
Fault-Aware Task Re-Mapping for Throughput Constrained
Multimedia Applications on NoC-based MPSoCs

Anup Das and Akash Kumar
Department of Electrical & Computer Engineering

National University of Singapore, Singapore
{akdas, akash}@nus.edu.sg

Abstract—Shrinking transistor geometry and aggressive volt-
age scaling are leading to growing concerns on the reliability
of multiprocessor systems. Majority of streaming multimedia
applications are characterized by fixed throughput requirements;
violation of which directly impacts user experience. None of
the prior research considers joint treatment of throughput and
task-migration overhead, both of which are essential for fault-
tolerance of throughput-constrained multimedia multiprocessor
systems. In this paper, we propose to remap tasks from faulty pro-
cessors with the objective of minimizing the migration overhead
while satisfying throughput constraints. The proposed technique
is based on extensive design-time analysis of different fault
scenarios to determine optimal mappings from the throughput-
migration overhead Pareto space. These mappings are stored in a
table and are looked-up at run-time to migrate tasks as and when
faults occur. Applications are modeled using Synchronous Data
Flow graphs (SDFG) to consider cyclic dependencies of tasks,
typically found in multimedia systems. Experiments performed
with synthetic and real application graphs demonstrate that the
migration overhead can be reduced by 26% on average while
still meeting throughput constraints. Moreover, by selecting an
appropriate initial processor-task mapping, migration overhead
can be further reduced by 15% on average.

Index Terms—Fault-Tolerance; Task Remapping; Synchronous
Data Flow Graph; Linear Programming.

I. INTRODUCTION

To accommodate ever increasing demand of applications
and to ease the scalability, multiprocessor systems-on-chip
(MPSoCs) are becoming the obvious design choice in current
and future technologies with streaming multimedia applica-
tions constituting a large fraction of the application space [1]
[2]. With reducing feature size and increasing transistor count,
modern systems are becoming susceptible to both transient
and permanent faults [3]. This research focuses on permanent
fault-tolerance techniques in MPSoCs.

Permanent faults are traditionally tackled using hardware
redundancy [4]. However, stringent area and power budgets
are prohibiting the use of hardware redundancy in today’s sys-
tems. Software techniques such as task-migration are therefore
gaining popularity among research community [4]–[14]. Task
migration involves migrating tasks from faulty core(s) to other
functional core(s). Many of the task-migration research works
have focused on minimizing migration overhead and load
balancing [8] [11]. However, they provide no guarantee on the
application throughput. There is a study to maximize applica-
tion throughput under faulty scenarios, but migration overhead
is not taken into account in the maximization process and it
can therefore increase significantly in this technique [14].

Most streaming multimedia applications, such as H.263
decoder, demand fixed throughput which is manifested as the
quality-of-service (QoS) requirement. These applications do
not benefit from a higher throughput than required and can
even increase buffer requirements at a higher throughput. The
task-migration objective for this class of applications is to
minimize the migration overhead satisfying the application
throughput requirement. Additionally, tasks of most multime-
dia applications exhibit cyclic dependency which has not been
considered in any of the prior research on fault-tolerance.

This paper focuses on software techniques for tolerating
permanent faults in homogeneous multiprocessor systems with
applications modeled using Synchronous Data Flow Graphs
(SDFGs) [15]. The key contributions of this paper are the
following.

• Minimization of migration overhead for throughput-
constrained streaming multimedia applications for mul-
tiple faults.

• Joint consideration of migration overhead and throughput
degradation for applications with scalable QoS.

• Use of Synchronous Data Flow Graphs to model stream-
ing multimedia applications.

• An initial processor-task mapping aiming at minimizing
migration overhead for all single-fault scenarios.

The technique proposed in this paper performs design-time
analysis with all optimal points (including the lowest through-
put point which meets the requirement) on the throughput-
migration overhead Pareto space. The minimum migration
overhead mappings are retained and stored in a table for use
at run-time. Experiments conducted with synthetic and real
application graphs show that the proposed technique results
in 26% reduction of migration overhead while satisfying the
throughput requirement. Additionally, with proper choice of
an initial mapping, migration overhead can be further reduced
by 15%. Moreover, the proposed technique can also minimize
throughput degradation and migration overhead jointly.

