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ABSTRACT
The last decade has witnessed the blooming emergence of
many-core platforms, especially the graphic processing units
(GPUs). With the exponential growth of cores in GPUs,
utilizing them efficiently becomes a challenge. The data-
parallel programming model assumes a single instruction
stream for multiple concurrent threads (SIMT); therefore
little support is offered to enforce thread ordering and fine-
grained synchronizations. This becomes an obstacle when
migrating algorithms which exploit fine-grained parallelism,
to GPUs, such as the dataflow algorithms.

In this paper, we propose a novel approach for fine-grained
inter-thread synchronizations on the shared memory of mod-
ern GPUs. We demonstrate its performance and compare
it with other fine-grained and medium-grained synchroniza-
tion approaches. Our method achieves 1.5x speedup over
the warp-barrier based approach and 4.0x speedup over the
atomic spin-lock based approach on average. To further ex-
plore the possibility of realizing fine-grained dataflow algo-
rithms on GPUs, we apply the proposed synchronization
scheme to Needleman-Wunsch – a 2D wavefront application
involving massive cross-loop data dependencies. Our imple-
mentation achieves 3.56x speedup over the atomic spin-lock
implementation and 1.15x speedup over the conventional
data-parallel implementation for a basic sub-grid, which im-
plies that the fine-grained, lock-based programming pattern
could be an alternative choice for designing general-purpose
GPU applications (GPGPU).

Categories and Subject Descriptors
C.1.2 [Computer System Organization]: Multiple Data
Stream Architectures—SIMD ; D.1.3 [Software]: Concur-
rent Programming—Parallel programming
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1. INTRODUCTION
To harness the unprecedented computational capacity of

modern multiprocessor architectures, a program must be
partitioned and executed by multiple threads that communi-
cate via shared memory or interconnection network. To en-
sure correctness, however, operations from various threads
must obey certain order restrictions imposed by program
logic. Synchronization is the process referring to this coordi-
nation issue, during which timing information is exchanged
among participant threads.

Synchronization can be further classified as thread coop-
eration and thread contention [1]. Thread cooperation en-
forces read-after-write data dependencies between coopera-
tive threads, which is accomplished by producer-consumer
primitives in general. Thread contention, on the other hand,
ensures exclusive manipulation of the shared data so that
program consistency is preserved. Atomic operations are
provided for this purpose. The major difference between
the two classifications is that thread cooperation empha-
sizes access order while thread contention stresses mutual
exclusion. In this paper, unless stated otherwise, the word
synchronization is specially referred to thread cooperation.

Synchronization is not free. It can consume a significant
fraction of the execution time due to parallelism degrada-
tion, as threads may stall at barriers or spin at locks [2, 3].
Furthermore, the synchronization process itself induces over-
head, such as the communication delay and memory traffic
for enquiring and releasing locks, the operation overhead for
updating mutexes, the storage cost for synchronization vari-
ables, etc.

Such overhead is particularly significant for algorithms
that exploits fine-grained parallelism (e.g. dataflow algo-
rithms) as the occurrence of synchronizations in these al-
gorithms is much more frequent than in other applications
[4]. As a result, numerous works have been proposed to alle-
viate the fine-grained synchronization overhead, from both
architectural [5, 6, 7] and algorithmic perspectives [8, 9, 10].

Starting from the last decade, the graphics processing unit
(GPU) has evolved to be applied on general purpose appli-
cations [11, 12]. However, traditional data-parallel program-
ming models for GPUs assume single instruction stream for
all concurrent threads (SIMT) and little support is offered to
enable elaborate thread cooperation. This becomes an ob-
stacle when migrating dataflow applications which exploits
fine-grained parallelism to GPUs.

GPU threads are organized in a hierarchy of three levels:
thread, warp and block. Accordingly, three different granu-
larities are addressed for GPU synchronizations:



• coarse-grained: synchronizations among thread blocks.

• medium-grained: synchronizations among warps in th-
read blocks.

• fine-grained: synchronizations among threads in threa-
d blocks.

GPU currently provides hardware support for medium-
grained warp barriers [13]. It also offers fine-grained atomic
operations on global and shared memory [14]. However, the
existing atomic operation based synchronization scheme, as
will be seen, exhibits poor performance; using it incurs sig-
nificant overhead.

In this paper, we propose a fine-grained, highly efficient
thread synchronization mechanism on the shared memory
of NVIDIA Fermi GPUs [14]. Instead of seeking to reduce
the occurrence of synchronizations, we look into an atomic
instruction itself from a lower level standpoint. By reassem-
bling the micro-instructions that comprise an atomic oper-
ation, we develop an approach that can set up a producer-
consumer communication channel between cooperative thre-
ads in a thread block with much less overhead than the
atomic spin-lock based implementation. We validate the
correctness and demonstrate the effectiveness of the pro-
posed approach through comparisons with other fine-grained
and medium-grained synchronization approaches. Further,
to explore the possibility of realizing thread-level dataflow
algorithms on GPUs, we apply the proposed synchroniza-
tion scheme in Needleman-Wunsch – a 2D wavefront appli-
cation that contains a large amount of cross-loop data de-
pendencies. The performance we obtained proves that the
fine-grained, lock-based programming pattern could be an
alternative choice for designing GPGPU applications.

This paper makes the following contributions:

• We show the inefficiency of the atomic spin-locks and
propose a novel lock mechanism (called tiny-lock)
that shows much better performance with no memory
cost.

• We use the tiny-lock to build highly efficient producer-
consumer primitives for fine-grained data synchroniza-
tions between cooperative threads in a thread block.

• We address two architectural factors that can lead
to deadlocks: one is the structural conflicts between
thread ordering and SIMD execution; one is lock alias.

• We show how to realize lock-based dataflow comput-
ing on GPUs using a wavefront application. This is
the first time, to the best of our knowledge, that a
fine-grained dataflow model has been reported to be
efficiently implemented at the lowest thread level of
GPUs.

