
Journal of Systems Architecture 56 (2010) 242–255
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc
Communication-aware heuristics for run-time task mapping on NoC-based
MPSoC platforms q

Amit Kumar Singh a,*, Thambipillai Srikanthan a, Akash Kumar b,c, Wu Jigang a

a School of Computer Engineering, Nanyang Technological University, Singapore, 639798
b Department of Electrical and Computer Engineering, National University of Singapore, Singapore
c Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 October 2009
Received in revised form 26 April 2010
Accepted 27 April 2010
Available online 7 May 2010

Keywords:
Hardware–software co-design
Heterogeneous architectures
MPSoC design
Network-on-Chip (NoC)
Mapping algorithms
1383-7621/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.sysarc.2010.04.007

q Some part of this research was presented at 12
Digital System Design, August 2009, pp. 133–140.

* Corresponding author. Tel.: +65 6790 6639; fax: +
E-mail addresses: amit0011@ntu.edu.sg (A.K. S

(T. Srikanthan), akash@nus.edu.sg (A. Kumar), asjgwu
Efficient run-time mapping of tasks onto Multiprocessor System-on-Chip (MPSoC) is very challenging
especially when new tasks of other applications are also required to be supported at run-time. In this
paper, we present a number of communication-aware run-time mapping heuristics for the efficient map-
ping of multiple applications onto an MPSoC platform in which more than one task can be supported by
each processing element (PE). The proposed mapping heuristics examine the available resources prior to
recommending the adjacent communicating tasks on to the same PE. In addition, the proposed heuristics
give priority to the tasks of an application in close proximity so as to further minimize the communica-
tion overhead. Our investigations show that the proposed heuristics are capable of alleviating Network-
on-Chip (NoC) congestion bottlenecks when compared to existing alternatives. We map tasks of applica-
tions onto an 8 � 8 NoC-based MPSoC to show that our mapping heuristics consistently leads to reduc-
tion in the total execution time, energy consumption, average channel load and latency. In particular, we
show that energy savings can be up to 44% and average channel load is improved by 10% for some cases.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Multiprocessor Systems-on-Chip (MPSoCs) are SoCs consisting
of multiple processing elements (PEs). MPSoCs are being increas-
ingly used in complex embedded applications in order to meet
their ever rising performance requirements as these applications
can no longer be supported by a single general purpose processor
[17]. Additionally, MPSoCs are the most promising candidate to ex-
ploit the rising high level of integration provided by the
nanotechnology.

Several MPSoCs have been proposed by academia and industry.
Homogeneous MPSoCs [22,38,20], composed of identical PEs are
proposed by academia whereas [46,4] by industry. In [46], Intel
proposed a homogeneous MPSoC consisting of 80 PEs connected
by a NoC where each processor contains two floating-point units.
Future MPSoCs are anticipated to contain thousands of PEs in a sin-
gle die by 2015 because of the advancement in nanometer technol-
ogy [8]. These MPSoCs can support some applications whereas
heterogeneous MPSoCs consisting of different types of PEs can sup-
port wider variety of applications. The PEs present in heteroge-
ll rights reserved.

th Euromicro Conference on

65 6792 0774.
ingh), astsrikan@ntu.edu.sg
@ntu.edu.sg (W. Jigang).
neous MPSoCs can be instruction set processors (ISPs),
specialized PEs like Digital Signal Processors (DSPs), FPGA fabric
tiles, dedicated intellectual property cores (IPs) and specialized
memories in order to achieve high computation performance along
with energy efficiency by exploiting distinct features of different
type of PEs to improve the performance. Heterogeneous MPSoCs
[30,43] are proposed by academia and [1,19] by industry. In [19],
a heterogeneous MPSoC composed by one manager processor
and 8 floating-point units is proposed by combined effort of IBM,
Sony and Toshiba.

The PEs present in the MPSoCs call for a communication infra-
structure, to have proper communication amongst multiple PEs.
This communication infrastructure can be bus-based, point-to-
point or Networks-on-Chip (NoCs)-based. The NoCs are the future
communication infrastructure as they have several advantages
over others, such as scalability and shorter wires, which minimizes
power consumption [5,14,6].

Mapping applications’ tasks onto MPSoC platform can be
accomplished at either design-time or run-time. Most of the works
in literature present static (design-time) mapping techniques that
cover only certain scenarios [22,23,32,9,45]. These mapping tech-
niques find best placement of tasks at design-time and hence these
are not suitable for dynamic workloads. Dynamic (run-time) map-
ping techniques are required for these types of workload, to map
them onto the platform resources [30,43,47]. In dynamic approach
tasks are loaded into the system at run-time. Task migration can

http://dx.doi.org/10.1016/j.sysarc.2010.04.007
mailto:amit0011@ntu.edu.sg
mailto:astsrikan@ntu.edu.sg
mailto:akash@nus.edu.sg
mailto:asjgwu@ntu.edu.sg
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

A.K. Singh et al. / Journal of Systems Architecture 56 (2010) 242–255 243
also be used to insert a new task into the system at run-time
[30,18,7]. In heterogeneous MPSoC, task migration is used to im-
prove the performance by relocating a task from one PE to another
PE when a performance bottleneck is detected or when the work-
load needs to be distributed more homogeneously. Issues related
to the task migration such as the cost to interrupt a given task, sav-
ing its context, transmitting all of the data to a new PE and restart-
ing the task in the new PE are discussed in [30,18,7].
1.1. Contributions

This work presents a new task mapping strategy and four new
run-time task mapping heuristics based on it. The presented heu-
ristics are applied onto an MPSoC platform, where each processing
element (PE) can support more than one task. Multi-task supported
PEs are considered to analyze a more realistic platform. Two types
of PEs (Processors and Reconfigurable Areas) are considered. Proces-
sors are used to execute software tasks and reconfigurable areas
for hardware tasks. Processors executing more than one task man-
age the execution of tasks by switching among the tasks after com-
pleting one operation of a task, similar to the execution in OSs
where the tasks can communicate through some common register
or memory space. Reconfigurable areas (RAs) are considered large
enough to support more than one hardware tasks in parallel. The
new presented heuristics take maximum advantage of the multi-
tasking PEs by placing the communicating tasks on the same PE
that results in reduced communication overhead between them.
These mapped tasks can interact with each other very fast as they
are on same PE and do not require any network resources. Our pro-
posed mapping heuristics carefully map the communicating tasks
on the same PE at run-time. Additionally, heuristics also try to
map the tasks of an application in close proximity within a partic-
ular region in order to further reduce the communication overhead
between the communicating tasks. Some parts of this research are
published in Henkel et al. [41]. In Henkel et al. [41], only RAs are
able to support more than one task and two run-time mapping
heuristics based on packing strategy are presented. Run-time map-
ping heuristics reported in literature and heuristics in Henkel et al.
[41] do not perform well when applied to the MPSoC platform
where each PE is multi-tasking as they are not capable of taking
advantage of the multi-tasking PEs to a large extent. To overcome
the limitations and drawbacks of these heuristics, the four new
mapping heuristics are presented. The new presented heuristics
show significant performance improvements when compared to
the latest run-time mapping heuristics reported in the literature.
The performance metric includes overall execution time, energy
consumption, average channel load and average packet latency.

The rest of the paper is organized as follows. Section 2 provides
an overview of related work. Section 3 presents the MPSoC archi-
tecture. In Section 4, proposed mapping strategies along with the
heuristics based on them are presented. Experimental set-up and
the results are presented in Section 5 with Section 6 concluding
the paper and providing future directions.
2. Related work

Mapping of tasks onto the MPSoC platform require finding the
placement of tasks into the platform in view of some optimization
criteria like reducing energy consumption, reducing total execu-
tion time and optimizing occupancy of channels. If the MPSoC plat-
form is heterogeneous, then a task binding process is required
before finding the placement for a task. The binding process in-
volves defining a platform resource for each task type like instruc-
tion set processors for software tasks and FPGA tiles for hardware
tasks. Task mapping is accomplished by static (design-time) or dy-
namic (run-time) mapping techniques.

2.1. Static mapping techniques

Static mapping techniques for NoC-based and bus-based
MPSoCs are presented in [35,16,28,24,36,37] respectively, to solve
the problem of mapping. Genetic approach in [21,48], Tabu Search
in [28,23] and stimulated annealing in [24,22,32] is used. In
[16,23,24], energy-aware mapping algorithms are presented. These
techniques find fixed placement of tasks at design-time with a well
known computation and communication behavior. Therefore,
these mapping techniques are not suitable for an adaptive system
that changes its configuration over time and requires re-mapping/
run-time mapping of applications. Run-time mapping techniques
are required for adaptive systems, where the workloads are dy-
namic (e.g. networking and multimedia applications).