The rest of the paper is organized as follows. A brief
overview of the prior art is provided in Section II which is then
followed by a motivating example to emphasize the importance
of this work in Section III. Then the task-mapping problem
is defined in Section IV and the solution approach is defined
in V. Next, Section VI provides complexity analysis of the
proposed algorithms and simulation results and finally Section
VII concludes the paper with future directions.

M
ig

ra
ti

o
n

 C
o

st

1

2

3

4

5

120000 140000 160000 180000 200000

1/Throughput

HT

LC

(Highest Throughput)

(Least Cost)

Throughput Constraint

PT1

PT2

Fig. 1. Throughput-cost variation of different mappings with 5 tiles

II. RELATED WORK

Fault-tolerance is emerging as one of the most desirable
features in modern day MPSoCs. The existing fault-tolerant
research can be broadly classified into two categories – appli-
cation level and architecture level. One of the popular archi-
tecture level fault-tolerance techniques is to use redundancy-
based design [4] [5]. In such a system, critical design compo-
nents are replicated and results are voted to produce the output.
However, replication techniques like DMR, TMR etc. come
with high area penalty. Stringent cost budget is increasingly
prohibiting the use of redundancy-based designs for MPSoCs.

A cost-effective solution for fault-tolerance involves mi-
gration of tasks from faulty cores. Task mapping/scheduling
decisions can be pre-computed at design-time or can be done
at run-time. Accordingly, task mapping can be categorized as
static, dynamic and quasi-static. Static task mapping involves
analysis at design-time to maximize system reliability [6] [7]
but does not address task migration.

Dynamic approaches monitor system-status and decide on
task migration at run-time to minimize migration overhead [8]
[9] [10] or balance processor load [11]. However, throughput
is not always guaranteed in these techniques. Moreover, mi-
gration algorithms need to be simple to minimize computation.

Quasi-static task migration techniques compute task map-
ping decisions at design-time for different fault-scenarios [12]
[13] [14]. As faults occur, these mappings are looked up at
run-time to carry out task-migration. The advantage of this
technique is that any sophisticated algorithm can be used at
design-time despite the associated mapping storage overhead.
The research objective of this paper falls in quasi-static class.
Hence, references [12] [13] [14] are discussed in detail.

A fixed order Band and Band reconfiguration technique is
studied in [12]. Cores of target architecture are partitioned
into two bands. When one or more cores become faulty,
tasks on these core(s) are migrated to other functional core(s)
determined by the band in which the tasks belong. The core
partitioning strategy is fixed at design-time and is indepen-
dent of the application throughput requirement. Consequently,
throughput is not guaranteed by this technique.

A re-execution slot based reconfiguration mechanism is
studied in [13]. Normal and re-execution slots of a task

are scheduled at design-time using evolutionary algorithm to
minimize certain parameters like throughput degradation. At
run-time, tasks on a faulty core migrate to their re-execution
slot on a different core. However, schedule length can become
unbounded for high fault-tolerance systems. Moreover, analy-
sis is based on task graphs and therefore cannot be applied to
streaming applications with cyclic task dependencies.

Task remapping technique based on offline computation and
virtual mapping is proposed in [14]. Here, task mapping is
performed in two steps – determining the highest throughput
mapping followed by generation of a virtual mapping to
minimize the cost of task migration to achieve this highest
throughput mapping. These virtual mappings are computed at
design-time based on different fault scenarios. A limitation
of this technique is that the migration overhead significantly
increases as this is not considered in the initial optimization
process. Moreover, throughput constrained streaming applica-
tions do not benefit from a throughput higher than required
and can increase buffer requirements at output.

III. MOTIVATION

A. Throughput-Migration Overhead Tradeoff
Streaming multimedia applications can be broadly classified

into two categories – applications, those benefitting from
scalable QoS and those requiring a fixed throughput. Majority
of the streaming applications such as video encoding/decoding
falls in the latter category. The importance of migration
overhead for multimedia applications [16] enforces the simul-
taneous consideration of throughput and migration overhead
for fault-tolerance analysis of this class of applications.

