
Multi-Directional Error Correction Schemes for
SRAM-Based FPGAs

Shyamsundar Venkataraman, Rui Santos, Sidharth Maheshwari, Akash Kumar
Department of Electrical & Computer Engineering

National University of Singapore

Email: {shyam, elergvds}@nus.edu.sg, sidharth.iitg@gmail.com, akash@nus.edu.sg

Abstract—Readback scrubbing is considered as an effective
mechanism to correct errors in Static-RAM (SRAM)-based Field
Programmable Gate Arrays (FPGAs). However, current solutions
have a low error correction percentage per unit area over-
head. This paper proposes two new error detection/correction
mechanisms that combine frame readback scrubbing with error
correction codes (ECCs) that are applied in multiple directions, to
achieve a high error correction percentage per unit area overhead.
Experiments conducted show that the proposed schemes have an
excellent error correction percentage (over 99%), especially for
multi-bit upsets, while using up to 59.37% lesser area overhead
compared with other state-of-the-art.

I. INTRODUCTION

Modern Static-RAM (SRAM)-based Field Programmable
Gate Arrays (FPGAs) are gaining significant importance in
space applications due to their operational capacity and per-
formance. Moreover, these devices can be reconfigured after
launch depending on various functional requirements and
changes in the device environment [1]. However, due to the
technological developments leading to denser chips, these
devices become vulnerable to radiation effects called Single
Event Upsets (SEUs) that are common in space environments.
SEUs can inadvertently change the configuration of the SRAM
bits, thereby changing the functionality of the circuit imple-
mented [2]. If SEUs affect only one bit, this effect is known as
a Single-Bit Upset (SBU) or single error. On the other hand,
if several bits are consecutively affected, this effect is known
as a Multiple-Bit Upset (MBU) or burst errors (Figure 1).

Several mechanisms have been proposed to mitigate SEUs
in SRAM-based FPGAs. The most common solution explores
spatial/hardware redundancy [3]. Triple Modular Redundancy
(TMR) [4] [5] replicates three times the hardware module
to be protected and votes on their outputs, identifying the
right results and a possible faulty module. However, this
approach imposes a great overhead in terms of area and power
consumption. Moreover, this method does not avoid error
propagation if more than one component produces erroneous
output. Duplication With Compare (DWC) [6] is an alternative
approach to reduce the TMR overhead. It compares the output
results of duplicated modules in order to identify the errors.
However, it cannot correct them, but can trigger the suitable
operations to do that, such as a full re-execution.

Blind scrubbing is another traditional method of fault
mitigation. This mechanism does not detect the existence
of faults, but instead, periodically rewrites the configuration
frames on to the FPGA, overwriting possible faulty bits caused
by SEUs [7] [8]. An external memory with continuous access
is required to store the configuration frames, frequently called
as golden copy. In order to minimize the faults’ impact, the

frame

Burst Errors (MBUs)

Single Errors (SBUs)× × ×

××× ××××

Fig. 1. Error model of single and multi-bit upset.

scrubbing frequency must be greater than the expected SEU
frequency. However, determining this frequency requires in
advance a deep knowledge about fault susceptibility of the
device technology, as well as the environmental conditions to
which it would be exposed.

The balance between error correction and the overhead
required has been a challenging problem faced by researchers.
This paper proposes two new error correction schemes based
on frame readback and ECCs. Depending on the balance of
error correction required and area overhead acceptable, one
of the proposed solutions can be used. The proposed schemes
detect and correct errors in each individual frame of the FPGA
by mapping each frame to a 2D matrix and then computing
hamming or parity bits for the matrix in different directions
(rows, columns and diagonals). The mechanism adopted for
computing the ECCs ensures a very good error correction
performance, especially for burst errors and also uses lesser
area overhead as compared with other state-of-the-art.

Contributions: The following are the key contributions of
this paper:

• 2 schemes based on frame readback and ECCs (ham-
ming [9] and parity codes) to repair SEUs in the
configuration memory;

• Improving the error correction percentage per unit area
overhead;

• A hardware architecture to evaluate the efficiency of
the proposed schemes.

The rest of the paper is organised as follows. Section II
presents related works in the field of readback scrubbing.
Section III presents in detail the proposed error correction
schemes. Section V presents the experiments and the corre-
sponding results obtained. Section VI concludes the paper.