2. RELATED WORK
For coarse-grained synchronizations on GPUs, Xiao et

al. proposed three schemes [15]: a simple version, a tree-
based version, and a lock-free version. The simple version
leveraged a global-shared mutex via global memory atomic
operations. The tree-based version improved the simple ver-
sion by synchronizing progressively along the tree branches.
The lock-free version allocated a monitor thread block to
coordinate synchronizations among working thread blocks.

Their work was later extended by Stuart et al. to build a
set of course-grained synchronization primitives [16].

In terms of medium-grained synchronizations, although
the block-wise barrier syncthreads() is widely adopted, it
was not until recently that a warp-to-warp synchronization
approach has been developed. It relies on the sync-arrive
barrier pair [17]: bar.sync is a blocking operation that sus-
pends the current warp until all desired warps have arrived
at the barrier. bar.arrive is a non-blocking operation that
signals the arrival of the current warp to the barrier. In [18],
Bauer et al. proposed a producer-consumer communication
model based on this barrier-pair that could coordinate data
movement from a producer warp to a consumer warp via
shared memory buffers. They further applied this medium-
grained synchronization approach to a chemical application
[19]. The performance was demonstrated and the implemen-
tation was straightforward using the PTX embedding tech-
nique. However, for this approach, although the number of
synchronization threads is parameterizable, it has to be a
multiple of warp size [17] (32 for all present CUDA GPUs),
meaning that the granularity is warp, not thread. Further-
more, only 16 barrier instances are available per thread block
[17], making these barriers very precious and limited for fre-
quent usage, such as in a context of dataflow programming.

Regarding fine-grained synchronizations, the only ap-
proach till now, to the best of our knowledge, is through the
spin-locks, which are constructed using the atomic opera-
tions in global memory and shared memory. However, the
performance of such atomic spin-locks is poor and their uti-
lization is highly discouraged [20]. In fact, the lack of highly
efficient, fine-grained synchronization mechanisms has al-
ready become an obstacle that disturbs the broad adoption
of GPUs for general purpose applications [16, 21, 22].

3. LOCK UNIT
In this section, we briefly describe the architecture of the

lock unit in GPU shared memory and the associated opera-
tions.

3.1 Architecture
The shared memory (i.e. scratchpad memory) in a GPU

is a small on-chip storage shared among all processing units
in a streaming multiprocessor (SM). It serves as a commu-
nication interface for fast data exchanging between differ-
ent threads of a thread block. Being on-chip, the shared
memory has much higher bandwidth and shorter accessing
latency compared to the global memory (or main memory)
of GPUs. Therefore, optimizations which can shift global
memory access to shared memory access are highly advised
by the CUDA programming guide [13].

The lock mechanism that enables fast atomic access is im-
plemented in the shared memory, under the help of a module
called “lock unit”, in Fermi GPUs (see Figure 1). According
to the associated patent [23], the lock bits are flags indicat-
ing the present lock status for the corresponding locations
in the main storage (i.e. the Storage Resource in Figure 1).
The lock bit is set so that other updating requests to that
location are refused. For space concern, multiple locations
in the main storage are aliased to a single lock bit. A hash
function is implemented to perform the mapping, ensuring
that successive words are mapped to distinct lock bits. For
Fermi GPUs, a total of 1024 independent lock bits are pro-
vided for the 16KB (or 48KB based on configuration) shared
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Figure 1: Shared memory lock unit. Terminal A reads the re-
quest memory address and looks it up in the storage resource. The
fetched data is returned to terminal C that connects to a general
register. Meanwhile, the 2-to-11 bits of the data address is used to
retrieve associated lock bit from the lock unit. The value of lock bit
is returned to terminal C, which connects to a predicate register.

memory. Word addresses with a stride of 1024 are aliased
to the same lock bit. When a memory request being de-
livered (to terminal A in Figure 1), the 2-to-11 bits of the
data address is labeled as the lock address and redirected
to the lock unit. Gomez-Luna et al. discusses this mapping
mechanism exhaustively in [24] and report a number of 1024
lock bits. We confirm this value experimentally when testing
deadlocks (see Section 4.4).

Regarding such a design, the following characteristics are
highlighted for our proposal:

• Efficiency: Accessing the lock units does not require
extra pipeline-stages or decision logic in the critical
path because it is performed in parallel with the ordi-
nary data access. So no extra delay is induced.

• Flexibility: The lock unit is not configured to track
the ownership of the locks. It is the program’s respon-
sibility to honor the lock bits and to prevent illegal
access to the locked locations in the main storage.

3.2 Operations
Listing 1 shows the low-level assembly sequence (SASS)

generated by cuobjdump for the atomic instruction “atom-
icAdd()” to the shared memory of Fermi GPUs, in CUDA
runtime (i.e. atom.shared.add instruction in PTX [17]). It
indicates that the high-level “atomic” instruction is essen-
tially comprised by a series of low-level SASS operations:

/*00a0*/ LDSLK P0, R1, [R0];
/*00a8*/ @P0 IADD R4, R1, 0x1;
/*00b0*/ @P0 STSUL [R0], R4;
/*00b8*/ @!P0 BRA 0xa0;

Listing 1: SASS code for atomicAdd()

• LDSLK loads data from address [R0] to a general reg-
ister R1. It also reads the associated lock bit to a 1-bit
predicate register P0. (In Figure 1, R0 is connected to
A, R1 is connected to C, P0 is connected to B.) There-
fore, P0 equals true implies that the target lock is suc-
cessfully acquired by the current thread. Meanwhile,
the lock bit in the lock unit toggles to 0, disabling
subsequent locking requests. Here, “LDS” stands for
loading from shared memory while “LK” means load-
ing the lock bit simultaneously.