As faults occur, tasks from faulty core(s) need to be mi-
grated to other functional core(s). Least migration overhead is
achieved by remapping only the tasks from faulty core(s) and
keeping all other task mappings unchanged. This may degrade
throughput below an acceptable limit. Remapping all tasks
may result in the highest throughput but can impose signifi-
cant migration overhead. Trade-off analysis can be performed
by considering other (throughput-cost) points by selectively
allowing more task remapping. Figure 1 plots the throughput-
cost variations of different mappings of an experiment with 6
cores and 8 tasks with one of the cores as faulty. Most of the
dynamic task migration policies [8] use the least cost point
(LC) of the figure. Authors in [14] use the highest throughput
point (HT). But when throughput is a constraint (as shown by
the dashed line), there are three optimal points (HT, PT1, PT2)
to be considered in the throughput-cost Pareto-space. While
HT and PT1 give higher throughput, PT2 gives minimum
migration overhead satisfying the throughput requirement.

B. Consideration of Cyclic Graph
Throughput-constrained multimedia applications such as

H.263 encoders are typically characterized by cyclic depen-
dency among the different tasks (iterative) (refer Figure 2). It
is therefore essential to consider cyclic dataflow models for
fault-tolerance analysis of streaming multimedia applications.
Synchronous Data Flow Graphs (SDFGs, see [15]) are often
used for modeling modern DSP applications [17] and for
designing concurrent multimedia applications implemented on

Input
Motion

Estimation
Distributor

Macro
Block

Encoding

Variable
Length
Coding

Macro
Block

Decoding

Motion
Compensation

Output

Motion
Estimation

Input Distributor
Macro
block

Encoding

vlc Output99 1 11

Macro
block

Decoding

Motion
Compensation

1 1

1

199 1

1

1

1 1
1 1

1 1

1 1

NI

P0 mem

NI

P1 mem

αsrc αdstc

Interconnect
t0 m0

m1

m2

m3

t1

t2

c00

c01

c02

c03

t = number of mappings
cij = cost of moving from mapping m to mapping

mj with tile i as faulty
ci = min{ci0, ci1, …, cit}
cost of a mapping m, C(m) = ∑ci

starting mapping = m

1

1

1

Fig. 2. H.263 Encoder & corresponding SDFG model

an MPSoC. The nodes of an SDFG are called actors; they
represent tasks that are computed. The edges in the graph,
called channels, represent communication of data from one
actor to another.

IV. PROBLEM FORMULATION

A. Migration Overhead Measure

Most modern embedded multiprocessors are equipped with
local and shared memory. The context of an actor (referred to
as state-space) is stored in the local memory of a tile where
it is executed. Task migration involves moving this content
of local memory from a faulty tile over NoC, provided the
content is un-corrupted. Let si be the size of the state-space
of an actor ai participating in the task-migration process. If ta
be the initial tile of actor ai and tb be the tile after migration,
then the migration overhead of ai is given by

Cmig(ai) ∝ si ∗ dist(ta, tb) (1)

where dist(ta, tb) is the Manhattan distance between tile ta
and tb determined using any shortest path algorithm1.

B. Architecture Platform and Application Graph

Multiprocessor architectures consist of multiple tiles inter-
connected by network-on-chip. For simplicity, we represent a
multiprocessor architecture by a tuple Λ(γ,Et) where γ is the
set of tiles and Et is the set of connection between any pair of
tiles in γ. An application is represented as SDFG G(A,Ea)
where A is the set of actors and Ea is the set of edges between
the actors representing data dependency.

C. Objective

Define

m = Initial actor-tile mapping

Λf = Architecture graph with f faulty tiles : f ≤ F
mf = Actor-tile mapping with f faulty tiles

Determine mf : G → Λf such that the migration overhead
of moving from m to mf is minimized while satisfying the
throughput constraint.

1While a mesh-based topology is assumed for the target MPSoC, the
proposed technique is orthogonal to any other topology like torus, tree etc.

Run-Time

Design-Time

start

Construct
Initial

Mapping

Generate
Mapping

with f less
Tiles

Is
throughput

met?

NO

Is f = F?