2.2. Run-time mapping techniques for homogeneous MPSoCs

Mapping techniques targeting homogeneous MPSoCs are pre-
sented in [12,34,29,10,25]. Chou et al. [12] propose a run-time
mapping strategy that incorporates the user behavior information
in the resource allocation process; that allows system to better re-
spond to real-time changes and adapt dynamically to user needs.
This consideration saves 60% communication energy. Peter et al.
[34] present a heuristic algorithm that is distributed over the pro-
cessors and thus can be applied to systems of random size. Also,
tasks added at run-time can be handled without any difficulty,
allowing for inline optimization. The mapping results for several
example task sets show that the mapping quality achieved by
the presented algorithm is within 25% of that of the exact algo-
rithm, for a 3 � 3 processor array.

Ngouangal et al. [29] describe a run-time mapping technique
based on the attraction forces between communicating tasks that
tries to place them close to each other in the MPSoC. Briao et al.
[10] present dynamic task allocation strategies in MPSoCs based
on bin-packing algorithms with task migration capabilities for run-
ning soft real-time applications. Two types of algorithms are com-
bined to get better allocation results. Mehran et al. [25] present a
Dynamic Spiral Mapping (DSM) heuristic algorithm for 2D mesh
topologies where placement for a task is searched in a Spiral path,
trying to place the communicating tasks close to each other.

2.3. Run-time mapping techniques for heterogeneous MPSoCs

Some researchers target heterogeneous MPSoCs and have devel-
oped run-time mapping techniques for mapping application’s tasks
onto them. Smit et al. [43] present a run-time task assignment algo-
rithm that maps a task before all other task that needs a scarce re-
source by taking the availability of resources into account. Efficient
heterogeneous multi-core architectures for streaming applications
and run-time mapping of these applications onto these multi-core
architectures are presented in Smit et al. [42]. Nollet et al. [31] de-
scribe a run-time task assignment heuristic for efficiently mapping
the tasks on an MPSoC containing FPGA fabric tiles. With the pres-
ence of FPGA fabric tiles, algorithm is capable of managing a config-
uration hierarchy and it improves the task assignment success rate
and quality. Holzenspies et al. [15] present a run-time spatial map-
ping technique consisting of four steps to map the streaming appli-
cations onto a heterogeneous MPSoC. The algorithm is implemented
on an ARM926 running at 100 MHz and it takes less than 4 ms to run
the HIPERLAN/2 example.

Faruque et al. [3] present a run-time agent based distributed
application mapping technique for large MPSoCs such as 32 � 64
systems. The approach reduces the monitoring traffic and

244 A.K. Singh et al. / Journal of Systems Architecture 56 (2010) 242–255
computational effort. Schranzhofer et al. [39] propose a polyno-
mial-time heuristic algorithm that applies a multiple-step heuris-
tic consisting of initial solutions followed by task remapping
algorithms considering power constraints. First, initial solutions
for the power-aware scenario are derived based on linear program-
ming relaxation, and then task remapping is performed to improve
the solutions. Theocharides et al. [44] demonstrate a run-time, sys-
tem-level bidding-based task allocation strategy that gives signifi-
cant performance improvements when compared to a round robin
allocation.

Task migration mechanism presented in Nollet et al. [30] uses
task migration points as a point of reference for migrating a task
from one PE to another. Authors in Bertozzi et al. [7] use check-
points, to define the point when a given task can be migrated and
in Briao et al. [10] it is based on a copy model.

Carvalho and Moraes [11] present heuristics for run-time map-
ping of tasks in NoC-based heterogeneous MPSoCs. Tasks are
mapped on the fly, according to the communication requests and
the load in the NoC links. The target MPSoC architecture contains
software and hardware PEs, where each PE can support only one
task. For the target MPSoC in Carvalho and Moraes [11], efficient
run-time mapping techniques based on packing strategy were pre-
sented in Singh et al. [40] that show the potential of the packing
approach even for the platforms where each PE supports single
task and in Singh et al. [41] their potential when the hardware re-
sources modeled to support more than one task. Here, in our target
MPSoC, each PE can support more than one task where communi-
cating tasks get mapped on same PE, resulting in reduced commu-
nication overhead between them. Mapping heuristics Nearest
Neighbor (NN) and Best Neighbor (BN) presented in Carvalho and
Moraes [11] and two run-time mapping heuristics presented in
Singh et al. [41] are taken for evaluation and performance compar-
ison with our new proposed mapping heuristics.
3. NoC-based target MPSoC architecture

MPSoC architecture used in this work is an extended version of
that used in Carvalho and Moraes [11]. The architecture contains a
set of different processing nodes which interact via a communica-
tion network [27] as in Fig. 1. In Carvalho and Moraes [11], each
processing node was capable of supporting only a single task. In
the extended version, each processing node is modeled to support
more than one task. The nodes can support either software tasks or
hardware tasks. Software tasks execute in instruction set proces-
sors (ISPs) and hardware tasks execute in reconfigurable areas
(RAs) or in dedicated IP-cores (IPs). Induction of RAs in the platform
facilitates flexibility to hardware at a similar level to the software
Fig. 1. Conceptual MP
(ISPs) programmability. The communication network [27] has a 2D
mesh topology that uses wormhole packet switching, handshake
control flow, input buffers and deterministic XY routing algorithm,
where first the packet is transferred in X-direction and then in Y-
direction for transferring packets from one processing node to an-
other processing node. For inter-task communication, message
passing protocol is used, similar to that described in Carvalho
and Moraes [11].

Among the available processing nodes, one of them is used as
the Manager Processor (M) that is responsible for task mapping
(task binding and task placement), task scheduling, resource control
and configuration control. The configuration overhead results are
used to simulate the configuration control process [26]. Task binding
is required before task placement if the platform is heterogeneous
as described is Section 2. Task scheduling uses queue strategy and
there are three queues, one for each type (i.e. hardware, software
and initial) of task. These tasks are defined in next section. Initial
task is the starting task of an application that is mapped first. A
task enters into its corresponding queue (hardware, software or
initial) if there is no supported free resource in the platform. The
task waits in the queue until a resource of same type is not free.

The M knows only the initial tasks for each application. Once,
the initial tasks are mapped and their execution is started, the
communication requests are sent to the communicating tasks at
run-time and they are loaded into the MPSoC platform from the
task memory if they are not already present in the platform. For re-
source control, the resources status is updated at run-time to pro-
vide the Manager Processor with an accurate information about
the resource occupancy as task mapping decision is taken based
on the PEs and NoC use.
4. Proposed mapping strategies

This section describes our proposed mapping strategies and
efficient run-time mapping heuristics developed with these strate-
gies. First we introduce some definitions for proper understanding
of the mapping strategies and heuristics.

4.1. Definitions

Definitions necessary to explain the mapping strategies and
heuristics are as follows:

Definition 1. An application task graph is represented as an acyclic
directed graph TG = (T,E), where T is set of all tasks of an application
and E is the set of all edges in the application. Fig. 2 describes an
application having initial, software and hardware tasks along with
SoC architecture.

Fig. 2. Application modeling and master-slave.

Fig. 3. Initial tasks placement for mapping applications with packing strategy.

A.K. Singh et al. / Journal of Systems Architecture 56 (2010) 242–255 245
the edges (E) connecting these tasks and shows a master-slave pair
(communicating tasks). A connection (edge) between two tasks
defines master-slave pair as in Fig. 2, i.e. a connection contains
master and salve tasks. Initial task has no master. A task ti 2 T is
represented as (tid, ttype, texec), where tid is the task identifier, ttype is
the task type (hardware, software, initial) and texec is the task
execution time. E contains all the pair of communicating tasks and is
represented as (mtid,stid, (Vms,Rms,Vsm,Rsm)), where mtid represents the
master task identifier, stid represents the slave task identifier; Vms

and Rms are the data volumes and data rate sent respectively from
master to slave (ms); Vsm and Rsm are the data volumes and data rate
sent respectively from slave to master (sm) respectively. The
message rates (Rms, Rsm) are described as percentage of available
link bandwidth. As mentioned XY routing algorithm is used to
transmit and receive the messages and both rates are relevant in the
model as the path taken by messages may be different.
Definition 2. A NoC-based heterogeneous MPSoC architecture is a
directed graph AG = (P,V), where P is the set of tiles pi and vi,j 2 V pre-
sents the physical channel between two tiles pi and pj. A tile pi 2 P is
represented as (pid, padd, ptype, ptasks, ptasksnum, pcap), where pid is the tile
identifier, padd is the tile address and is used to receive packets, ptype is
the tile type (hardware, software, initial), ptasks is the task set mapped
on the tile, ptasksnum (6pcap) is the number of tasks mapped on the tile
and pcap is the capacity of tile showing the maximum number of tasks
it can support. If ptasksnum reaches to pcap then no further task can be
mapped on the tile. Each physical channel vi,j 2 V keeps the channel
width information in bits and available bandwidth usage (% of avail-
able bandwidth) for transmission of data.
Definition 3. The task mapping is represented by function mpg:
ti 2 T ´ pi 2 P, that maps a task of an application to a tile in the
MPSoC platform.
4.2. Packing strategy

Here, we introduce our packing strategy for efficient mapping of
applications onto a NoC-based MPSoC. The packing strategy was
proposed in [41] and it has been shown that this strategy gives sig-
nificant performance improvement when compared to the existing
strategies. The strategy is now applied in the MPSoC platform,
where each PE can support more than one task.