II. RELATED WORK

Readback scrubbing has been seen by the researchers
as an effective mechanism to provide error correction in
SRAM-based FPGAs [10]–[14]. Three categories of readback
scrubbers can be found in the literature. The first category
enables fault detection with a direct comparison between
read frames and the golden copy [13]. The fault is corrected

by overwriting the faulty frame with the respective golden
copy frame. The second category does not use an exhaustive
comparison with the golden copy [14]. It detects the faults
matching the online computed error detection codes (EDCs)
with the original ones, previously computed and externally
stored for each frame. Similar to the previous category, the
fault recovery is performed using the frame’s golden copy. The
third category enables the fault detection, computing ECCs for
each frame [10]–[12]. The ECCs allow the faults’ detection,
similar to the previous category. However, upon fault detection
in a frame, the faults can be easily recovered using the ECCs.
Once the fault is recovered, the frame is written back into
the FPGA. Different error detection schemes, combined with
different ECCs have been proposed in the literature. However,
they are not really efficient to handle burst errors.

Lanuzza et al. [12] proposes a scheme to correct burst
errors in SRAM-based FPGAs by applying hamming codes
to a data word obtained by frame bit interleaving. The bit
interleaving technique reduces the probability to have several
bit-faults in the same data word, thereby increasing the correc-
tion efficiency. However, the error correction is limited by the
amount of bit interleaving, and hence might not be suitable if
a very high error correction efficiency is required.

Argyrides et al. [10] introduce a scheme called Matrix
Code (MC), that uses hamming codes combined with parity
codes to enable the detection and correction of multiple errors
in an FPGA configuration frame. A frame word is mapped
into a matrix of subwords. Errors are corrected by computing
hamming codes for each row, providing Single Error Correc-
tion Double Error Detection (SECDED) and computing parity
codes for each column. As a result, this scheme is not efficient
in handling MBUs, since if more than two errors occur in the
same row, they are not detected by the ECC code.

Park et al. [11] propose a built-in 2-D Hamming Product
Code (2-D HPC) scheme. This technique is able to perform
SECDED by using hamming codes built from arranging the
FPGA configuration frame in a 2-D array. Therefore, hamming
codes are computed for each row and for each column of the
2-D array. Like the previous work, this scheme is not able
to detect more than two errors that occur in the same row or
column, and hence not efficient in handling burst errors.

III. PROPOSED SCHEMES

This paper proposes two novel schemes for error detection
and correction in SRAM-based FPGAs, using the readback
scrubbers. Both these schemes are based on existing ECCs,
i.e. parity codes and hamming codes, which are applied to the
FPGA frames. A frame is the lowest reconfigurable granularity
that can be found in an FPGA. In particular, the FPGA
configuration data frames FRc contain information about the
circuit design to be implemented on the FPGA. These schemes
map sequentially the content of each frame fri ∈ FRc in a
2D data matrix mfri with nr rows and nc columns. ECC
codes are then computed for this 2D data matrix and stored
in an internal or external storage. During runtime, the frames
are periodically read and mapped to the 2D data matrix to see
if they contain any errors. Errors are identified by comparing
the ECCs to the ones stored in the memory. In the case of an
error, the proposed algorithm attempts to rectify the affected

Parity bits

Frame bits

Diagonal

Column
hr

hc

Row

hd

nr

nd

nc

Fig. 2. ECCs used in H3 scheme.

bits. Once the errors are rectified, the corrected frame is then
written back into the FPGA board.

A. Error Model

There are two different error models considered for this
work. Both these models focus on SEUs, i.e., transient soft
errors due to a single particle strike and which affect the
configuration (both the logic and routing) bits of the FPGAs.
The first model considers SBUs (single errors) and the second
considers MBUs (burst errors). Both error models are illus-
trated in Figure 1. According to the literature, the latter model
is more realistic since it is very common that a single particle
strike might affect one or more neighbouring bits [12]. We try
to detect and correct both single errors as well as burst errors
in this work. The following sub-sections discuss these schemes
in detail with examples to illustrate the working of each.

B. H3 Scheme

H3 scheme applies hamming codes to the frame matrix at
the design time in three directions, rows, columns and in one
of the diagonals as shown in the Figure 2. With this scheme,
single error correction (SEC) is available for each row rj ∈
mfri, for each column cj ∈ mfri and for each line of one
of the diagonals dj ∈ mfri. The pseudocode presented in
Algorithm 1 illustrates the H3 scheme behaviour. The matrix
frame is received as input and SEC is sequentially applied to
the rows, columns and diagonal. While errors are detected in
the matrix frame, SEC is continuously applied. When no errors
are detected the mfri is returned.