Yes

f=f+1

start
Construct

Initial
Mapping

Generate f-
Fault-

Tolerant
Mapping

Is
throughput

met?

No

Is f = F?Yes

f=f+1 No

mappingfault
1779800

34521

2014-5
.
.

.

.
197895-4-3

.

.
.
.

.

.
.
.

Encode
Mapping

start

endYes

Continue
Operation

Is tile
faulty?

No

Decode
Mapping

Yes

Task
Migration

Determine
fault

scenario

t0
t1

mb

mc

ma

100

120

105
Run-Time

Design-Time

start
Construct

Initial
Mapping

Generate
f-Fault-Tolerant Mappings Is f = F?

f=f+1 No

mappingfault
1779800

34521

2014-5
.
.

.

.
197895-4-3

.

.
.
.

.

.
.
.

Encode
Mapping

start

endYes

Continue
Operation

Is tile
faulty?

No

Decode
Mapping

Yes

Task
Migration

Determine
fault

scenario

Fig. 3. Design Methodology

V. FAULT-TOLERANT TASK MAPPING METHODOLOGY

To exploit application specific information and minimize
run-time overhead, the objective function has been splitted
into two phases. In phase I (design-time),actor-tile mappings
for multiple fault-scenarios are generated. These mappings
are stored in memory and are used in phase II (run-time) to
perform the actual task migration as faults occur.

The fault-toleranct task mapping methodology is outlined
in Figure 3. For every fault-scenario with f faulty tiles, an
optimal mapping is generated which satisfies the throughput
requirement and results in minimum migration overhead.
These mappings are encoded by Encode Mapping and stored
in memory. At run-time, an application is executed until
faults occur. On detection of a fault2, the corresponding fault-
scenario is identified and the encoded mapping is fetched
from the memory. This mapping is then decoded by Decode
Mapping and the remapping information is forwarded to the
Task Migration block where actual migration is carried out.

The rest of this section is organized as follows. In Sec-
tion V-A the details of generating fault-tolerance mappings are
provided. This involves determining the minimum migration
overhead which is modeled as an integer linear programming
(ILP) problem and is described in Section V-B. A linearization
technique is developed in Section V-C to represent a mapping
which reduces the storage overhead significantly. In Sec-
tion V-D, an algorithm is developed to select an initial actor-
tile mapping which minimizes migration overhead. Finally,
Section V-E extends the proposed approach for joint mini-
mization of throughput degradation and migration overhead.

A. Mappings with Variable Functional Tiles
Fault-tolerant mappings are generated using Algorithm 1.

For every fault-scenario, a corresponding actor-tile mapping
is generated and stored. There are F stages of the algorithm,
where F is a user-defined parameter denoting the desired level
of fault-tolerance. At every stage f (1 ≤ f ≤ F), mappings
are generated for fault-scenarios with f faulty tiles. These
mappings are stored in the HashMap data structure.

The first step at every stage of the algorithm is the gener-
ation of a set (Sf) of fault-scenarios (line 2). The cardinality
of this set (denoting the number of fault-scenarios) is nPf ,

2Our research is orthogonal to any fault-detection mechanism

Algorithm 1 Construct fault-tolerant mappings
Input: Initial mapping m, set of tiles T , throughput constraint

C, fault-tolerance level F , HashMap, set of mappings
(Mn−i, i ∈ [0..F])

Output: Minimum cost mappings satisfying throughput con-
straint for f = 1 to F faults

1: while f ≤ F do
2: Sf := genFaultScenarios(f)
3: for sf ∈ Sf do
4: (ai1 , ai2 , · · · , aif) := sf
5: sif−1

:= (ai1 , ai2 , · · · , aif−1
)

6: mf−1 := HashMap[sf−1].getMap()
7: [cf ,mf] := getMinCost(mf−1, af ,M

n−f)
8: HashMap[sf].setCost(cf)
9: HashMap[sf].setMap(mf)

10: end for
11: f := f + 1
12: end while

where n is the initial number of tiles. An example set with
2 out of 3 tiles faulty (f = 2, n = 3) is the set Sf =
{(0, 1), (1, 0), (0, 2), (2, 0), (1, 2), (2, 1)}3. For every scenario
of the set Sf , the last tile (aif) of the tuple (ai1 , ai2 , · · · , aif)
is considered as the current faulty tile and a lower order tuple
is generated by omitting aif (line 5). This gives fault-scenario
sf−1 with f − 1 faulty tiles for which the optimal mapping is
already computed (and stored in HashMap) in the previous
stage (i.e. at stage f − 1). This mapping is fetched (line 6)
and used as the initial mapping for the subsequent steps.