To map the applications by this strategy, firstly, initial (starting)
tasks of applications are mapped as far away as possible while
avoiding the edges in a distributed manner as shown in Fig. 3. A
clustering approach as shown in Fig. 3 is used to find the place-
ment of initial tasks in a distributed manner so that the new com-
municating tasks for each application can be mapped close to each
other that results in reduced communication overhead. The cluster
boundaries are virtual and hence a common region can be shared
by tasks of different applications.

After the initial tasks get mapped, new communicating tasks of
each application are mapped according to the communication re-
quest. To map a requested task, firstly, the task is tried to be
mapped at the same node (master task PE) making the request
as all the resources can support more than one task. If the task is
not supported by the node making the request then it is tried to
be mapped on the PEs around the node making the request at
hop distance of one. The PEs are searched in sequence of left, down,
top and right denoted as 1, 2, 3 and 4, respectively in Fig. 3 for one
application in the most bottom-left cluster. This way, first, left and
down side PEs are searched to find the placement. Now, if neither
left nor down side PE is able to execute the task only then task is
tried to be mapped on the top or right side PE according to the
above defined sequence. The same strategy is followed from lower
to higher hop distances until a free supported PE is found. Each
application follows above defined strategy to map the requested
tasks on the MPSoC platform resources.

With this strategy, first each application tries to map its re-
quested task towards bottom-left (either on left or down PE) side
within the cluster hence the PEs present on top-right edge of the
cluster may be used by tasks of other applications that are also try-
ing to map their tasks towards bottom-left (either on left or down
PE). In this manner if one application is getting mapped then the
applications that are tried to be mapped on top-side, right-side
or top-right side may get the free resources on the top and right
edges of the first application’s cluster and tasks of the other appli-
cations can be mapped on these resources. This strategy is applied
to all the applications to be mapped and most of the applications
get the free resources from other application’s top-right edge of
the cluster. Thus, resource utilization is increased. Additionally,
as each platform resource can support more than one task, com-
municating tasks get mapped on the same resource, resulting in
further reduction in communication overhead and making the
mapping more compact.
4.3. Packing-based mapping algorithms

This section describes run-time mapping algorithms that are
motivated by the packing strategy discussed before. First initial
tasks mapping methods are described followed by two run-time

246 A.K. Singh et al. / Journal of Systems Architecture 56 (2010) 242–255
mapping heuristics. The initial tasks mapping methods are used to
find the placement of initial tasks of applications. After the initial
tasks are mapped and start executing, new tasks are requested to
be mapped at run-time when communication to them is required.
The run-time mapping heuristics are used to find the placement of
new requested tasks. These heuristics are light-weight in terms of
execution cycles, energy consumption, channel load and packet la-
tency as these reduce the communication overhead on which all
the performance metrics are highly dependent.
4.3.1. Initial task mapping
The initial tasks are considered as software tasks so these are

mapped onto software processing elements. Initial task mapping
has significant impact on the performance of run-time mapping
and this can be done in two different ways. In the first method,
the initial tasks can be mapped on the first free position found in
the network that can support the tasks. This may result the initial
tasks to be placed very close to each other. Therefore, when new
tasks of different applications are requested to be mapped, the
applications have to share the same NoC region, resulting in longer
waiting time for a resource to become free for the tasks. This also
increases the channel congestion as all the applications are tried to
be mapped within a small region. In the second method, a cluster-
ing approach as shown in Fig. 3 is adapted to find the placement of
initial tasks in a distributed manner as described in Section 4.2.
This method reduces the interference between different applica-
tions. This work considers the clustering approach.

The Manager Processor (M) knows only the initial tasks. It does
not know the whole application graphs. When initial tasks start
their execution, communication requests are sent to the M to
map the slave tasks at run-time. Efficient run-time mapping algo-
rithms are required in order to map these new requested tasks for
better performance gain. In next sub-sections our run-time pack-
ing-based mapping heuristics are presented.
4.3.2. Packing-based nearest neighbor (PNN)
This algorithm is based on the packing strategy discussed in

Subsection 4.2 along with the search space (from lower to higher
hop distances) of Nearest Neighbor (NN) heuristic and is presented
in Fig. 4. In order to map a new requested task, the number of free
Fig. 4. Algorithm PNN.
supported resources in the platform are found. If any resource is
available (step 3) then mapping for the requested task is found.
First, resources (PEs) at the requesting node position (at zero hop
distance; step 4) are selected and evaluated to map the task. If
none of the PE can support then PEs at higher hop distances are se-
lected and evaluated until the mapping is found. The search space
to select the PEs goes upto the max_hop_count (NoC limit). The
selection at each hop distance is done by function get_pack-
ing_ordered_list (hop_distance) (step 5), where PEs are selected
according to the packing strategy i.e. in left, down, top and right or-
der. As soon as, a free supported PE is found, the task is mapped
onto the PE and selection and evaluation process is stopped (step
8). If there is no free supported PE in the platform for the requested
task then the task is entered into its corresponding queue (step 13)
and waits until a supported PE becomes free (step 14) by finishing
execution of some previously mapped task. The queued task is
mapped onto the freed supported PE as and when it is available
(step 16). After mapping the requested task, it is entered onto
the mapped list (mpg) and resources are updated, to have correct
resources status for next requested task. The same strategy is fol-
lowed by each requested task until all the tasks of the application
are mapped.

To map multiple applications onto the MPSoC platform, the
above described algorithm (PNN) is applied for each application.
First, initial tasks of applications are mapped in a distributed man-
ner by the clustering approach as in Fig. 3. Then, new requested
tasks from each application are mapped dynamically, by applying
Algorithm PNN. The PNN algorithm reduces the communication
overhead by mapping the communicating tasks close to each other
and sometimes onto the same PE at run-time. Thus, performance
improvements are achieved.
4.3.3. Packing-based best neighbor (PBN)
This algorithm is combination of the algorithm PNN and path

load computation approach. For each mapping z, path load is com-
puted by Eq. (1), where rch(i,j) and rch(j,i) are the rates in the individ-
ual channels, from the master to the new requested slave and the
rates in the channels in opposite direction.

costz ¼
X

rchði;jÞ þ
X

rchðj;iÞ ð1Þ

At each hop distance, after finding the PE list by PNN algorithm
(step 5 in PNN), here all the free supported PEs are evaluated unlike
the algorithm PNN, where evaluation is stopped when first free
supported PE is found. For all the supported PEs, path load is com-
puted and the PE with minimum PL is chosen for final mapping in
order to get the best neighbor from the available neighbors. The
free supported PE at zero hop distance has zero path load as no
channel is involved. The evaluation process is stopped for higher
hop distances if mapping is found. The rest of the steps are similar
to PNN algorithm.

As this heuristic includes the path load computation, hence it is
a congestion aware mapping heuristic that tries to distribute the
channel load in the NoC. Thus, in addition to the communication
overhead reduction, this heuristic also tries to distribute the chan-
nel load more uniformly.
4.4. Novel communication-aware strategy

The existing mapping heuristics reported in the literature and
those proposed above do not provide significant performance
improvement when applied to the multi-tasking MPSoC platform
as they do not map the communicating tasks in a highly communi-
cation-aware manner. Thus, they are not able to efficiently utilize
the multi-tasking resources of the MPSoC platform.

Fig. 6. Possible mapping of an application by the proposed strategy.

A.K. Singh et al. / Journal of Systems Architecture 56 (2010) 242–255 247
4.4.1. Problem with existing approach
One possible mapping by Nearest Neighbor (NN) mapping strat-

egy is shown in Fig. 5. The mapping of an application onto the part
of the MPSoC platform is depicted. For the shown mapping exam-
ple, each PE in the platform is assumed to support maximum two
tasks. However, in actual, the PEs can support large number of
tasks and results for varying number of tasks on each PE are pre-
sented in Section 5. For mapping the application task graph, first,
the initial task (0) is mapped and other tasks are mapped at run-
time when a communication to them is required. When the initial
task starts its execution, it requests its communicating tasks (1 and
2) and their mapping is found on the NN basis. As each PE is as-
sumed to support maximum two tasks, so task 1 can be mapped
onto the same position as its master (0) and task 2 will be mapped
on some neighbor PE. A possible mapping is shown in the Fig. 5.
After mapping tasks 1 and 2, they start their execution and their
communicating tasks (task 3 and 4 for task1; task 5 and 6 for
task2) are requested and mapping is found on NN basis. The possi-
ble mapping for tasks 3–6 is shown. In the same manner, tasks 7–9
are requested and mapped. The communication volume is shown
in Fig. 2. The communication between the communicating tasks
start when they are mapped.