Figure 3 illustrates the working of the H3 scheme. In the
first iteration, the algorithm computes the hamming codes for
the rows, columns and diagonals respectively and compares it
to the ones already stored in memory. As can be seen from the
figure, errors are found in rows 2 and 7 (matrix A1), columns
1, 2, 4, and 6 (matrix A2) and diagonal 2 and −3 (matrix A3).
These error bits are highlighted in yellow color. All the errors
are corrected at the end of the first iteration.

Algorithm 1 H3 scheme.

Require: mfri
Ensure: mfri

1: errorExists = true
2: while errorExists = true do
3: for all rj ∈ mfri do sec(rj);
4: for all cj ∈ mfri do sec(cj);
5: for all dj ∈ mfri do sec(dj);
6: update errorExists;
7: end while
8: return mfri;

sec – single error correction

A1 A2

X X X X
X

X X X X
X X X X

X

A3 A4
X

X

Fig. 3. Example of H3 scheme.

ECC Overhead: By definition, for SEC, the number of
hamming bits h required for a n-bit word is given by the
equation, n + 1 + h ≤ 2h. This way, the ECC overhead can
be given by Equation 1,

H3oh =
nd∑
j=1

hdj + (nr × hr) + (nc× hc) (1)

where, hdj , the number of hamming bits for each diagonal
j, is given by |dj | + 1 + hdj ≤ 2hdj ; hr, the number of
hamming bits for the rows, is given by nc + 1 + hr ≤ 2hr;
hc, the number of hamming bits for the columns, is given by
nr+1+hc ≤ 2hc; nd, the number of diagonals of the matrix,
is given by nd = nr+nc− 1; dj is the set of elements of the
diagonal j.

C. P 2H Scheme

P 2H scheme provides error detection and correction
through the use of both parity and hamming codes. Parity
codes are applied for each row rj ∈ mfri and for each column
cj ∈ mfri, while hamming codes are applied for each line of
one of the diagonals dj ∈ mfri, as shown in Figure 4. Since
parity code can only detect the presence of a single error, this
scheme also employs an efficient algorithm to not only detect

Parity bits

Frame bits

Diagonal

Row

Columnhd

nc

nr

nd

Fig. 4. ECCs used in P 2H scheme.

Algorithm 2 P 2H scheme.

Require: mfri
Ensure: mfri

1: errorExists = true
2: diagErrLoc = []; rowErrLoc = [];
3: colErrLoc = []; errLocs = [];
4: while errorExists = true do
5: for all dj ∈ mfri do sec(dj);
6: for all dj ∈ mfri do diagErrLoc+ = ded(dj);
7: for all rj ∈ mfri do rowErrLoc+ = ped(rj);
8: for all cj ∈ mfri do colErrLoc+ = ped(cj);
9: eci(diagErrLoc, rowErrLoc, colErrLoc);

10: update errorExists;
11: end while
12: return mfri;

ded - double error detection
ped - parity error detection
eci - error correction by intersection

multiple errors, but to also correct them. The pseudocode of
this scheme is presented in Algorithm 2.

The first operation detects and corrects any single-bit error
for each diagonal dj ∈ mfri through the function sec(dj).
This first operation can be observed in Figure 6 (A1 − A2).
Note the frame burst errors can be easily corrected on this
first operation. Once all the single bit errors in the diagonals
are removed, it is not possible to correct any more errors
using only a single direction. Therefore, the next operation
set identifies the diagonals, rows and columns with errors
and matches them in order to identify their exact location.
ded(dj) identifies the diagonals with double errors, through
the hamming codes. ped(rj) and ped(cj) identify the rows
and the columns with errors, through the parity codes. These
locations are submitted to the function eci, which match
them and produce a set of intersections in the matrix frame.
These intersections are potential bit errors. This way, several
operations are then performed to identify and correct the errors.
Figure 5 presents a flowchart, which describes the operation
flow performed by P 2H scheme. In particular, the shaded area
describes the operation flow performed in the scope of eci
function.

Start

Intrsct
exist?

Find all 2
intersection

points

Intrsct
exist?