An important aspect of Algorithm 1 is the set of feasible
mappings (those satisfying throughput constraint C) with t
tiles ((n − F) ≤ t ≤ n). This set (denoted by M t) along
with the corresponding throughputs is pre-computed using
the SDF3 tool [18] and stored in memory (thrDB). The
getMinCost function takes an initial mapping (mf−1), a
faulty tile (aif) and the set of mappings (Mn−f) with n− f
functional tiles. The function returns an optimal mapping
(mf) from the set (Mn−f) which gives the minimum cost
of migrating from mf−1 to mf with tile aif as faulty. Details
of getMinCost function are provided in the next sub-section.

Once an optimal mapping and the corresponding migration
overhead are determined (line 7), the algorithm stores them
in the HashMap for the particular fault-scenario (line 8-9).
This is repeated for every scenario of the set Sf .

B. Minimum Overhead Mapping
Minimum-cost task mapping problem is to determine an

optimal point on the throughput-cost Pareto space for different
fault-scenarios. This is detailed in Algorithm 2. A reference
mapping (m), a faulty tile (t) and a set of reduced tile
mappings (M) are given as input and the algorithm returns
an optimal mapping (mo) from the set M satisfying the
throughput constraint. This is formulated as an ILP problem.
A matrix CM is used to store the cost of migrating tasks from
an initial mapping to a new mapping. The tiles from the initial

3A fault-scenario (0,1) implies fault occuring first at tile 0 and then at tile
1. Thus, fault-scenario (0,1) is different from fault-scenario (1,0) forcing a
permutation in the fault-scenario computation rather than combinations.

Algorithm 2 Get minimum cost mapping
Input: Mapping list M , reference mapping m, faulty tile t,

throughput constraint C
Output: Minimum cost mapping from m

1: V := constructCostV ector(G)
2: for m′ ∈M do
3: if thrDB.getThroughput(m′) ≥ C then
4: CM [i][j] := constructCostMatrix(m,m′, t, V)
5: cost := solveILP (CM)
6: MapList.push(m′)
7: CostList.push(cost)
8: ThrList.push(thrDB.getThroughput(m′))
9: end if

10: end for
11: [mo, co] := getOptimal(CostList, ThrList)

TABLE I
COST MATRIX

CM(oi, nj) n1 n2 n3 · · · nf · · · nk−1

o1 50 205 180 · · · 0 · · · 175
o2 200 100 180 · · · 0 · · · 200
...

...
...

...
. . .

...
. . .

...
of 0 0 0 · · · · · · · · · 0
...

...
...

... · · ·
... · · ·

...
ok 165 110 120 · · · 0 · · · 135

mapping form the rows (indicated by oi) and those from the
new mapping form the columns (indicated by nj). The rows
(and columns) corresponding to the unused tile(s) and the fault
ID f are filled with zeroes. Table I shows a sample CM with
tile tf as faulty. The non-zero entry (oi, nj) of M corresponds
to the migration overhead associated with the extra actor(s) on
tile nj of new mapping which is (are) not present on tile oi
of initial mapping. This is computed as follows.

actors(ox) = actors mapped on tile ox of initial mapping
actors(nx) = actors mapped on tile nx of new mapping

CM(oi, nj) =
∑

∀a∈actors(nj)
a/∈actors(oi)

Cmig(a)

Once the cost matrix is computed (line 4), the ILP is solved
to obtain the minimum cost of migration (line 5). The cost and
the throughput are stored in costList and thrList respectively.
The process is repeated for all mappings of set M which
satisfy the throughput constraint (line 3). The getOptimal
function returns an optimal point on the throughput-cost Pareto
space (point PT2 in Figure 1). Finally, a minimum cost
mapping is found and returned as output.
ILP Formulation :
Base Variables: Xij , i ∈ [1, k], j ∈ [1, k − 1]
Objective: Minimize z =