Only one communicating task pair (tasks 0 and 1) gets mapped
onto one PE that reduces that communication overhead. All other
communicating tasks need to communicate from two different
PE, thus there is lot of communication overhead. This communica-
tion overhead will be reduced if more communicating pairs are
mapped onto the same PE. Next, we discuss the strategy that
makes it possible to reduce the communication overhead by a large
amount.
4.4.2. Solution with proposed approach
This strategy maps the requested task by looking the previously

mapped task on the PE. The placement for the requested task is
searched in increasing hop distances (hop_distance = 0 to max_-
hop_count) that results in mapping of all the tasks of an applica-
tion close to each other. After finding the placement (PE) for the
requested task, previously mapped tasks at the PE are found. If
found PE does not have any previously mapped task then the PE
is evaluated for mapping. Otherwise, the previously mapped
task(s) are checked to have communication with the requested
task. The requested task is mapped at the same position (PE) if they
communicate; otherwise it is mapped onto next possible position
even if it is supported at that position. The same process is adapted
for each requested task. This strategy forces mapping of the com-
municating tasks onto the same PE if they can be supported and
avoids mapping of the non-communicating tasks onto same PE.
This process may cause some leaf tasks to occupy the whole PE
without sharing it with other tasks if they are not mapped one
the same PE as their masters. The leaf tasks don’t have any slave
that can be requested. But, in dynamic scenarios it may not be able
to predict future tasks, so some leaf tasks can occupy the whole PE.

One possible mapping for an application onto the part of MPSoC
is depicted in Fig. 6. After mapping initial task (task 0), communi-
Fig. 5. Possible mapping of an application by nearest neighbor mapping strategy.
cating tasks 1 and 2 are requested. Task 1 is mapped with task 0
and task 2 is mapped onto some other PE, as each PE is assumed
to support maximum two tasks. Now, tasks 1 and 2 request their
communicating tasks 3,4 and 5,6 respectively. Task 3 is not
mapped on the same PE as task 2 (previous strategy) as they are
not communicating tasks. One possible mapping could be as
shown in Fig. 6. Task 4 is mapped onto a new PE as the available
PEs where tasks are previously mapped are not communicating
with it. Task 5 is mapped on the same PE as task 2 as these are
communicating tasks. Task 6 can be mapped only with task 2 as
they are communicating but the PE is full, so it is mapped onto
some different PE where no other task is present. Now, tasks 7–9
are requested and gets mapped as shown in Fig. 6.

This strategy forces the mapping of most of the communicating
pairs onto the same PE as shown in Fig. 6. Each of the communicat-
ing task pairs (0, 1), (2, 5), (3, 7) and (6, 9) are mapped onto the
same PE, resulting in reduced communication overhead between
them. We can map the leaf tasks 4 and 8 on the same PE even if
they are not communicating in order to increase the resource uti-
lization but in dynamic scenarios it can’t be predicted that tasks 4
and 8 are leaf tasks as future tasks are unknown. Also, if they are
mapped onto same PE then communication overhead between
tasks 1, 4 and tasks 5, 8 will be increased. So, we map them on sep-
arate PEs. Thus, communication overhead is greatly reduced by
mapping maximum communicating pairs onto the same PE.

4.4.3. Ideal mapping solution
A static mapping approach can provide better solution than dy-

namic mapping approaches provided the applications’ structure
and workload of their tasks is known at design-time. The static ap-
proach is performed at design-time with well known computation
and communication behavior of tasks and resources status, en-
abling to explore better mapping decisions. However, the dynamic
approach is adequate for the scenarios where the applications’
structure and their workload is available only at run-time that
can not be handled by the static approach. So, if applications are
known at design-time, the static approach provides a better solu-
tion and thus an ideal mapping solution.

By knowing all the tasks at design-time, most of the communi-
cating pairs can be mapped onto the same PE to reduce the com-
munication overhead. The ideal mapping of an application onto
the part of MPSoC is depicted in Fig. 7. The communicating task
pairs (0, 2), (1, 4), (3, 7), (5,8) and (6,9) are mapped onto the same
PE, providing a better solution than a dynamic mapping strategy
Fig. 7. Ideal mapping of an application with static mapping decision.

248 A.K. Singh et al. / Journal of Systems Architecture 56 (2010) 242–255
where maximum number of communicating pairs are tried to be
mapped on the same PE at run-time. However, the ideal static
mapping decisions provide better solution, these can not be ap-
plied to dynamic scenarios where workload of tasks is unknown
at design-time.

4.5. Communication-aware mapping algorithms for multi-tasking
platforms

This section details some communication-ware mapping heu-
ristics developed with the new proposed strategy that are very effi-
cient when applied to multi-tasking MPSoC platform.

Applications’ mapping is started by first mapping the initial
tasks (Fig. 3) as explained in Section 4.3. When the initial tasks
start their execution, communicating tasks are requested and their
mapping is found.

To find the placement for a requested task, first it is checked if
there is any free resource in the platform, having same type (HW,
SW or INI) as of requested task. If yes, then placement would be
found by scanning the whole platform in increasing hop distances
starting from the requesting node (hop_distance = 0) to up to the
mac_hop_count (NoC limit). If there is no supported (same type)
free resource in the platform then the task is entered into its cor-
responding queue and waits until a supported resource becomes
free. The queued task is mapped on the freed supported resource
and the control is transferred to find the placement for another un-
mapped requested task after updating the resources status. The
same strategy is applied for all the tasks whenever they get
requested.

4.5.1. Communication-aware nearest neighbor (CNN)
This algorithm is explained in Fig. 8. At each hop distance, PEs

list is found by function get_basic_ordered_list (hop_distance)
(step 5), where PEs are selected in top, down, left and right order
as in NN heuristic proposed in Carvalho and Moraes [11]. Now,
these PEs are evaluated in their selection order, to find the best
Fig. 8. Algorithm CNN.
suitable PE for the requested task. If the selected PE can support
the task (step 7) then previously mapped tasks onto the PE are
found (step 8). If there is no previous mapped task (i.e. first task
onto the PE) (step 13) then requested task is mapped onto the PE
(step 14); otherwise previously mapped tasks are checked to have
communication with the requested task (step 10). If they are com-
municating, then only the task is mapped onto the PE (step 11);
otherwise next possibility is evaluated, so that the PE can accom-
modate some another task having communication with the already
(previously) mapped one. Just after finding the mapping, the selec-
tion and evaluation process is stopped (steps 11 and 14) even if
there might be another supported PE at the same hop distance. Re-
sources are updated after mapping in order to have accurate infor-
mation about their occupancy for other requested tasks. This
heuristic maps tasks of each application almost similarly as in
Fig. 6.
4.5.2. Communication-aware packing-based nearest neighbor (CPNN)
This algorithm incorporates packing strategy in CNN algorithm.

At each hop distance, the selection of PEs is done by function
get_packing_ordered_list (hop_distance) (step 5 in CNN) which re-
turns PEs according to the packing strategy i.e. in left, down, top
and right order. All the other steps for this algorithm are same as
of CNN.

By choosing left and down side PEs first, the PEs of top and right
edge of the cluster (Fig. 3) are intentionally made free so that these
can be used by other applications running on top and right side.
This way all the applications’ tasks are mapped in bottom-left fash-
ion utilizing the PEs on the top and right edge of the cluster from
other applications. Thus, resource utilization increases that results
in improved performance.
4.5.3. Communication-aware best neighbor (CBN)
This algorithm is combination of the path load computation ap-

proach and CNN algorithm and is presented in Fig. 9. Path load
computation approach is incorporated by calculating the path load
(step 15) for each PE from Eq. (1). In CNN algorithm, at each hop
distance, if any evaluated PE is suitable for the requested task then
it is selected for mapping and other PEs at the same hop distance
are not evaluated. In contrast to CNN, here all the PEs are evaluated
(selected temporarily- step 18) and finally, the PE with minimum
path load is considered for final mapping. The same strategy is fol-
lowed at each hop distance until placement for the requested task
is found.

This algorithm considers traffic (congestion in channels) while
finding the placement for a requested task, hence it is a conges-
tion-aware mapping heuristic that tries to distribute the channel
load more homogeneously in the NoC.
4.5.4. Communication-aware packing-based best neighbor (CPBN)
This algorithm incorporates packing strategy in CBN algorithm

by selecting the PEs by function get_packing_ordered_list
(hop_distance) (step 6) which returns PEs according to the packing
strategy. All the other steps for this algorithm are same as of CBN.

This algorithm takes the advantage of the packing strategy and
considers traffic as well in order to distribute the loads in the chan-
nels more homogeneously.
5. Performance evaluation

Experiments are performed by co-simulation in ModelSim (Sys-
tem-C for applications and RTL-VHDL for the NoC) and the results
evaluated are total execution time, energy consumption, average
channel load and average packet latency for applications.