Try
correcting
half these

intersections

Correct
the errorsEnd

Find all 3
intersection

points

Single error
correction in
diagonals

Double error
detection in
diagonals

Parity error
detection in
rows and
columns

Errors still
exist?

Errors still
exist?

yes

no

yes

no

yes

yes

yes

no

Eci function

Fig. 5. Flowchart of P 2H scheme.

Find 3 intersection points operation looks for the inter-
sections between the row, columns and diagonals which have
errors. The set of points identified by three intersections are
considered bit-errors and will be corrected by inverting their
bits. However, there are cases where three intersections can
identify false errors, as the example described in Figure 6
(B1 − B3). In such cases, which we might end up inverting
correct bits, the subsequent iterations of the algorithm will then
try to correct these errors. Matrix B2 shows four bit errors and
one false bit error highlighted in yellow. After the bit inversion,
the four erroneous bits are corrected, but the false bit error
becomes an error. The algorithm returns to the beginning and
this last bit error is corrected through the diagonal, as described
in the matrix B3.

When there are no three intersections possible or errors
still exist after the three intersection step, find 2 intersec-
tion points operation tries to find out all possible erroneous
bits by checking the diagonal-row, diagonal-column and row-
column intersections. These intersections that are identified
might have both correct bits and erroneous bits. In order to
reduce the chances of inverting the correct bits, only half of
these points are inverted. This operation can be observed in
example (C1 − C4) of Figure 6. Matrix C2 shows the bits
identified as faulty in yellow and blue color. Since not all
identified bits are erroneous, the algorithm tries to randomly
choose half of these bits. It is to be noted here that it is not
possible to identify the erroneous bits deterministically. The
algorithm then flips these bits that were randomly chosen,
highlighted in the Matrix C2 in blue. After this operation, the
algorithm then starts from the beginning again and tries to find
the single errors in the diagonals as shown in matrix C3. After
performing three intersections again as shown in matrix C4,
we can see that the algorithm can correct all the errors in the
frame.

ECC Overhead: By definition, SECDED requires one extra
hamming bit when compared with SEC for the same n-bit data
word. Therefore, the ECC overhead for this scheme can be
given by Equation 2,

A1 A2 B1

X X X X X X
X X X

X
X

X X X X X X X X
X

C1 C2 B2

X
X

X

X X X
X X X X

X X
B3

C3 C4

X

X X X
X X

Fig. 6. Example of P 2H scheme.

P 2Hoh =
nd∑
j=1

(hdj + 1) + nr + nc (2)

where, hdj is given by |dj |+1+ hdj ≤ 2hdj and nd is given
by nd = nr + nc− 1.

D. Optimal Diagonal

A straightforward way to implement hamming code for
the diagonals is to have separate ECCs for every line of
the diagonal. However, this might not be the most optimal
implementation as the ECCs may support more bits than
there are in a particular diagonal. For this reason, we use an
optimal diagonal construction as illustrated by the Figure 7.
Such a method has already been implemented for tolerating

Optimal
diagonal

Parity bits

Frame bits

nr

nc hd

m
ax
(n
r,
nc
)

Fig. 7. Illustration of optimal diagonal

disk failures in Redundant Array of Independent Disk (RAID)
architectures [15] [16]. Using this optimization reduces the
number of ECC bits required. The H3 and P 2H schemes
however, remain the same for the optimized hamming code of
the diagonal and require no modification. Even though optimal
diagonal is more efficient that a non-optimal diagonal in terms
of number of ECC bits used, there are cases where non-optimal
diagonal would be preferred to the optimal one, as will be
discussed in Section V-A.

ECC Overhead: Considering a frame matrix with nr rows
and nc columns, the ECC overhead for H3 scheme with
optimal diagonals is given by Equation 3.

H3oh = (hd×max(nr, nc)) + (nr × hr)

+(nc× hc)
(3)

where, hd is given by min(nr, nc) + 1 + hd = 2hd; hr, the
number of hamming bits for the rows, is given by nc+1+hr ≤
2hr; hc, the number of hamming bits for the columns, is given
by nr + 1 + hc ≤ 2hc.

Similarly, the ECC overhead for the P 2H optimal scheme
is given by Equation 4.

P 2Hoh = ((hd+ 1)×max(nr, nc)) + nr + nc (4)

where, hd is given by min(nr, nc) + 1 + hd = 2hd.