∑
ij Xij × CM(oi, nj)

Constraints: One element from each row and columns is to
be selected
k−1∑
j=1

Xij := 1, ∀i ∈ [1, k] :

k∑
i=1

Xij := 1, ∀j ∈ [1, k − 1]

t0

t1

ma

mb

mc

100

120

105

170

90

220

m1

t0

t1

ma

mb

mc

110

110

165

170

90

60

m2

C01 = 100
C11 = 90
costMap(m1) = 190

C02 = 110
C12 = 60
costMap(m2) = 170

C0
1 = 100 C0

2 = 110

C1
1 = 90 C1

2 = 60

costMap(m1) = 190 costMap(m2) = 170

Fig. 4. Selecting an Initial Mapping

C. Encoding of Actor-Tile Mapping
A technique has been developed to encode the actor-tile

mappings. This encoding scheme reduces the decoding over-
head and is efficient for storing in or retrieving from any data
structure (e.g. HashMap).

Each mapping mi is represented by tuple (t0i , t
1
i , .., t

s−1
i)

where, t0i is the tile to which actor a0 is mapped, t1i is the
tile where a1 is mapped and so on. The total number of tasks
and tiles are represented by s and n respectively. To uniquely
identify each mapping, linearization technique is applied to
each tuple and represent them by a mapping ID (mIDi). This
is shown in Equation 2.

tji ∈ [0, n− 1] (2)

mIDi =

s−1∑
j=0

tji × n
j

D. Construct Initial Mapping
The first step in the design flow is the construction of actor-

tile mapping. Simulation results show that the choice of the
initial mapping is very crucial and has the potential to reduce
migration overhead significantly. Based on this observation
and the fact that single fault occurrences are more likely
than the occurences of multiple faults, an algorithm has been
developed for selecting an initial mapping that minimizes
the task-migration of all single-fault scenarios. However, the
algorithm can be easily adapted to consider initial mapping
which minimizes migration overhead for any number of faults.

The idea of the algorithm is shown in Figure 4 with an
example. One of the two mappings m1 or m2 is to be selected
as the initial mapping. Let {ma,mb,mc} be the set of single-
fault mappings. The first step of the algorithm is to compute
the cost of moving from m1 (and m2) to all single-fault
mappings considering each of the tiles (t0 and t1) to be faulty.
The cost is indicated as weight on the edges. Thus, the costs of
moving from m1 to ma, mb and mc are respectively 100, 120
and 105 with tile t0 as faulty. Similarly, the cost to these three
mappings are 170, 90 and 220 respectively considering tile t1
to be faulty. Once all costs are determined, the minimum costs

Algorithm 3 Construct initial mapping
Input: A set of mappings (Mn) of s actors on n tiles, a set

of mappings (Mn−1) of s actors on (n− 1) tiles and the
set of tiles γ

Output: Minimum cost start mapping m
1: for mapping m ∈Mn do
2: if throughput ≥ constraint then
3: cost := 0
4: for tile t ∈ γ do
5: [ct,mt] := getMinCost(m, t,Mn−1)
6: cost := cost+ ct
7: end for
8: costMap[m] := cost
9: end if

10: end for
11: find m ∈Mn, such that costMap[m] is minimum

are retained. Cj
i denotes the minimum cost in moving from

mapping mi to a single-tile mapping with tile tj as faulty. The
minimum cost for mapping mi is costMap(mi) =

∑
j C

j
i .

The mapping with the minimum cost is selected as the initial
mapping. In Figure 4, m2 is selected as it has the least cost
(170) out of the two mappings.

The above steps are detailed in Algorithm 3. There are three
inputs to this algorithm – the set of mappings of all the actors
on n tiles, the set of mappings of all actors on (n − 1) tiles
and the set of tiles γ. The function getMinCost(m, t,Mn−1)
returns an optimal mapping mt ∈ Mn−1 and the minimum
cost (ct) of moving from m to mt with tile t as faulty.
Steps 3-8 of the algorithm compute the sum of the minimum
cost for each single fault scenario for a mapping m. The
same is repeated for all valid mappings ∈ Mn which satisfy
throughput constraint (line 2). Finally, in step 11, the minimum
cost mapping is selected.