• Based on P0=1 (@P0), IADD adds 0x1 to R1 and
stores the sum to R4. Note that threads in a warp
may diverge here if some of them fail to acquire the
locks in the present locking test (@!p0).

• Also with P0=1, STSUL stores R4 to [R0] and trig-
gers the lock unit to reset the lock bit. “STS”stands for
storing to shared memory while “UL” means unlocking
simultaneously.

• BRA is the branch operation that jumps to instruc-
tion address 0xa0, which is the entry of the atomic pro-
cedure. In this way, the threads failed to obtain locks
in the current test rotate back and redo the atomic
process. Meanwhile, the finished threads have to wait
beyond this BRA operation until all divergent threads
in the warp have reached so as to continue lockstep
execution.

Regarding these operations, it should be noted that:

• The default value of a lock bit is 1, indicating that it is
free for fetching. LDSLK resets the lock bit to 0 while
STSUL sets the lock bit to 1. It is infeasible to set the
lock bit via LDSLK or reset the lock bit via STSUL.
There is no alternative way to set or reset a lock bit.

• To release a lock bit, a thread must store a value to the
corresponding memory location simultaneously. The
store overwrites the original content.

4. FINE-GRAINED SYNCHRONIZATION
In this section, we present the fine-grained synchroniza-

tion mechanism. We first describe our motivation and then
propose the tiny-lock, based on which we show our fine-
grained synchronization scheme.

4.1 Motivation
Our approach is motivated by the observation that an

atomic instruction in the shared memory is comprised of
multiple low-level SASS operations (Section III-B). There-
fore, we can reassemble these SASS operations in a different
way to build other efficient synchronization procedures.

4.2 Tiny-Lock
Fine-grained synchronization relies on fine-grained locks.

Listing 2 illustrates a common implementation [25] of the
fine-grained spin-locks based on atomic instructions.

__device__ inline void lock(int* p_mutex ){
while(atomicCAS(p_mutex ,0 ,1)!=0);// compare and swap

}
__device__ inline void unlock(int* p_mutex ){

atomicExch(p_mutex ,0);// exchange
}

Listing 2: Baseline implementation: atomic spin-locks [25]

In Listing 3, we show the SASS sequence of the baseline
implementation. To make it more clear, we draw the corre-
sponding control-flow-graph (CFG) in Figure 2. There are
two loops in the Lock routine: the small loop is spinning for
a lock bit. It is embedded in atomicCAS(). The big loop,
which corresponds to the while statement, is the actual iter-
ation for the user-defined mutex variable stored in the main
storage of the shared memory.
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Figure 2: CFG of atomic spin-locks. LB stands for lock unit.
Convergence point is the place where divergent threads of a warp
rejoin to proceed lock-step execution. In the Lock routine, the big
loop is for acquiring the user-defined mutex while the small loop is
for acquiring the lock bit of the mutex. P2 being a replicate of P1 is
the result of direct translation from two ptx instructions by the ptxas
assembler. In the Unlock routine, the atomic update to the mutex
(i.e. the small loop) is a must; otherwise, the updated result may be
overwritten unexpectedly by another thread who acquires the lock bit
but not the mutex. Since that thread needs to write a value to the
mutex for releasing the lock bit, it uses a dated value obtained when
fetching the lock bit as it is unaware of the latest update.

// ==================== Lock ====================
/*0060*/ SSY 0x98; //set convergence point
/*0068*/ LDSLK P0 , R2, [R0];
/*0070*/ @P0 ISETP.EQ.U32.AND P1, pt, R2, RZ, pt;
/*0078*/ @P0 SEL R3, R2, 0x1, !P1;
/*0080*/ @P0 STSUL [R0], R3;
/*0088*/ @!P0 BRA 0x68; // atomicCAS loop
/*0090*/ ISETP.EQ.AND.S P2, pt, R2, RZ, pt;
/*0098*/ @!P2 BRA 0x60; //while loop

// converge to proceed lockstep execution
/*00a0*/ ...
// =================== Unlock ===================
/*00b0*/ LDSLK P0, RZ, [R0];
/*00b8*/ @P0 MOV32I R2, 0x1;
/*00c0*/ @P0 STSUL [R0], R2;
/*00c8*/ @!P0 BRA 0xb0;

Listing 3: SASS code of atomic spin-locks

This is a recursive design: the user-defined mutex acts as
an intermediate layer to realize the required locking func-
tionality (i.e. the big loop) whereas the lock bit of the mu-
tex is leveraged to ensure atomic updates to the mutex (i.e.
small loop). Such a design behaves quite well when the mu-
tex serves as a semaphore, but is probably redundant when
only a single-bit lock is required – why not exploit the lock
bit directly?

// ==================== Lock ====================
/*0000*/ LDSLK P0 , RZ, [R0];
// ================== Waitlock ==================
/*0010*/ LDSLK P0 , RZ, [R0];
/*0018*/ @!P0 BRA 0x10;
// =================== Unlock ===================
/*0020*/ STSUL [R0], RZ;

Listing 4: Proposed fine-grained lock

We show the novel design in Listing 4. It is called tiny-
lock. There are two primitives for locking: Lock simply
fetches without verifying the locking result. It is used when
the programmer guarantees the acquisition of the target
locks (e.g. in an initialization scenario). Otherwise, Wait-
lock has to be applied, which repeatedly fetches the lock

until eventually succeeds. Unlock stores 1 to the lock bit for
release.

Such a design completely eliminates the space cost for the
user-defined mutex. It also avoids the big loop in the Lock
routine and the small loop in the Unlock routine. Com-
pared to the baseline implementation, it has the following
advantages:

• Time Delay, the proposed design reduces the static
number of SASS operations by 75% for Lock and Un-
lock ; and by 50% for one iteration of Waitlock (al-
though the dynamic number of operations executed
by waitlock depends on the waiting time experienced).
Meanwhile, the lock unit is accessed in parallel with
the shared storage (Efficiency in Section 3.1), so the
maximum delay for accessing locks is equal to an or-
dinary memory read or write. Furthermore, this delay
can be completely hidden in certain scenarios, e.g. the
read-after-write data synchronizations.