IV. IMPLEMENTATION ARCHITECTURE

The implementation of the proposed schemes on a Com-
mercial Of-The-Shelf (COTS) FPGA presents a few constraints
due to the current FPGA architecture. For example, the COTS
FPGA architecture does not provide a direct way to access
the contents of the frame as columns and diagonals. This
necessitates the need for a separate hardware architecture
to implement the proposed schemes. This section describes
the details of the implementation of the schemes in COTS
FPGAs without modifying their architecture. Figure 8 shows
the overall architecture of the FPGA along with the necessary
modules for implementing the algorithm proposed. As can be
seen from the figure, the Internal Configuration Access Port
(ICAP) is used to read the individual frames of the design.
Each of these frames is then sent to the Frame Storage Module
which converts the data into the necessary rows, columns and

ICAP

ECC Storage
Module

User Design Frames

Frame
Storage
Module

Error Correction
Module

Fig. 8. Proposed implementation architecture.

nc x nr bits

.

.

.

...

...

...

...

nr rows

nc bits

2

1

0

reg
reg
reg

nrreg

...

Fig. 9. Storing frame read by ICAP into the registers

diagonals. This data is then provided to the Error Correction
Module that implements the proposed schemes in hardware or
even in software. During of the schemes execution, if errors
are detected in the frame, they are corrected and then the frame
is written back to the design through the ICAP module. The
ECC Storage Module is a memory that stores the original ECC
codes for all the frames computed at design time.

A. Frame Parsing

As explained previously, the ICAP module reads the data
from the design frame by frame. Each frame is then converted
to an nr×nc 2-D grid for which ECC codes must be computed
for each of the rows, columns and diagonals according to the
schemes. If the frame does not evenly divide into the 2-D grid,
it will be padded with extra 0s.

Computing the ECC codes for the rows is the simplest
of all. However, computing the ECC codes for the column
requires the entire frame data to be read before it can be
encoded since a single column spans multiple rows. Due to
this, the entire frame is stored inside registers within the Frame
Storage Module as can be seen from Figure 9. The frame
containing nr × nc bits is stored in nr registers each having

P 2H opt P 2H non-opt H3 non-opt H3 opt 2D-HPC [11] MC [10]

0 20 40 60 80
0

20

40

60

80

100

Number of errors injected

E
rr

o
r

co
rr

ec
ti

o
n

%

Fig. 10. Error performance of different algorithms for single errors

0 5 10 15 20 25 30
0

20

40

60

80

100

Number of errors injected

E
rr

o
r

co
rr

ec
ti

o
n

%

Fig. 11. Error performance of difference algorithms for burst error model

nc bits. Storing the frame in registers helps to quickly retrieve
the bits corresponding to a certain column. To retrieve the ith

column, the registers would be accessed by

col(i) = reg0(i) & reg1(i) & ...& regnr(i).

Note that the & operator here is used to concatenate the bits
from the registers and not logically and them.

The ECC codes for the diagonals need to be computed
similar to the columns. Since each diagonal spans multiple
rows, the diagonals can be encoded only after the entire frame
is read. For both optimal and non-optimal diagonals, the Error
Correction Module needs to access the frame bits in such a
way that it corresponds to each of the diagonals. To access the
ith diagonal of the frame, the registers would be accessed by:

⎧⎪⎨
⎪⎩

diagnonopt(i) = reg0(i) & reg1(i+ 1) & ... & regnr−i(nr),

if i ≥ 0

diagnonopt(i) = reg−i(0) & reg−i(1) & ... & regnr(nr + i),

if i < 0

diagopt(i) = reg0(i mod n) & reg1((i+ 1)mod n) &

... & regnr((i+ nr)mod n)

V. EXPERIMENTS AND RESULTS

The schemes proposed in this work were simulated in
Matlab for 100, 000 simulations. For the purpose of error
correction performance, a window size of 32 was used (i.e.
a 32 × 32 matrix of frame). Errors were injected according
to the error model defined in Section III-A. The schemes are
compared with the closest related works [10] [11] in terms of
error correction performance, ECC overhead and ratio between
these two. Furthermore, the hardware implementations of the
proposed schemes have been evaluated for their area overhead,
utilization and frequency.