Fig. 9. Algorithm CBN.

A.K. Singh et al. / Journal of Systems Architecture 56 (2010) 242–255 249
5.1. Experimental set-up

Experiments are performed on a simulation platform that is an
extended version of that used in Carvalho and Moraes [11]. The ex-
tended simulation platform supports more than one task at each
node. We have performed the simulation by varying the number
of tasks to be supported at each node. However, it is known that
larger memory space and reconfigurable area will be required to
support more number of software and hardware tasks respectively,
so we have performed simulation up to maximum four tasks per
node. The memory space required at each node depends on both
the number of tasks and size of the tasks to be mapped. The tasks
mapped on a node get executed one after another in time multi-
plexed manner. At each node, the memory space depends on the
number of tasks as other mapped tasks need to be stored (kept ac-
tive) in memory while one is running. For the experimentation, all
the tasks are considered of same size so the memory space is gov-
erned by the number of tasks (all same size). At the nodes, the
memory space or reconfigurable area availability issues are
avoided by limiting the number of tasks to be supported by maxi-
mum four.

The processing elements (PEs) are modeled using System-C. Two
different System-C threads are used to model the PEs, one for the
Manager Processor (M) and another for rest of the PEs as MPthread
and TASKthread respectively. The MPthread is responsible for the
MPSoC resource management, task mapping, task scheduling and
task configuration. This thread contains channels occupation met-
rics, PEs occupation metrics and scheduling queues to manage sys-
tem use. The resource metrics are updated at run-time by
monitoring the resources status with the help of monitors attached
to all the NoC ports. The TASKthread is responsible for the task
behavior implementation that is described by a configuration file.
This file contains execution time and communication rates and
these values can be customized.
Each application is modeled as in Fig. 2, with an initial task,
hardware tasks and software tasks. The values present on the
edges represent the volume and rate of data to be exchanged be-
tween the master and slave as explained in definition 1 of Section
4.1. Each task transmits from 200 to 500 packets (data volumes (V)
on the edges as in Fig. 2) with size varying from 100 to 400 16-bit
flits. After receiving a packet corresponding to some particular task
on a PE, the packet is processed for some definite time before start-
ing the processing of next packet corresponding to the same task
on the PE. If two tasks are mapped on the receiver PE then process-
ing time of packets corresponding to each task get doubled as the
packets are processed in time multiplexed manner. The processing
time gets tripled for packets when processed on a PE containing
three tasks and so on. The simulation is performed at varying pro-
cessing time to analyze the computation–communication behav-
ior. Hardware and software tasks allocation time is taken as 1300
and 100 clock cycles respectively [26]. Initial tasks are mapped
onto the processors, so the configuration time is the same as that
of software tasks.

The evaluated scenarios are:

(i) Identical tree like applications having all tasks as software:
(Parallel benchmarks have this profile), each having 10 tasks,
where one task is taken as initial (starting task) and rest 9 as
software tasks.

(ii) Identical tree like applications having hardware and software
tasks: Each having 10 tasks, where one task is taken as initial
task with different combination hardware/software tasks.

(iii) Random applications having hardware and software tasks:
Random generated applications using Task Graph For Free
(TGFF[13]). Each have one initial and random number of
hardware/software tasks (varying from 4 to 9).

In the first two scenarios, simulation is performed with injec-
tion rate varying from 5% to 20% (% usage of available channel
bandwidth) and in third it is random from 5% to 30%.

The NoC is modeled in VHDL [27], in an 8 � 8 2D-mesh topol-
ogy. NoC is responsible for data transfer between the tasks. As
handshake protocol is used to transfer the data therefore each flit
is transmitted in two clock cycles, limiting the available channel
bandwidth to 50% of its capacity.

For the scenario (i) evaluation, 8 � 8 NoC-based homogeneous
MPSoC is taken, where all the PEs are processors. For evaluating
scenarios (ii) and (iii), 8 � 8 NoC-based heterogeneous MPSoC is ta-
ken with 52 nodes as processors and 12 nodes as reconfigurable
areas. In all the scenarios, one software node is used for the Man-
ager Processor (M) that is considered to support a single task.

The number of simultaneously running applications (initial
tasks) are varied according to the processing capability of the plat-
form that gets increased when number of tasks to be supported at
each PE is increased. This variation is required to utilize all the
platform resources, otherwise some resources might be just idle
and doing nothing. For the considered MPSoC platforms containing
2, 3 or 4 tasks supported PEs, the experiments are performed by
taking 10, 14 and 18 applications respectively.

The initial task placement is done by a clustering approach,
where the processing capability of a cluster is determined by the
non-shared PEs within the cluster. The processing capabilities of
clusters are stored in advance. The applications to be mapped are
sorted in descending order by the number of tasks in them, before
the actual mapping starts. The initial tasks of the sorted applica-
tions are mapped on the center of the clusters sorted in their
decreasing processing capability. Thus, an application containing
more number of tasks is tried to be mapped into a more processing
capability cluster and an application containing relatively less
number tasks into a less processing capability cluster, resulting

250 A.K. Singh et al. / Journal of Systems Architecture 56 (2010) 242–255
in better resource utilization. This approach is not useful for the
scenarios where all the applications contain same number of tasks
like scenario (i) and (ii). Scenario (iii) contains applications with
varying number of tasks in them so the approach is useful.
5.2. Experimental results

The number of applications executing at a time is increased
with the processing capability of the platform by dividing the
NoC into corresponding number of clusters. The mapping heuris-
tics NN &BN proposed in Carvalho and Moraes [11], PNN, PBN,
CNN, CPNN, CBN, CPBN and the ideal static mapping (ISM) decision
are evaluated on three different platforms that contain PEs sup-
porting two, three or four tasks.
5.2.1. Total execution time
It is the time taken to finish the execution of all the applications

to be mapped on the platform. It comprises of mapping time (time
to find the placement), configuration time, communication time,
waiting time (when no free resource in the platform) and compu-
tation (processing) time amongst which communication time
dominates. The computation of a packet corresponding to a task
mapped on a PE starts just after its receiving and the computation
is finished before receiving the next packet for the same task. So, if
the computation time is less than the time interval between receiv-
ing two consecutive packets corresponding to the same task on the
PE then the computation time will get absorbed within the com-
munication time. Thus, the computation time should be large en-
ough in order to contribute to the total execution time.

New proposed mapping heuristics map the maximum number
of communicating pairs onto the same PE, resulting in reduced
communication overhead and the traffic in channels (channel con-
gestion) that gets generated when communicating pairs communi-
cate from different PEs. The reduced traffic decreases the
communication overhead of other communicating tasks that com-
municate from different PEs. Thus, total execution time is reduced.

Our analysis in time complexity shows that all the heuristics
have time complexity of same level and is of O(C), where C is the
number of processing elements in the NoC. All the heuristics exe-
cute almost in similar time with some improvements in some
cases.

Fig. 10 shows average execution time required for the first sim-
ulated scenario at different platforms when heuristics NN, CNN,
BN, CBN and ISM are employed. The average for each heuristic is
taken after executing it at varying injection rate. A couple of obser-
vations can be made from the Fig. 10. First, the proposed CNN and
CBN perform better than NN and BN respectively, at each platform
and thus are scalable for platforms containing PEs to support even
higher number of tasks. Second, the largest gain for CNN and CBN
over NN and BN respectively is witnessed for 3 tasks/PE platform.
Fig. 10. Execution time for NN, CNN, ISM and BN
For this platform, CNN and CBN show an average gain of 46.07%
and 46.30% when compared to NN and BN respectively. Third,
ISM outperforms all the heuristics at each platform as the mapping
decision is taken at design-time with a global view of the platform
resources and takes maximum advantage from the task graph
structure. Communication-aware heuristics CPNN and CPBN also
get similar improvements over PNN and PBN respectively.

5.2.2. Energy consumption
Energy is required when a packet needs to be transmitted from

source PE to destination PE and then to process the packet at the
destination PE after it is received. The energy required in transmis-
sion and processing are referred as communication and computa-
tion energy respectively.

The communication energy depends on the number of bits to be
transmitted, the number of links to be traversed between both the
PEs and energy required in transmitting one bit through one link.
The transmitted bits are calculated by multiplying number of pack-
ets by the average packet size in bits. Here, number of packets is
considered as data volume Vms (Fig. 2) and average packet size as
ten flits each of 16 bits denoted as Psize, when transferred from
master to slave. As communication takes place from slave to mas-
ter also, so total bits include the number of packets transferred
from slave to master as well and the number is considered as Vsm

(Fig. 2) having same average packet size. The number of links to
be traversed between the source and destination PE is calculated
from the Manhattan distance (DXms + DYms) between the PEs as
XY routing algorithm is used. The energy required to transmit
one bit through each link is considered as ELbit [33]. The communi-
cation energy is estimated as product of number of bits to be trans-
mitted, the number of links to be traversed between source and
destination PE and the energy required to transmit one bit through
one link, for each master-slave pairs from Eq. (2).