• Storage Cost, since the lock unit is isolated from the
main storage, our scheme does not require any shared
memory storage. In comparison, the baseline imple-
mentation has to explicitly allocate a word as an in-
termediate mutex. Further, since only the lock bit is
of interest, in many cases (see Section 5 and Section 6)
we can read the content of the memory location to the
zero register in Lock or write the original value back
in Unlock so that no register is used either.

• Memory Traffic, there is only one load transaction
for Lock and one store transaction for Unlock. For
Waitlock, unlike the baseline implementation that writ-
es the original value back to the mutex if the lock is
not obtained (B2 in Figure 2 when R2!=0), our ap-
proach does not produce any write traffic when locking.
Further, it does not produce computation traffic like
the baseline implementation (e.g. operations 0x0070,
0x0078 and 0x00b8 in Listing 3).

4.3 Fine-Grained Synchronization
All concurrent programming models offer programmers

the ability to control the order of dataflow from different
threads. However, conventional SIMT programming model
assumes weak inter-dependencies among threads that relies
on barriers to enforce thread ordering. However, barriers are
either coarse-grained or medium-grained in GPUs, which are
too coarse for thread-to-thread synchronizations. Therefore,
fine-grained locks have to be used for such synchronizations.

void producer (){
lock(&mutex); // initialize
...
shared_buffer = put; //store to channel
unlock (&mutex); // signal consumer to load

}
void consumer (){

...
lock(&mutex); //wait producer to store
get = shared_buffer; //load from channel
unlock (&mutex); // finalize

}

Listing 5: Fine-grained synchronizations based on atomic spin-locks

Listing 5 illustrates how an atomic spin-lock is used for
read-after-write synchronizations – the producer thread ac-
quires the mutex in advance and releases it after writing to



the shared buffer so that when consumer thread obtains the
mutex, it can read safely.

Here, a 1-bit lock is already sufficient to accomplish the
job. However, as discussed earlier and will be seen in the
experiments, the atomic spin-lock incurs significant time/s-
pace/traffic overhead which makes it too costly for frequent
inter-thread synchronizations. The proposed tiny-lock de-
sign significantly reduces such overheads and is therefore the
ideal option upon which to construct the fine-grained syn-
chronization scheme. Its implementation is shown in List-
ing 6.

// =============== producer ===============
/*0000*/ LDSLK P0 , RZ, [R0];// initialize
...
/*0010*/ STSUL [R0], R4;//store to channel and

// unlock
// =============== consumer ===============
...
/*0100*/ LDSLK P0 , R2, [R0];//wait and load from

// channel
/*0108*/ @!P0 BRA 0x100;// spinning
/*0200*/ STSUL [R0], R2;// finalize

Listing 6: Fine-grained synchronizations based on lock bits

This is the one-to-one synchronization scheme, which can
be extended further to one-to-many and many-to-one con-
ditions: the producer alternatively signals all its consumers
or the consumer waits for all its producers.

4.4 Deadlock
Programmers must be careful when using fine-grained loc-

ks in GPUs because it is easy to generate deadlocks. Besides
general causes from algorithmic aspects, there are two spe-
cial scenarios that may lead to deadlocks for GPUs. We
label them SIMD Deadlock and Alias Deadlock.

4.4.1 SIMD Deadlock

This kind of deadlock is due to a structural conflict be-
tween inter-thread synchronizations and SIMD-lockstep ex-
ecution. Consider the following scenario: what if the pro-
ducer and consumer threads are from the same warp? The
answer is — a deadlock. The general explanation is that
lockstep stresses synchronous execution whereas thread co-
operation enforces consumer-after-producer (i.e. read-after-
write) order, which is essentially asynchronous. Therefore, if
the synchronizing threads are from the same warp, we need
a divergence mechanism to separate the producer and the
consumer’s execution paths. In addition, for the producer,
the lock and unlock operations must be within the same di-
vergent segment, or in other words, the unlock operation
must be the post-dominator for the lock operation before
the next convergence point. Otherwise, the producer will
wait at that convergence point for the consumer to join in
order to proceed to execute the unlock instruction, whereas
the consumer is waiting to acquire the lock before it can step
to the convergence point. Here the inter-waiting produces a
deadlock.

In fact, such deadlocks occur more often than just for syn-
chronizations. Consider a warp executing lock function in
Listing 2. The convergence point is well beyond the while
loop (see the black barrier in Figure 2). If two or more
threads in the warp are contending for the same mutex (not
lock bit), due to atomicity, only one of them can acquire.
However, this thread has to be blocked at convergence point,

waiting for other threads to join. Meanwhile, the remaining
threads are adversely waiting for that thread to release the
mutex (via calling the unlock function) before they can pro-
ceed. Here, the same reason leads to a deadlock: the SIMD
convergence point is earlier than unlock. To circumvent this
problem, a direct implementation for the baseline scheme is
shown in Listing 7. In this way, the release of the mutex
(i.e. atomicExch(p mutex,0)) can be performed before the
warp convergence point, which is right after the while loop.

__device__ void producer_consumer(int* p_mutex ){
bool finished = false;
while(! finished ){

if(atomicCAS(p_mutex ,0 ,1)==0){
finished=true;
... // critical section
atomicExch(p_mutex ,0);

} } }

Listing 7: Intra-warp synchronizations based on atomic spin-locks

And for our scheme in Listing 6, the predicate register can
be manipulated to include unlock operation into the same
divergent path, as shown in Listing 8.