32 64 128
0

20

40

60

80

Window size

P
ar

it
y

o
v
er

h
ea

d
(%

)
P 2H opt

P 2H non-opt

H3 non-opt

H3 opt

MC [10]

2DH [11]

Fig. 12. Area overhead - Percentage

A. Error Correction Performance

For the single error model affecting only a single bit, the
graph was plotted for the percentage of errors corrected versus
the number of errors injected. As can be seen from Figure 10,
the proposed H3 scheme has an excellent error correction even
up to 70 errors per window. Moreover, the P 2H scheme for
both optimal and non-optimal diagonals performs equivalent
to the 2D-HPC [11] up to 10 errors beyond which it becomes
worse. The MC [10] scheme performs slightly better than the
2D Hamming scheme but worse than the H3 scheme.

B. Area Overhead

Similarly, Figure 11 plots the error performance of the
different schemes for the burst error model [17]. In the worst
case an SBU can affect four consecutive bits. Therefore, every
error injected in the simulation affected one to four bits in
the frame. Since the burst errors only affect neighbouring bits,
burst errors were injected in only one direction. Since burst
errors occur only in one direction, calculating hamming bits
diagonally has a much better probability of correcting the
faults. From the graph, we can see that both the proposed

P 2H opt P 2H non-opt H3 non-opt H3 opt 2DH [11] MC [10]

0 10 20 30 40 50
10−2

10−1

100

Number of errors injected

E
rr

o
r

co
rr

ec
ti

o
n

(%
)/

E
C

C
b
it

s

Fig. 13. Ratio between ECCs overhead and error correction percen. for SBU.

0 5 10 15 20 25 30 35
10−3

10−2

10−1

100

Number of errors injected

E
rr

o
r

co
rr

ec
ti

o
n

(%
)/

E
C

C
b
it

s

Fig. 14. Ratio between EECs overhead and error correction percen. for MBU.

schemes perform much better under the burst error model as
compared with the 2D-HPC and MC schemes.

The non-optimal diagonal for both schemes performs better
than the optimal one since there are more ECC bits in its
hamming code. Hence, even though the optimal diagonal is
more efficient in terms of number of ECC bits used, the non-
optimal diagonal would be preferred if the design is likely to
encounter more errors than the optimal diagonal can handle.

Figure 12 compares the ECC overhead percentage for the
proposed and related schemes with different windows sizes.
As expected, the MC scheme has the highest ECC overhead
percentage. This is because it uses 28 ECC bits for every
word in the frame. However, as the window size increases,
the number of ECC bits needed goes down considerably and
the H3 scheme starts to have a higher overhead than the MC
scheme. The P 2H scheme with non-optimal diagonal has less
ECC overhead than 2D-HPC for smaller window sizes. This
is because the proposed scheme uses parity codes for rows
and columns, and hamming codes for the diagonals while 2D-
HPC uses hamming codes for both rows and columns. For
larger window sizes however, the number of ECC bits increases
for the non-optimal diagonal hamming code. Summing up,
the P 2H optimal and non-optimal techniques have 35.7%
and 18.75% lesser ECC overhead as compared to 2D-HPC.
Similarly, the H3 optimal and non-optimal techniques are
32.1% and 23.4%, respectively smaller in overhead than MC
for a window size of 32.

C. Ratio between the Error Correction Percentage and the
ECC Overhead

This work as mentioned in the introduction, aims to im-
prove the error correction percentage per unit area overhead.
Figures 13 and 14 plots the ratio for different numbers of
errors injected. A higher ratio implies that the error correction
is more efficient by using lesser ECC overhead than a lower
ratio one. As the number of errors injected is increased, the
ratio decreases since the error correction capability of the
schemes reduce drastically. Further, as can been seen from
the figures, the proposed schemes in this paper, especially the

TABLE I. HARDWARE RESULTS

Slices Utilisation LUT-FF pairs Max. Freq.

H3 module 2324 6% 5694 182 MHz

P 2H module 3703 9% 10393 160 MHz
Frame storage 1792 4% 9694 246 MHz

P 2H scheme does much better than 2D-HPC for both SBUs
and MBUs for lesser number of errors (up to ≈ 17 errors in
the frame). Moreover, the H3 scheme has a much lower ratio
than all the other schemes for more than 34 errors in a single
frame. From this result, we propose using the P 2H scheme
for environments with lower SEU conditions, while the H3

technique would be more effective for high SEU conditions.