Ecomm ¼
X
½ðVms þ VsmÞ � Psize � ðDXms þ DYmsÞ � ELbit� ð2Þ

The computation energy depends on the number of bits to be
processed on the receiver PE, time required to process each re-
ceived bit and power needed to process the bit. The bits to be pro-
cessed are the same that were transmitted from some source PE
and are calculated by multiplying number of packets (Vms) by the
average packet size (Psize), when received by slave. The total bits
for each master-slave pair includes the bits to be processed on
the master PE (Vsm � Psize) as well, when received by master and
sent by slave. The time required to process each bit is calculated
by dividing the time taken to process each packet (tcomp) by the
average packet size (Psize). The value of tcomp is provided by a con-
figuration file. The power needed to process the bits on a PE is esti-
mated from the power efficiency of Tile64 processor [2]. In [2],
power efficiency is varied from 15 to 22 W when all the 64 PEs
operate at 700 MHz simultaneously. The power is scaled for one
, CBN, ISM heuristics at different platforms.

A.K. Singh et al. / Journal of Systems Architecture 56 (2010) 242–255 251
PE operating at 25 MHz and is referred as PEpower. The scaling is
done for 25 MHz as the NoC [27] also operates at 25 MHz and its
very reasonable for the PEs to operate at the same frequency. An
average power dissipation of 20W is considered while scaling is
performed. The computation energy is estimated as product of
the number of bits to be processed, time required to process one
bit and power needed to process the bit, for each master-slave
pairs from Eq. (3).

Ecomp ¼
X

ðVms þ VsmÞ � tcomp � PEpower
� �

ð3Þ

Total energy consumption is estimated as the sum of communi-
cation and computation energy from Eq. (4). Our proposed map-
ping strategy reduces the distance between source and
destination PE by placing the communicating tasks onto the same
PE, where bits can be exchanged very easily through some com-
mon memory or register without the need of much communication
energy. Thus, total energy consumption is greatly reduced.

Etotal ¼ Ecomm þ Ecomp ð4Þ

Fig. 11 shows energy consumption (Etotal) for all the simulated
scenarios in different platforms when heuristics PNN and CPNN
are employed. A number of observations can be made from the
Fig. 11. First, CPNN always performs better than PNN and maxi-
mum gain of CPNN over PNN is witnessed for scenario-1 at each
platform. At 4 tasks per PE platform, CPNN shows an improvement
of 44.27% over PNN. Second, the energy consumption for PNN and
CPNN is minimum for scenario-2 at each platform when compared
with other scenarios. Similar behavior is shown by other proposed
communication-aware heuristics too.
5.2.3. Average channel load
The average channel load represents the NoC use. It is calcu-

lated by looking the loads in all the channels at a fixed clock cycle
interval until all the applications finish execution. The load in the
channels depends on the communication overhead between the
tasks and the traffic produced by the communicating tasks while
communicating from different nodes. The communication over-
head and the traffic produced is reduced by the proposed mapping
heuristics by mapping maximum number of communicating pairs
onto the same processing node. Thus, average channel load is sig-
nificantly reduced when proposed heuristics are employed.

Fig. 12 plots average channel load for all simulation scenarios at
varying injection rates, for 3 tasks per PE platform. Similar behav-
ior is shown for other platforms too. The average channel load in-
creases with communication rate as more traffic gets generated in
the channels with increase in the communication rate. CPBN
reduces the average channel load for all the scenarios when
compared to PBN. CPBN shows an average gain of 10.67% over
PBN. Other proposed heuristics bring about almost similar
improvements.
Fig. 11. Energy consumption for PNN and CPNN heuristics in different platforms for
all scenarios.
5.2.4. Average packet latency
The average packet latency depends on the congestion in the

path and the distance between the source and destination PE on
which communicating tasks are mapped. Proposed mapping algo-
rithms try to map the maximum communicating task pairs onto
the same processing node. The latency for the packets of the com-
municating tasks mapped on the same PE is reduced very much as
the packets can be easily exchanged on the PE without needing any
channel but we have not considered latency for these packets
while calculating the average packet latency. However, mapping
the communicating tasks onto the same PE reduces congestion in
channels that helps in reducing packet latency for other tasks com-
municating from different PEs. Thus, proposed mapping algorithms
reduce the average packet latency and the improvements for dif-
ferent evaluated scenarios are shown in Table 1.

Table 1 shows the latency results for all simulated scenarios for
two tasks per PE platform. Communication-aware mapping heuris-
tics CNN, CPNN, CBN and CPBN reduce the average packet latency
when compared to NN, PNN, BN and PBN respectively. Improve-
ments are shown as % Gain by Communication-aware Algorithms
in the last row of Table 1. Improvements are not significant as
packets for the communicating tasks mapped on the same PE are
not considered. ISM performs better than all other heuristics for
scenario-1 and scenario-2 but can not be applied to scenario-3 as
applications structure and their workload is random and not
known at design-time. Other evaluated platforms show almost
similar results.

5.2.5. Effect of computation–communication ratio
The computation–communication ratio (CCR) is estimated as

the ratio of desired computation time (in cycles) and desired com-
munication time (in cycles) for all the packets from the following
equation, where tcomputation and tcommunication are the desired compu-
tation and communication time for individual packets.

CCR ¼
X

tcomputation
� �

�
X

tcommunication½ � ð5Þ

The number of packets to be transferred (communicated) and
processed (computed) remains same as all the transferred packets
need to be processed at some PE. Since, every packet is considered
identical, each has the same desired computation time (tcomputation)
that is provided through a configuration file, and the same desired
communication time (tcommunication) that is calculated for NoC [27]
operating at 25 MHz for a given injection rate (% usage of available
bandwidth). Thus, CCR simply reduces to the ratio of tcomputation and
tcommunication due to the same number of identical packets. The value
of tcommunication remains fixed for a given rate. Therefore, in order to
get varying values of CCR, different values of tcomputation (clock cy-
cles) are provided through the configuration file.

The total execution time mainly consists of computation and
communication time. The computation of a packet starts just after
it is received on a PE and is finished before the next packet is re-
Fig. 12. Average channel load for PBN and CPBN heuristics for all simulation
scenarios.

Table 1
Average packet latency for all simulated scenarios for the presented communication-aware heuristics, existing heuristics and ideal static mapping (ISM) mapping decision. Gain
by communication-aware heuristics are shown.

Scenarrios Rate (%) Average packet latency (clock cycles)

NN CNN PNN CPNN BN CBN PBN CPBN ISM

Scenario 1 5 127 120 120 118 118 114 115 113 110
10 226 220 225 225 216 216 217 216 211
15 326 313 316 313 316 309 314 309 303
20 431 421 425 417 419 405 414 405 411

Scenario 2 5 118 113 123 120 116 109 118 116 105
10 216 215 220 215 214 214 215 213 212
15 312 309 320 310 310 310 311 307 303
20 409 404 429 406 410 406 407 403 397

Scenario 3 273 270 278 273 278 275 287 280 NA

% Gain by communication-aware algorithms – 2.17% – 2.40% – 1.63% – 1.50%

252 A.K. Singh et al. / Journal of Systems Architecture 56 (2010) 242–255
ceived. So, the computation time should be greater than the time
interval between receiving of two consecutive packets in order to
contribute to the total execution time.

Fig. 13 shows the total execution time for mapping algorithms
NN and CNN at varying CCR when applied to scenario (i) at an
injection rate of 5% (% usage of available bandwidth). The execu-
tion time behavior is shown for 2 tasks per PE platform. Other plat-
forms also show almost similar behavior. It is clear that CNN
always performs better than NN. The gain by CNN over NN vary
for different CCR. The gain behavior for different platforms is de-
scribed subsequently.

Fig. 14 shows gain (%) in total execution time for mapping algo-
rithm CNN over NN when applied to the scenario (i) for different
platforms at varying CCR. The gains shown are for the injection rate
of 5%. A couple of observations can be made from the Fig. 14. For 2
tasks per PE platform, the gain is constant for some initial values of
CCR. For these CCR values, the total execution time for both the
algorithms (NN and CNN) remain fixed as different values of com-
putation time (vary with CCR) for each packet gets absorbed in the
time interval between receiving of consecutive packets. The con-
stant gain is due to the communication time saving by employing
the CNN algorithm to map most of the communicating task pairs
on the same PE. The communication time is saved as the packets
for most of the communicating tasks are processed on the same
PE without sending to any other PE. With further increment in
CCR, we see continuous gains up to some CCR values and then a
falling trend. The initial continuous gain is very drastic as increase
in computation time adds to total execution time very much for NN
when compared to the CNN. The NN gets affected much as the
Fig. 13. Total execution time for NN and CNN at
computation times for most of the packets are not getting absorbed
between the time interval of receiving consecutive packets
whereas in CNN, most of the packets are exchanged on the same
PE. Therefore, the total execution time for CNN is not affected
much as the computation time for the packets of the communicat-
ing tasks mapped on the same PE gets absorbed within the com-
munication and computation time of other tasks’ packets
processed in parallel. The falling trend at higher values of CCR is
obtained when the computation time starts adding to the total
execution time significantly, for the packets of the communicating
tasks mapped on the same PE too for the CNN heuristic. In the fall-
ing trend region, for CNN, the computation time does not get ab-
sorbed within the computation and communication time of other
parallely processed packets and thus the total execution time gets
affected by all the packets for both the heuristics.