// producer -consumer
/*00a0*/ SSY 0x110;
/*00a8*/ LDSLK P0, R2, [R0];
... @P0 ... // critical section
/*0100*/ @P0 STSUL [R0], R2;
/*0108*/ @!P0 BRA 0xa8;

Listing 8: Intra-warp synchronizations based on lock bits

Although we successfully circumvent this deadlock at pro-
gramming level, another problem still remains – performance
degradation. As GPU adopts lane-masks to switch between
divergent branches for a warp, the performance is impaired
when each divergent branch has to be executed sequentially.
Here, the producer lane has to wait until the consumer lane
finishes. Even worse, if the consumer is in turn a producer
of another synchronization also in the same warp, such as
in a “scan” operation, then all the former producers have to
be blocked until the final consumer finishes the synchroniza-
tion. In the worst case, the performance drops by 32 folds
(e.g. a propagation chain). Unless a perfect pipeline can be
formed (i.e. producers start working on new data but exe-
cute in a lockstep with the consumers), some threads will be
idle. The problem here is that the dispatch units only issue
warp instructions, which is too coarse-grained for elaborate
intra-warp coordination.

Summarizing, for synchronizations between threads of dif-
ferent warps, we use the lock/unlock primitives in Listing 5
and Listing 6. Both the producer and consumer can proceed
immediately after the synchronization. But for synchroniza-
tions involving threads from the same warp, the critical sec-
tions in Listing 7 and Listing 8 are necessary. The produc-
ers have to wait until all their direct or indirect consumers
accomplish their synchronizations and arrive at the conver-
gence point. Although performance suffers, the fine-grained
scheme is still better than a medium-grained approach as
consumers from other warps can be signaled as soon as the
required data is produced, instead of waiting for the whole
warp that contains the consumer to be finished.

4.4.2 Alias Deadlock

This kind of deadlock is due to lock bit aliasing. There
are two conditions: First, suppose a thread already holds the
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Figure 3: Experiment workflow. The application is written in CUDA driver-API that can load cubin object file at runtime. The kernel is
first developed in CUDA-C and compiled to PTX code via NVCC. The PTX file is then assembled to a cubin binary via ptxas which is marked
as the base binary. After that, the human-readable SASS routine is dumped from the base binary through cuobjdump. We modify this routine
manually to insert the producer-consumer instructions, which is re-assembled to an updated cubin file for the driver-API to load.

lock bit of a memory location, say [M], but is trying to fetch
from its aliased location (e.g. [M+1024], see Section 3.1).
Then, the thread will trap in a circle because it is attempting
to get a lock bit from itself. Based on our experiments, such
a conduct immediately leads to a deadlock. However, the
positive side is that such an experiment confirms the stride
of lock bit alias is 1024 [24].

Second, we need to ensure the producer acquires the lock
before its consumer (see Listing 5 and Listing 6). As warps
are not synchronously executed in an SM, this is achieved by
placing a coarse-grained barrier (i.e. syncthreads()) after
the initialization phase for the whole thread block. Lock-bit
aliasing generates deadlock because the warp obtaining the
aliased lock waits at the block-wise barrier for other warps,
including the failed warp, while the failed warp is waiting
for the aliased lock before it can reach the barrier.

Although alias deadlock is easy to understand, it is one
of the major restrictions for the proposed synchronization
scheme: to avoid alias deadlock, only 1024 locks can be uti-
lized safely. This number is smaller than the allocatable
threads for an SM (i.e. 1536 threads) and much smaller
than the entries of the shared memory (i.e. 4096 or 12,288).
Given the fact that an SM can accommodate several thread
blocks, the volume of usable lock bits can significantly limit
the number of thread blocks an SM could support, hence de-
grading the performance for a large data size (see Section 6).

4.5 Warp-shared Lock Bit
When fine-grained lock bits are exploited for the situa-

tions of medium-grained synchronizations, it is possible to
share a single lock bit for the whole warp, which reduces the
demand for lock bits by a factor of 32. The idea is to exploit
the warp-wise voting instructions [17]. Listing 9 provides
the implementations for the lock and unlock routines, based
on which the readers can further construct warp synchro-
nization primitives.

// ==================== Lock ====================
//R0 is the same for all threads across the warp
/*0000*/ LDSLK P0 , RZ, [R0];
// ================== Waitlock ==================
//If any thread acquires the lock bit , continue
/*0010*/ LDSLK P0 , RZ, [R0];
/*0018*/ VOTE.ANY RZ, P1, P0;
/*0020*/ @!P1 BRA 0x10;
// =================== Unlock ===================
// Thread 0 in the warp releases the shared lock
/*0020*/ S2R R1, SR_LaneId; //Load lane_id
/*0028*/ ISETP.EQ P0, pt, R1, RZ, pt;// lane_id =0?
/*0030*/ @P0 STSUL [R0], RZ;

Listing 9: Warp-shared lock bit scheme

For Lock, any thread in the warp may acquires the lock
eventually, but we know one of them must obtain it. For
Waitlock, after acquiring, all threads are enforced to partici-

pate in a warp-wise vote. If any thread successfully acquires
the target lock (i.e. P0=1), the voting result is true (i.e.
P1=1). Then the whole warp quits the spinning loop and
proceeds lockstep execution. Otherwise, the warp rotates
back and try again. For Unlock, it may be too expensive to
let every thread perform the release operation since a 32-
degree bank conflict and lock conflict can be generated [24].
Further, if there are multiple threads waiting for the lock,
releasing it 32 times (due to conflict) may potentially violate
the consistency between the waiting threads. The method
here is to find a representative. Here the ISETP instruc-
tion and predicate register P0 are used to select thread 0
for releasing. Note it is not feasible to let the representa-
tive thread acquire the lock for the whole warp because the
remaining 31 threads may fail to make their writings ob-
servable by other warps due to the weekly-ordered memory
model [13]. However, such a design is not a problem if an
atomic-spin lock is shared for the whole warp as it enforces
the order in the memory.

