.

5.2.2. Normal cumulative distribution function

The normal cumulative distribution function is tested as a
separate core to gauge the maximum throughput over the
FIFO link. The test simulates looping through 511 input
z-values stored in memory, processed using the pipelined
hardware normal cumulative distribution function core, and
the normal CDF value computed written back to memory.
The results are shown in Figure 6 and Table 1.



Table 2. FPGA utilisation by hardware cores
Resource Type Slices LUTs BRAM DSP48E1
MicroBlaze (reference) 1,685 3,021 20 5
Normal CDF 3,240 7,976 1 27
Exponential 290 605 1 1
Implied Asset Value 10,434 25,723 18 71
Log-Likelihood Function 25,258 25,580 11 74

Table 3. Implied asset value performance
Platform PC FPGA
Type MATLAB Virtex6 (C) Virtex6 (HDL)
Sets computed 511
Sets per Second 21,043 164 348,619
Cycles taken 7.11× 107 3.13× 108 1.47× 105

Cycles per Set 139,050 611,524 287
Relative performance 1.00× 0.00777× 16.6×

The hardware implementation yielded 9.74× more nor-
mal cumulative distribution values computed per second as
compared to the high speed general purpose processor run-
ning optimised vectorised MATLAB code.

The number of cycles spent per normal cumulative dis-
tribution value on the hardware core is 46 cycles, which is
close to what is expected due to the loop control instructions,
instruction word load and store instructions and computation
of the offsets for the data arrays on the soft processor. The
theoretical performance of the core is up to 1 normal cumu-
lative distribution per value, which translate to 100 million
values on a 100MHz co-processor design without the bottle-
necks of the soft processor.

The hardware implementation of the normal cumulative
core yields up to 3,804× the performance with 2× the re-
source requirements as compared to the C implementation
on the throughput-optimised variant of the soft core proces-
sor as shown in Table 2.

5.2.3. Implied Asset Value

This test simulates the computation of the implied asset value
for 511 sets of input data stored in memory, with some val-
ues precomputed using the soft core processor and the ex-
ponential hardware core before it is processed using the im-
plied asset value pipelined hardware. The resultant implied
asset value is then read from the core and written back to
memory. The results are shown in Figure 7 and Table 3.

The increased number of FIFO link instructions due to
the increase in the size of the data-set required for computa-
tion increased the number of cycles per set of input data to
287 cycles. The developed solution yielded a performance
increase of 16.6× more implied asset values computed per
second as compared to the optimised vectorised MATLAB
computation. The maximum frequency of operation of this
core is close to 197MHz.

0 5 10 15 20

FPGA(Virtex6-HDL)

FPGA(Virtex6-C)

MATLAB

16.6

7.77 · 10−3

1

Relative Performance

Fig. 7. Implied asset value computation performance

The performance can be improved further by scaling up
the core frequency and reducing the transfer bandwidth and
time required of the core by computing more starting param-
eters in the core as opposed to calculating it on the soft core
processor, due to the need to transfer less values to the core.
The theoretical performance of the co-processor is identical
to what we can obtain from the normal cumulative distribu-
tion core due to the ability to process 1 set of data per cycle.

The hardware utilisation of the implied asset value com-
putation core is about 10× the size of the soft core processor.
However, the hardware implementation of the implied asset
value computation yields a 2,132× performance speedup as
compared to execution of the C code on the soft core pro-
cessor, which represents a significant improvement in the
performance per FPGA resource used.

5.2.4. Log-Likelihood function

The log-likelihood function is implemented on the MicroB-
laze soft-core processor and the log-likelihood hardware co-
processor. The data to be processed is stored in the mem-
ory and some basic operations are performed on the Mi-
croblaze soft core processor. The outputs of implied asset
values function are processed and sent to the log-likelihood
core using the second FIFO link. The data undergoes pro-
cessing in the log-likelihood computation core, and the re-
sults are sent out via the FIFO link. These are used by
the soft-core processor for the final computation of the log-
likelihood function value. Since this final computation in-
volves a few more complex operations, individual FloPoCo
arithmetic cores are used (Log, Squarer, Exponential).
The code has been placed in the block RAMs on the FPGA
to improve performance.

In order to evaluate the efficiency of the log-likelihood
function only, the implied asset value function used within
the log-likelihood function, has been implemented in C. The
performance results of this core are shown in Figure 8 and
Table 4. Despite the FIFO read and write instructions adding
to the number of clock cycles during the implementation on
our hardware-software co-design, computations take 0.0001×
fewer clock cycles as compared to MATLAB. Also, our core
is 317.17× faster in terms of the processing time. The maxi-
mum frequency of operation of this core is close to 197MHz.