For 3 tasks per PE platform, the gain falls for some initial val-
ues of CCR and then shows a similar trend as in 2 tasks per PE
platform. For initial values of CCR, increase in computation time
starts affecting total execution time for the CNN heuristic as the
computation time for the packets of communicating tasks
mapped on the same PE is not getting absorbed within the com-
munication and computation time of other tasks’ packets due to
longer time required to process the packets. The time required in
processing gets longer as the packet for a particular task is pro-
cessed for some fixed clock cycles in time multiplexed manner
along with packets of other tasks mapped on the same PE and
here more number of tasks get mapped on a PE. However, the
total execution time for NN remains same for smaller values of
CCR as computation time for these values of CCR does not add
varying CCR for two tasks per PE platform.

Fig. 14. Improvement in total execution time for CNN over NN at varying CCR for different platforms.

A.K. Singh et al. / Journal of Systems Architecture 56 (2010) 242–255 253
to the total execution time due to the same reason as in 2 tasks
per PE platform. Thus, a falling trend is obtained for some initial
values of CCR. The reason for the similar trend after some values
of CCR is same as explained for 2 tasks per PE platform. The
drastic gain starts relatively at lower CCR values as compared
to the 2 tasks per PE platform due to more tasks getting mapped
on the PEs. For 4 tasks per PE platform, a similar trend is ob-
tained with drastic gain starting relatively more early due to
the similar reason.

The initial gain for 3 tasks per PE platform is higher than other
platforms. The almost flat region in mid values of CCR is longer for
platforms supporting more number of tasks. Other heuristics also
show similar behavior.
5.2.6. Clustering vs. non-clustering approach
The clustering approach benefits the evaluated metrics only in

the third simulation scenario where applications contain varying
number of tasks. In the clustering approach, first, applications are
sorted by the number of tasks within them and then initial tasks
of applications are mapped at the center of the clusters sorted by
their processing capability as explained in experimental set-up
section. In non-clustering approach, applications are not sorted
and their initial tasks are mapped at any random location.

Fig. 15 shows gain obtained by the clustering approach over the
non-clustering approach for average channel load, energy con-
sumption, average packet latency and total execution time at the
two tasks per PE platform for different mapping algorithms. Aver-
age channel load and energy consumption is improved by around
15% with some improvement in packet latency and execution time.
Almost similar behavior is obtained at other evaluated platforms
too.
Fig. 15. Improvements of clustering approach whe
6. Conclusions and future work

This paper describes a new mapping strategy where placement
for a task is found by looking at previously mapped tasks onto a
processing element (PE) in the multi-tasking MPSoC platform.
We have relied on this mapping strategy to propose four run-time
mapping heuristics. A simulation platform has been extended to
support the mapping of more than one task on each PE, which
can be either a CPU or a reconfigurable hardware (RH) block.

We show that the ideal static mapping solution can lead to per-
formance improvement. However, the ideal static mapping has
been shown to improve the overall performance only when all
the applications and their workloads are known prior to the map-
ping process. However, this does not cater for realistic scenarios in
which the run-time characteristics call for dynamic mapping
strategies.

Based on our investigations all the proposed heuristics have
been evaluated using an 8 � 8 NoC-based MPSoC platform. We
clearly demonstrate that the newly presented heuristics can con-
sistently provide for notable reduction in the communication over-
head. The potential of mapping adjacent communicating tasks and
those of the same application on to the same PE whenever possible
has contributed to the overall reduction in the communication
overhead. We have investigated different scenarios depending on
performance metrics of interest and they show that improvement
in the total execution time can be up to 90% when the packet exe-
cution time is increased.

In future, we plan to evaluate real-time benchmarks on the
MPSoC platform and devise techniques for task migration when
performance bottlenecks are identified at run-time.
n different mapping algorithms are employed.

254 A.K. Singh et al. / Journal of Systems Architecture 56 (2010) 242–255
Acknowledgments

We thank Mr. Alok Prakash for discussions and contributions to
the paper [41] and special thank to Dr. Ewerson Carvalho for pro-
viding the basic simulation environment used in Carvalho and
Moraes [11].

References

[1] Chip Multiprocessor Watch, 2008. <http://view.eecs.berkeley.edu/wiki/
Chip_Multi_Processor_Watch>.

[2] Tile64 Processor, 2008. <http://www.tilera.com/products/TILE64.php>.
[3] M.A. Al Faruque et al., Adam: run-time agent-based distributed application

mapping for on-chip communication, in: Proceedings of the DAC, 2008, pp.
760–765.

[4] S. Bell et al., Tile64tm processor: a 64-core soc with mesh interconnect, in: IEEE
International Solid-State Circuits Conference, 2008, pp. 88–598.

[5] L. Benini, G. De Micheli, Networks on chips: a new soc paradigm, Computer 35
(1) (2002) 70–78.

[6] D. Bertozzi, L. Benini, Xpipes: a network-on-chip architecture for gigascale
systems-on-chip, Circ. Syst. Mag. IEEE 4 (2) (2004) 18–31.

[7] S. Bertozzi et al., Supporting task migration in multi-processor systems-on-
chip: a feasibility study, in: Proceedings of DATE, 2006, pp. 15–20.

[8] S. Borkar, Thousand core chips: a technology perspective, in: Proceedings of
DAC, 2007, pp. 746–749.

[9] M. Branca et al., Evolutionary algorithms for the mapping of pipelined
applications onto heterogeneous embedded systems, in: Proceedings of the
Gen. and Evolutionary Comp., 2009, pp. 1435–1442.

[10] E.W. Briao et al., Dynamic task allocation strategies in mpsoc for soft real-time
applications, in: Proceedings of DATE, 2008, pp. 1386–1389.

[11] E. Carvalho, F. Moraes, Congestion-aware task mapping in heterogeneous
mpsocs, in: International Symposium on SoC, November 2008, pp. 1–4.

[12] C.-L. Chou, R. Marculescu, User-aware dynamic task allocation in networks-on-
chip, in: Proceedings of DATE, 2008, pp. 1232–1237.

[13] R.P. Dick et al., Tgff: task graphs for free, in: Proceedings of Workshop on
Hardware/Software Codesign, 1998, pp. 97–101.

[14] J. Henkel et al., On-chip networks: a scalable, communication-centric
embedded system design paradigm, in: Proceedings of VLSI Design, 2004, p.
845.

[15] P.K.F. Hölzenspies et al., Run-time spatial mapping of streaming applications
to a heterogeneous multi-processor system-on-chip (mpsoc), in: Proceedings
of DATE, 2008, pp. 212–217.

[16] J. Hu, R. Marculescu, Energy- and performance-aware mapping for regular noc
architectures. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 24(4)
(2005) 551–562.

[17] A. Jerraya et al., Guest editors’ introduction: multiprocessor systems-on-chips,
Computer 38 (7) (2005) 36–40.

[18] H. Kalte, M. Porrmann, Context saving and restoring for multitasking in
reconfigurable systems, in: Proceedings of FPL, 2005, pp. 223–228.

[19] M. Kistler et al., Cell multiprocessor communication network: built for speed,
IEEE Micro 26 (3) (2006) 10–23.

[20] A. Kumar et al., Multiprocessor systems synthesis for multiple use-cases of
multiple applications on fpga, ACM Trans. Des. Autom. Electron. Syst. 13 (3)
(2008) 1–27.

[21] T. Lei, S. Kumar, Algorithms and tools for network on chip based system
design, in: Proceedings of Integrated Circuits and Systems Design, 2003, p. 163.

[22] L.-Y. Lin et al., Communication-driven task binding for multiprocessor with
latency insensitive network-on-chip, in: Proceedings of ASP-DAC, 2005, pp.
39–44.

[23] S. Manolache et al., Fault and energy-aware communication mapping with
guaranteed latency for applications implemented on noc, in: Proceedings of
DAC, 2005, pp. 266–269.

[24] C. Marcon et al., Time and energy efficient mapping of embedded applications
onto nocs, in: Proceedings of ASP-DAC, 2005, pp. 33–38.

[25] A. Mehran et al., A heuristic dynamic spiral mapping algorithm for network on
chip, IEICE Electron. Exp. 5 (13) (2008) 464–471.