5. VALIDATION
In this section, we validate the correctness and demon-

strate the effectiveness of our fine-grained synchronization
scheme. We use a NVIDIA GTX-570 GPU as the test plat-
form. It contains 15(SM)x32 CUDA cores with compute
capacity 2.0 (Fermi). The CUDA toolkit version is 4.0. In
terms of tools, cuobjdump is employed to generate the SASS
code of the target kernel. We then modify the SASS code
to insert our lock operations. However, to reproduce the
cubin binary for the updated SASS code, an SASS assem-
bler is necessary. Since ptxas only accepts PTX code, we
use an open-source SASS assembly tool named asfermi [26]
instead. This is also the reason why we restrict to Fermi –
asfermi does not support other architectures right now. The
detailed workflow is depicted in Figure 3.

for (i=0;i<32*N;i++)
A[i+32] = A[i] + independent_computation(i);

Listing 10: Validation kernel (serial version)

The loop shown in Listing 10 is used for validation. It
contains a parallel independent computation phase and a
serial dependent reduction phase. It is derived from the
kernel developed by Tullsen et. al. [6] that represents a
common map-reduce pattern. In order to compare with the
medium-grained synchronization approaches (see Section 2),
we extend the dependency distance from 1 to the size of a
warp (i.e. 32). Meanwhile, since only 16 warp barriers are
available in a thread block (see Section 2), N is set to be 16.

The whole loop is parallelized and mapped to 16 warps for
concurrent execution. We compare the proposed tiny-lock
implementation (i.e. tiny lock, Section 4.3) with the atomic



Scheme Shared Memory Cost Lock Bit Used
atom lock 2048 bytes 512 (implicit)
warp barr 0 0
shrd lock 128 bytes 32 (implicit)
tiny lock 0 512 (explicit)
warp vote 0 32 (explicit)

Table 1: Resource cost

spin-lock implementation (i.e. atom lock, Section 4.2), the
medium-grained sync-arrive barrier implementation (i.e. wa-
rp barr, Section 2), the shared lock-bit implementation (i.e.
warp vote, Section 4.5) as well as a shared spin-lock imple-
mentation (a warp shares a common spin-lock, i.e. shrd lock).
The core of the kernels for atomic spin-lock based, sync-
arrive barrier based and tiny-lock based implementations are
shown in Listing 11, Listing 12 and Listing 13 respectively.

__shared__ int A[32*N], mutex [32*N];
lock(mutex[tid]);// producer initially locks
__syncthreads ();// ensure producer gets lock first
/* ============== Reduction Phase ============== */
if (wid > 0) lock(mutex[tid -32]); // consumer waits
A[tid]=A[tid -32]+ independent_computation(tid);
unlock(mutex[tid]); // producer releases
unlock(mutex[tid -32]); // finalize

Listing 11: Atomic spin-lock based version (CUDA code)

__shared__ int A[N*32];
int tid = threadIdx.x; int wid = tid >>5; //log32=5
/* ============== Reduction Phase ============== */
if (wid >0)

asm("bar.sync %0,%1;"::"r"(wid -1),"r"(64));
A[tid +32]=A[tid]+ independent_computation(tid);
asm("bar.arrive %0,%1;"::"r"(wid),"r"(64));

Listing 12: Warp barrier based version (PTX embedded CUDA
code)

/*0000*/ LDSLK P0,RZ ,(A[tid]);// producer init locks
/*0008*/ BAR.RED.POPC RZ,RZ; //block barrier
/* =============== Reduction Phase =============== */
/*0100*/ ISETP.EQ P0, pt, (wid), RZ, pt;
/*0108*/ @P0 BRA 0x120; // warp_0 breaks
/*0110*/ LDSLK P1,R1 ,(A[tid -32]); // consumer waits
/*0118*/ !@P1 BRA 0x110;
/*0120*/ IADD R2,R1 ,( independent_computation(tid));
/*0128*/ STSUL (A[tid]),R2; // producer releases
/*0130*/ @!P0 STSUL (A[tid -32]),R1; // finalize

Listing 13: Tiny-lock based version (SASS code)

To be simple, we set independent computation() to imme-
diately return its thread index. Therefore, if we measure the
elapsed time for the reduction phase, it is the raw delay for
16 times’ synchronizations and additions in sequence. Fig-
ure 4 illustrates the measured execution time in cycles for
the reduction phase for the 5 schemes. Table 1 lists the cost
of resource for each scheme.

As can be seen, our tiny-lock based approach is 4.0x times
faster than the atomic spin-lock based scheme and is 1.5x
times faster than the warp barrier scheme. Meanwhile, warp
voting is shown to be an expensive operation (it actually
induces thread divergence in a warp) although the sharing
saves many lock bits. Finally, picking a warp-representative
thread reduces space cost at the expense of performance loss.
Table 2 summarizes the 5 schemes.
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Figure 4: Execution time for the reduction phase in cycles
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Figure 5: Dependence graph for the Needleman-Wunsch algorithm.
The green arrows denote dependencies with the north-west neighbors.
The yellow arrows refer to dependencies with north elements. The
blue arrows indicate dependencies with the west grid-points. The
first row and column of the grid are the initial values.

6. WAVEFRONT APPLICATION
In this section, we use the Needleman-Wunsch algorithm

[27, 28] from the Rodinia benchmark [29] as an example to
describe how to efficiently implement a dataflow algorithm
on GPUs using the proposed fine-grained, tiny-lock based
synchronization schemes. The application is to find the best
alignment between protein or nucleotide sequences in bioin-
formatics. Its core computation is:

S(i, j) = max


S(i, j − 1) − k

S(i− 1, j − 1) + p(i, j)

S(i− 1, j) − k

(1)

where S is 2D grid and p(i, j) is a predefined reference field.
As can be seen, the computation of each grid-point has true
data dependencies on its north, west and north-west neigh-
bors. The dependence graph is shown in Figure 5.