0 100 200 300 400

FPGA(Virtex6-HDL)

FPGA(Virtex6-C)

MATLAB

317.17

0.3

1

Relative Performance

Fig. 8. Log-likelihood timing performance

Table 4. Log-likelihood performance
Platform PC FPGA
Type MATLAB Virtex6 (C) Virtex6 (HDL, C)
Outputs per Second 78.947 23.741 25039.65
Cycles taken 1080× 105 126× 105 1.12× 105

Time Taken (s) 0.038 0.126 0.0001
Relative performance 1.00× 0.30× 317.17×

In the current set-up, given n sets of 12 variables, theo-
retically, the hardware core (excluding the software imple-
mentation and data transfer limitations) is capable of pro-
ducing the desired outputs in 204 + ((n-1) × 12) cycles.

Having said that, the log-likelihood core can function as
a fully-pipelined design. However, due to the limitations
of the FIFO link (in terms of its transfer bandwidth), this
attribute cannot be utilised. Presently, the core waits till
it receives the entire set of 12 values before processing it.
Likewise, it waits for all its three independent sections to
finish computation before pushing out the values together.
The input and output logic can be modified to further im-
prove performance. Instead of waiting for all the 12 input
variables to be received, they should be pumped to the re-
spective segments as soon as the necessary input variables
for each independent segment arrive. A similar approach
should be adopted while outputting data. Such an imple-
mentation would perhaps require multiple instantiations of
the segment with the longest pipeline. In addition, more
than one FIFO link would be required.

6. CONCLUSIONS

This paper described the design and implementation of float-
ing point hardware to accelerate the computation of the distance-
to-default, along with critical software parts, that enables
off-chip data transfers and computations. While many of
our hardware and software designs can be further optimised,
they can already run 16.6× and 317.17× faster in the com-
putation of the implied asset value and the log-likelihood
function respectively as compared to a MATLAB implemen-
tation on a 2.9GHz Intel processor.

We plan to extend our implementation by producing more
extensively connected subsystems and the inclusion of more
computations on the FPGA. We also intend to further op-

timise the software implementation to enhance the perfor-
mance of the system.

7. REFERENCES

[1] G. Morris and M. Aubury, “Design space exploration
of the european option benchmark using hyperstreams,”
in Field Programmable Logic and Applications, 2007.
FPL 2007. International Conference on, aug. 2007, pp.
5 –10.

[2] A. Kaganov, P. Chow, and A. Lakhany, “FPGA accel-
eration of Monte-Carlo based credit derivative pricing,”
in Field Programmable Logic and Applications, 2008.
FPL 2008. International Conference on, 2008, pp. 329–
334.

[3] D. Thomas, J. Bower, and W. Luk, “Automatic genera-
tion and optimisation of reconfigurable financial monte-
carlo simulations,” in Application -specific Systems, Ar-
chitectures and Processors, 2007. ASAP. IEEE Interna-
tional Conf. on, july 2007, pp. 168 –173.

[4] D. Thomas and W. Luk, “Sampling from the multi-
variate gaussian distribution using reconfigurable hard-
ware,” in Field-Programmable Custom Computing Ma-
chines, 2007. FCCM 2007. 15th Annual IEEE Sympo-
sium on, april 2007, pp. 3 –12.

[5] D. B. Thomas and W. Luk, “Credit risk modelling
using hardware accelerated monte-carlo simulation,” in
Proceedings of the 2008 16th International Symposium
on Field-Programmable Custom Computing Machines,
ser. FCCM ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 229–238. [Online].
Available: http://dx.doi.org/10.1109/FCCM.2008.41

[6] A. Irturk, B. Benson, N. Laptev, and R. Kastner, “FPGA
acceleration of mean variance framework for optimal
asset allocation,” in High Performance Computational
Finance, 2008. WHPCF 2008. Workshop on, nov. 2008,
pp. 1 –8.

[7] FloPoCo Team, “Floating-point arithmetic core
generator,” 3 2011. [Online]. Available: http:
//flopoco.gforge.inria.fr/

[8] Xilinx Inc, “Floating Point Operator
v5.0 (DS335),” 1 2011. [Online]. Avail-
able: http://www.xilinx.com/support/documentation/
ip documentation/floating point ds335.pdf

[9] “Midaco - solver.” [Online]. Available: \url{http:
//www.midaco-solver.com/}