D. Hardware Implementation

A hardware implementation of the proposed schemes was
implemented according to the architecture discussed in Sec-
tion IV. The error correction and frame storage modules were
completely designed in hardware so that computations can
be done in parallel. Moreover, the frame and ECC storage
was done in registers to make the access of data faster. The
implementation was targeted towards the Virtex-6 architecture
and the feasibility of the proposed schemes was verified. Note
that hardware implementations of the related works were either
not available or not possible to implement on the current FPGA
architecture used. Table I presents the results of the hardware
implementation. Both schemes take up less than 13% of the
entire FPGA and run at a frequency of at least 160 MHz.
Moreover, the time taken to correct errors was measured for
both the proposed schemes. H3 scheme (optimal) took 20, 796
cycles1 to correct the errors while the P 2H scheme (optimal)
managed to correct the same in 6, 445 cycles2. The P 2H
scheme performs faster than the H3 scheme since it only uses
parity correction for the rows and columns and hamming for
the diagonals.

1corresponds to 207.96μs for ICAP running at 100 MHz
2corresponds to 6.445μs for ICAP running at 100 MHz

VI. CONCLUSIONS

Two new error detection/correction schemes are presented.
These schemes combined with frame readback scrubbing al-
low mitigating SBUs and MBUs in SRAM-based FPGAs. A
suitable architecture has also been presented for the imple-
mentation of the proposed schemes which uses COTS FPGAs.
These two schemes are evaluated and compared with the
existing related works in terms of ECC overhead and error
correction percentage, as well as the ratio between them and
their execution time. From the results, we propose using the
H3 scheme for environments with higher SEU conditions and
where the error correction percentage is really important. On
the other hand, for environments with moderate SEU, P 2H
scheme will be more effective as it provides a moderate error
correction capability with a lesser ECC overhead.

REFERENCES

[1] D. Ratter, FPGAs on Mars, ser. Journal n50. Xilin Technical Report,
xCell Jornal, 2004.

[2] D. White and Xilinx Corporation, Considerations Surrounding Single
Event Effects in FPGAs, ASICs, and Processors, ser. White Paper
WP402, 20012.

[3] I. Koren and C. Krishna, Fault-tolerant systems. Morgan Kaufmann,
2007.

[4] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin, “Improv-
ing FPGA Design Robustness with Partial TMR,” in 44th Annual IEEE
International Reliability Physics Symposium Proceedings, 2006.

[5] C. Bolchini, A. Miele, and M. D. Santambrogio, “TMR and Partial
Dynamic Reconfiguration to mitigate SEU faults in FPGAs,” in Defect
and Fault-Tolerance in VLSI Systems (DFT’07), 2007.

[6] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan, “Push-assisted
migration of real-time tasks in multi-core processors,” SIGPLAN Not.,
2009.

[7] C. Carmichael, M. Caffrey, and A. Salazar, “Correcting single-event
upsets through virtex partial configuration,” Xilinx, Tech. Rep., 2000.

[8] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA partial recon-
figuration via configuration scrubbing,” in Field Programmable Logic
and Applications (FPL’09), 2009.

[9] A. D. Houghton, The engineer’s error coding handbook. Chapman &
Hall, 1997.

[10] C. Argyrides, D. Pradhan, and T. Kocak, “Matrix codes for reliable and
cost efficient memory chips,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2011.

[11] S. P. Park, D. Lee, and K. Roy, “Soft-Error-Resilient FPGAs Using
Built-In 2-D Hamming Product Code,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2012.

[12] M. Lanuzza, P. Zicari, F. Frustaci, S. Perri, and P. Corsonello, “A self-
hosting configuration management system to mitigate the impact of
Radiation-Induced Multi-Bit Upsets in SRAM-based FPGAs,” in IEEE
International Symposium on Industrial Electronics (ISIE’10), 2010.

[13] M. Berg, “The nasa goddard space flight center radiation effects and
analysis group virtex 4 scrubber,” Xilinx Radiation Test Consortium
(XRTC) Meeting, 2007.

[14] Xilinx Corporation, Virtex FPGA Series Configuration and Readback,
ser. Application Note XAPP138, 2005.

[15] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: an efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Transactions on Computers, 1995.

[16] C. Huang, L. Xu, and S. Member, “An efficient coding scheme for
correcting triple storage node failures,” in 4th Usenix Conference on
File and Storage Technologies (FAST), 2005.

[17] H. Quinn, P. Graham, J. Krone, M. Caffrey, and S. Rezgui, “Radiation-
induced multi-bit upsets in SRAM-based FPGAs,” IEEE Transactions

on Nuclear Science, 2005.