The data-parallel model relies on wavefront propagation
to resolve such dependencies. In [30], Lamport et al. show
that, for a multi-dimensional volume, given a value f , all
points laid in the hyperplane satisfying i + j + ... = f can
be processed in parallel while all their dependent points ful-
fill i + j + ... = f − 1. By stepping along the incremental
direction of f and processing all elements associated, data
dependencies can be respected. So far, all the existing im-
plementations of wavefront applications on GPUs adopt this
data-parallel pattern [22, 31, 32]. Figure 6 illustrates the
processing trace of this pattern for the Needleman-Wunsch
algorithm.



Scheme Granularity Performance Memory Cost Resource Programmability
atom lock fine x1.0 128 bytes/warp 4096/12,288 locations per SM CUDA runtime
warp barr medium x2.6 0 16 barriers per thread block PTX/embedded PTX
shrd lock medium x0.8 4 bytes/warp 4096/12,288 locations per SM CUDA runtime
tiny lock fine x4.0 0 1024 lock bits per SM assembly
warp vote medium x2.0 4 bytes/warp 1024 lock bits per SM assembly

Table 2: Summary of synchronization schemes
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Figure 6: Working trace for wavefront parallel pattern. The wave-
front direction coincides with the diagonal of the grid. In each wave-
front step, the points along the anti-diagonal can be processed in
parallel.
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Figure 7: Dataflow graph. The actor is the computation shown
in Equation.1. When the required operands S(i − 1, j), S(i, j − 1)
and S(i − 1, j − 1) are ready, the actor can fire. The arcs across the
dashed box denote the dependencies with other actors, which are also
the places that require synchronization.

However, the data-parallel propagation approach confr-
onts two problems: first, as the points that can be processed
in parallel are along the line that is perpendicular to the di-
agonal, the computation workload for each propagation step
is quite unbalanced, especially for SIMD processing. Second,
since the grid-points are normally sequentially stored along
the axises of the gird in memory, data access in each step is
cache unfriendly and cannot be coalesced for effective global
memory fetch.

The major factor leading to the irregular computation and
memory access is the rigorous 2D data-dependencies, which
can be naturally and effectively resolved by a static dataflow
model. A dataflow model describes the computation of each
point as an actor which is executed by a GPU thread. The
actor fires when all the operands it requires are available.
Many actors may fire simultaneously, thus achieving high-
level asynchronous concurrency. The dataflow graph for the
application is shown in Figure 7. Since the computation of
an actor is relatively simple, we concentrate on the commu-
nication part: how to effectively synchronize between actors.
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Figure 8: Using shared channel
for synchronization.
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Figure 9: Using private chan-
nel for synchronization.

There are two approaches: One is resource-preferred, whic-
h means a common synchronization channel is shared among
the three consumers of a producer (Figure 8). Recall the syn-
chronization process in Listing 5 and Listing 6, the producer
thread acquires the lock of the channel buffer first. Then,
its three consumers (south, east and south-east neighbors)
spin at the channel (it is also possible that they spin at other
channels). When the producer fires, it releases a token to
the channel. An arbitrary waiting consumer may acquire the
token, but as other consumers may still wait for the token,
it must restore the token back to the channel after usage.
Since three consumers share one synchronization channel, a
single lock is enough. However, due to the sharing of the
token, a consumer may false-wait for other consumer(s) to
restore the token before can fire (In fact, it only has to wait
for the producer, but there is no way for it to distinguish).

The other approach is performance preferred, meaning
that each synchronization uses an isolated channel so that
the consumers are independent of each other (Figure 9). So
it is possible that the consumers can start firing earlier and
they do not have to restore the token afterwards, which may
benefit performance. The expense is three times the lock re-
source cost.

if (ty!=0 && tx!=0){
lock(&mutex[ty][tx]);
__syncthreads ();
while(! finished ){

if(! north_sync &&
atomicExch (&mutex[ty -1][tx] ,1)==0){

north = s[ty -1][tx];//get north operand
north_sync = true;
atomicExch (&mutex[ty -1][tx],0);}

if(! west_sync &&
atomicExch (&mutex[ty][tx -1] ,1)==0){

west = s[ty][tx -1];//get west operand
west_sync = true;
atomicExch (&mutex[ty][tx -1] ,0);}

finished = north_sync && west_sync;//all ready?
if(finished ){//fire

s[ty][tx]=MAX(s[ty -1][tx -1]+p[ty][tx],
north -k,west -k);

unlock (&mutex[ty][tx]);}//put self
} }

Listing 14: Atomic-based lock version



/*00e8*/ LDSLK P0, RZ, [R7];//lock self
/*00f0*/ BAR.RED.POPC RZ, RZ;
/*00f8*/ SSY 0x170;
/*0100*/ @!P1 LDSLK P1, R11 , [R7+-0x4];//get west
/*0108*/ @P1 STSUL [R7+-0x4], R11;// restore token
/*0110*/ @!P3 LDSLK P3, R10 , [R7+-0x80];//get north
/*0118*/ @P3 STSUL [R7+-0x80], R10;// restore token
/*0120*/ PSETP.AND.AND P2, pt, P3, P1, pt;//ready?
/*0128*/ @P2 LDS R12 , [R7+-0x84];//fire
/*0130*/ @P2 ISETP.GE.AND P4, pt, R10 , R11 , pt;
/*0138*/ @P2 IADD R12 , R12 , R4;
/*0140*/ @P2 SEL R13 , R10 , R11 , P4;
/*0148*/ @P2 IADD R13 , R13 , -R15;
/*0150*/ @P2 ISETP.GE.AND P5, pt, R13 , R12 , pt;
/*0158*/ @P2 SEL R8, R13 , R12 , P5;
/*0160*/ @P2 STSUL [R7], R8;//put self
/*0168*/ @!P2 BRA 0x100;

Listing 15: Fine-grained lock naive version

In our implementation, concerning the lock bits are lim-
ited and a shortage of locks may restrict the volume of ac-
tors, we adopt the resource-preferred approach. Meanwhile,
for a point S(i, j), it depends on S(i − 1, j − 1), but as
S(i−1, j) and S(i, j−1) also depend on S(i−1, j−1), if any
token(s) from S(i−1, j) or S(i, j−1) acquired, S(i−1, j−1)
can be safely loaded. The core part of the implementations
based on atomic spin-locks and tiny-locks are shown in List-
ing 14 and Listing 15. To avoid intra-warp synchroniza-
tion deadlocks (Section 4.4.1), the critical section scheme is
used. Furthermore, the thread block configuration is set to
be 32x32 to fully leverage the 1024 lock bits of an SM (also
to avoid deadlocks due to alias, see Section 4.4.2).