[26] L. Möller et al., A NoC-based Infrastructure to Enable Dynamic Self
Reconfigurable Systems, 2007.

[27] F. Moraes et al., Hermes: an infrastructure for low area overhead packet-
switching networks on chip, Integr. VLSI J. 38 (1) (2004) 69–93.

[28] S. Murali et al., A methodology for mapping multiple use-cases onto networks
on chips, in: Proceedings of DATE, 2006, pp. 118–123.

[29] A. Ngouanga et al., A contextual resources use: a proof of concept through the
apaches’ platform, in: Proceedings of IEEE Des. and Diagnostics of Electronic
Circuits and Sys., 2006, pp. 42–47.

[30] V. Nollet et al., Centralized run-time resource management in a network-on-
chip containing reconfigurable hardware tiles, in: Proceedings of DATE, 2005,
pp. 234–239.

[31] V. Nollet et al., Run-time management of a mpsoc containing fpga fabric tiles,
IEEE Trans. VLSI Syst. 16 (1) (2008) 24–33.

[32] H. Orsila et al., Automated memory-aware application distribution for multi-
processor system-on-chips, J. Syst. Archit. 53 (11) (2007) 795–815.
[33] J.C.S. Palma et al., Mapping embedded systems onto nocs: the traffic effect on
dynamic energy estimation, in: Proceedings of Integrated Circuits and System
Design, 2005, pp. 196–201.

[34] Z. Peter et al., A decentralised task mapping approach for homogeneous
multiprocessor network-on-chips, Int. J. Reconfig. Comp., 2009.

[35] C.-E. Rhee et al., Many-to-many core-switch mapping in 2d mesh noc
architectures, in: Proceedings of IEEE International Conference on Computer
Design, 2004, pp. 438–443.

[36] M. Ruggiero et al., Communication-aware allocation and scheduling
framework for stream-oriented multi-processor systems-on-chip, in:
Proceedings of DATE, 2006, pp. 3–8.

[37] M. Ruggiero et al., A fast and accurate technique for mapping parrallel
applications on stream-oriented mpsoc platforms with communication
awareness, Int. J. Parallel Progr. 36 (1) (2008) 3–36.

[38] N. Saint-Jean et al., Hs-scale: a hardware-software scalable mp-soc
architecture for embedded systems, in: Proceedings of ISVLSI, 2007, pp.
21–28.

[39] A. Schranzhofer et al., Power-aware mapping of probabilistic applications onto
heterogeneous mpsoc platforms, in: Proceedings of Real-Time and Embedded
Technology and Applications Symposium, 2009, pp. 151–160.

[40] A.K. Singh et al., Efficient heuristics for minimizing communication overhead
in noc-based heterogeneous mpsoc platforms, in: Proceedings of International
Symposium on Rapid System Prototyping, pp. 55–60, 2009.

[41] A.K. Singh et al., Mapping algorithms for noc-based heterogeneous mpsoc
platforms, in: Proceedings of the Euromicro Symposium on DSD, 2009, pp.
133–140.

[42] G.J. Smit et al., Multi-core architectures and streaming applications, in:
Proceedings of Interntional Workshop on System Level Interconnect
Prediction, 2008, pp. 35–42.

[43] L. Smit et al., Run-time mapping of applications to a heterogeneous
reconfigurable tiled system on chip architecture, in: FPT, 2004, pp. 421–424.

[44] T. Theocharides et al., Towards embedded runtime system level optimization
for mpsocs: on-chip task allocation, in: Proceedings of Great Lakes Symposium
on VLSI, 2009, pp. 121–124.

[45] L. Thiele et al., Mapping applications to tiled multiprocessor embedded
systems, in: Proceedings of Application of Concurrency to System Design,
2007, pp. 29–40.

[46] S. Vangal et al., An 80-tile 1.28tflops network-on-chip in 65 nm cmos, in: IEEE
Internattional Solid-State Circuits Conference, 2007, pp. 98–589.

[47] F. Wronski, E. Brião, F. Wagner, Evaluating energy-aware task allocation
strategies for MPSOCs, in: IFIP Distri. and Para. Embedded Sys., Springer, 2006.

[48] D. Wu et al., Scheduling and mapping of conditional task graphs for the
synthesis of low power embedded systems, in: Proceedings of DATE, 2003, p.
10090.

Amit Kumar Singh received his Bachelor degree in
Electronics Engineering from Indian School of Mines,
Dhanbad, India, in 2006. He worked with HCL Tech-
nologies, India for year and half before joining Nanyang
Technological University (NTU), Singapore, in 2008.
Currently, he is working with Centre for High Perfor-
mance Embedded Systems (CHiPES), School of Com-
puter Engineering, NTU, Singapore as a research student
towards the completion of his PhD. His research inter-
ests include NoC-based MPSoC design, run-time map-
ping algorithms.
Srikanthan joined Nanyang Technological University
(NTU), Singapore in June 1991. At present, he holds a
full professor and joint appointment as Director of a 100
strong Centre for High Performance Embedded Systems
(CHiPES). He founded CHiPES in 1998 and elevated it to
a university level research Centre in February 2000. He
has also served as founding Director of the Intelligent
Devices and Systems (IDeAS) cluster for 2 years (2005–
2007). His research interests include design methodol-
ogies for complex embedded systems, architectural
translations of compute intensive algorithms, computer
arithmetic and high-speed techniques for image pro-

cessing and dynamic routing. He has published more than 250 technical papers
including 60 journals in IEEE Transactions, IEE Proceedings and other reputed
international journals. His services as a key consultant to embedded systems

industry, both locally and internationally are continually being sought for. He was
awarded the Public Administration Medal (Bronze) on 2006 National Day in rec-
ognition of his contributions to education in Singapore.

http://view.eecs.berkeley.edu
http://view.eecs.berkeley.edu
http://www.tilera.com/products/TILE64.php

A.K. Singh et al. / Journal of Systems Architecture 56 (2010) 242–255 255
Akash Kumar received the B.Eng. degree in Computer
Engineering from the National University of Singapore
(NUS), Singapore, in 2002. He received the joint Master
of Technological Design degree in embedded systems
from NUS and the Eindhoven University of Technology
(TUe), Eindhoven, The Netherlands, in 2004, and
received the joint PhD degree in Electrical Engineering
in the area of embedded systems from TUe and NUS, in
2009. In 2004, he was with Philips Research Labs,
Eindhoven, The Netherlands, where he worked on Reed
Solomon codes as a Research Intern. From 2005 to 2009,
he was with TUe as a PhD student. Since 2009, he has

been with the Department of Electrical and Computer Engineering, NUS, currently
as a Visiting Fellow. He has published over 25 papers in leading international
electronic design automation journals and conferences. His current research

interests include analysis, design methodologies, and resource management of
embedded multiprocessor systems.
Wu Jigang received the B.Sc. degree in computational
mathematics from Lanzhou University, China in 1983,
and doctoral degree in computer software and theory
from University of Science and Technology of China
(USTC) in 2000. He was with the Department of Com-
puter Science of Lanzhou University, China from 1983 to
1993, as an assistant professor followed by lecturer. He
was with the Department of Computer Science and
Engineering of Yantai University, China from 1993 to
2000, as a lecturer followed by associate professor. He
was with the Centre for High Performance Embedded
Systems, School of Computer Engineering, Nanyang

Technological University, Singapore from 2000 to 2009, as a postdoctoral fellow
followed by research fellow. He joined the School of Computer Science and Soft-
ware, Tianjin Polytechnic University, China from 2009 as a full professor. He has

published more than 100 technical papers including journals in IEEE Transactions,
IEE Proceedings and other reputed international journals. His research interests
include in reconfigurable VLSI design, hardware/software co-design, parallel
computing and combinatorial search.

	Communication-aware heuristics for run-time task mapping on NoC-based MPSoC platforms
	Introduction
	Contributions

	Related work
	Static mapping techniques
	Run-time mapping techniques for homogeneous MPSoCs
	Run-time mapping techniques for heterogeneous MPSoCs

	NoC-based target MPSoC architecture
	Proposed mapping strategies
	Definitions
	Packing strategy
	Packing-based mapping algorithms
	Initial task mapping
	Packing-based nearest neighbor (PNN)
	Packing-based best neighbor (PBN)

	Novel communication-aware strategy
	Problem with existing approach
	Solution with proposed approach
	Ideal mapping solution

	Communication-aware mapping algorithms for multi-tasking platforms
	Communication-aware nearest neighbor (CNN)
	Communication-aware packing-based nearest neighbor (CPNN)
	Communication-aware best neighbor (CBN)
	Communication-aware packing-based best neighbor (CPBN)

	Performance evaluation
	Experimental set-up
	Experimental results
	Total execution time
	Energy consumption
	Average channel load
	Average packet latency
	Effect of computation–communication ratio
	Clustering vs. non-clustering approach

	Conclusions and future work
	Acknowledgments
	References