We use the same outer framework as the original code and
test the three implementations (data-parallel, atomic spin-
lock dataflow, tiny-lock dataflow) on the GTX-570 platform.

The execution time of the kernels are listed in Table 3. As
can be seen, our tiny-lock based implementation is far more
efficient than the atomic spin-lock approach, with as much
as 296x speedup for the 1984x1984 data grid. Compared
with the original data-parallel implementation, our tiny-lock
method achieves more than 1.15x speedup on small size data
grid (less than 248x248), but is slower for larger sizes.

The scalability problem here is incurred by the restric-
tions on the number of threads and lock bits in an SM.
In the data-parallel design, one warp is already sufficient
to process a sub-grid, so one thread block contains only 32
threads. However, for the dataflow design, this number is
1024. Consequently, for a large grid size, more sub-grids can
be processed simultaneously in the data-parallel approach,
as an SM can sustain 8 thread blocks at a time for Fermi. For
the dataflow approaches, however, an SM can only support
one thread block (In fact, the maximum number of resident
threads per SM is 1536 for Fermi, but there are only 1024
lock bits), which severely limits the exploitable parallelism
at the thread block level.

If the new generation GPUs integrate more lock bits and
allow more threads for a SM, the data-flow scheme could
achieve superior performance than the data-parallel scheme,
even for large grid sizes.

7. LIMITATIONS
Here we evaluate the limitations of the proposed synchro-

nization scheme. First, in order to use it, one has to do
low-level SASS assembly programming, which requires
significant efforts. The coding process is error-prone and can
easily lead to deadlocks, while debugging is almost impossi-

Grid Size Atomic-Lock Data-Parallel Tiny-Lock
31x31 175 µs 57 µs 49 µs
62x62 466 µs 58 µs 49 µs

124x124 1050 µs 58 µs 50 µs
248x248 2285 µs 59 µs 51 µs
496x496 5052 µs 72 µs 79 µs
992x992 14757 µs 79 µs 109 µs

1984x1984 48808 µs 80 µs 165 µs

Table 3: Execution time for atomic-lock, data-parallel and tiny-lock
based Implementations.

ble. However, this situation can be significantly improved if
NVIDIA provides specific PTX instructions or CUDA func-
tions to manipulate lock bits. This can also resolve the sec-
ond limitation – portability. As no official SASS assembler
is available, although the idea is general, our real hardware
testing has to rely on the open-source asfermi that only
functions smoothly for a portion of instructions for Fermi
architecture. Since Kepler has dramatically improved the
atomic functionality, we expect the proposed scheme can
work more efficiently on the Kepler architecture. The third
limitation is the number of usable lock bits, which re-
stricts the parallelism and scalability that can be achieved
on GPUs.

8. CONCLUSION
In this paper we proposed a highly efficient lock mecha-

nism on the shared memory of NVIDIA Fermi GPUs. By
reassembling the SASS micro-operations that comprise an
atomic instruction, we developed a highly efficient, low cost
lock approach that can be leveraged to set up a fine-grained
producer-consumer synchronization channel between coop-
erative threads in a thread block. This is the first time that
the SASS instructions comprising an atomic operation are
used independently to form new synchronization primitives.
Furthermore, we showed how to implement a dataflow algo-
rithm on GPUs using a real 2D-wavefront application. This
is the first work that explores the possibility of applying
lock-based dataflow-style programming model on GPUs.

Although programming with locks for the current plat-
form/assembler is low-level and deadlock-prone, our work
is already sufficient to show the possibility and potential
of lock-based dataflow programming for GPUs. We expect
more developers, especially architects and library writers to
see such potential and participate in exploring and simpli-
fying the programmability of this new design pattern.
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Dehne, and Siang W Song. A parallel wavefront
algorithm for efficient biological sequence comparison.
In Computational Science and Its Applications, pages
249–258. Springer, 2003.

[28] Hsien-Yu Liao, Meng-Lai Yin, and Yi Cheng. A
parallel implementation of the smith-waterman
algorithm for massive sequences searching. In
Engineering in Medicine and Biology Society. 26th
Annual International Conference of the IEEE,
volume 2, pages 2817–2820. IEEE, 2004.

[29] Shuai Che, Michael Boyer, Jiayuan Meng, David
Tarjan, Jeremy W Sheaffer, Sang-Ha Lee, and Kevin
Skadron. Rodinia: A benchmark suite for
heterogeneous computing. In Workload
Characterization. IEEE International Symposium on,
pages 44–54. IEEE, 2009.

[30] Leslie Lamport. The parallel execution of DO loops.
Communications of the ACM, 17(2), 1974.

[31] Simon J Pennycook, Gihan R Mudalige, Simon D
Hammond, and Stephen A Jarvis. Parallelising
wavefront applications on general-purpose GPU
devices, 2010.

[32] George Teodoro, Tony Pan, Tahsin M Kurc, Jun
Kong, Lee AD Cooper, and Joel H Saltz. Efficient
irregular wavefront propagation algorithms on hybrid
CPU–GPU machines. Parallel computing, 39(4), 2013.