E. Joint Optimization of Throughput and Migration Overhead
As established in Section III-A, a certain category of multi-

media applications demands scalable QoS. These applications
demand joint treatment of throughput and migration overhead.
For this we define an entity throughput per unit migration.
The objective is to maximize this entity while satisfying
the minimum throughput requirement. The change needed to
incorporate this objective is in line 4 of Algorithm 2, where
the matrix is filled with cost

throughput . The rest of the algorithm
remains unchanged.

VI. RESULTS

This Section provides an overview of the complexity and
simulation results of the proposed alogirithms. Experiments
are conducted with synthetic and real application graphs on
a quad-core Intel Xeon-2.4GHz server running Linux. Algo-
rithms are implemented in C++ and used in conjunction with
the SDF3 [18] tool for throughput computation. The ILP is
solved using Matlab optimization toolbox.

A. Complexity
Time complexity of an algorithm is a measure of the number

of computations performed by the algorithm. As established

TABLE II
RUNTIME COMPARISON OF FINDING MINIMUM TASK MIGRATION

OVERHEAD WITH SAME NUMBER OF TASKS AND TILES

Tiles Brute Force HT ILP Solver
(sec) (sec) (sec)

4 0.002 0.0025 0.0056
8 0.5 0.065 0.0178
12 8.13 0.1579 0.0402
16 – – 0.0707
20 – – 0.1033
24 – – 0.1440
28 – – 0.1849
32 – – 0.2388

in Section V-A, the total number of fault-scenarios for a F
fault-tolerant system is given by Equation 3.

#fault scenarios =

F∑
f=1

nPf (3)

The getMinCost function internally calls two functions
– constructCostMatrix and solveILP for each mapping
considered in the mapping list. The constructCostMatrix
function fills the cost matrix with the cost of task migration
from an initial mapping to a new mapping. With n tiles,
matrix CM (I) contains n2 elements and therefore the worst
case complexity of constructCostMatrix is O(n2). Table II
compares the runtime of the ILP solver against the brute force
technique of finding cost using permutations and the dynamic
programming based approach of HT [14]. As can be seen
from the table, the brute-force and the HT techniques fails
beyond 12 tiles due to the high memory requirement. The
ILP approach continues to provide an optimal solution even
for 32 tasks. Moreover, the computation time of the ILP is 4
times lower than the HT technique. This clearly signifies the
advantage of using the ILP based cost computation technique.
The overall complexity of Algorithm 1 is given by Equation 4.

O(algo 2) = F × (

F∑
f=1

nPf)×O(getMinCost) (4)

= (#mappings)[O(n2) +O(solveILP)]

The storage associated with a 3-fault-tolerant system with
100 actors is summarized in Table III. The number of fault-
scenarios (column 2) corresponding to a tile count is computed
using Equation 3. The number of bits required to store a
mapping mi is given by Equation 5.

bits = log2mIDi (5)

where mIDi is computed using Equation 2. Finally, the total
storage is obtained by multiplying the bits per mapping with
the total number of homogeneous mappings.

B. Migration Overhead of Throughput-Constraint Applica-
tions

In this Section, migration overhead of our technique is com-
pared with the highest throughput-based migration technique

TABLE III
STORAGE REQUIREMENT OF WITH INCREASING TILES FOR A

3-FAULT-TOLERANT SYSTEM WITH 100 ACTORS

Tiles # Fault Scenarios Bits per Mapping Storage (KB)
4 24 200 4.6
8 112 300 32.8
12 264 400 92.4
16 480 400 187.5
20 760 500 320.7
24 1104 500 494.3
28 1512 500 709.8
32 1984 500 968.7

0

0.2

0.4

0.6

0.8

1

1.2

0 2 0‐2 1‐3 2‐1 3‐5 4‐2 5‐0

N
o
rm

al
iz
e
d
 M

ig
ra
ti
o
n
 O
ve
rh
e
ad

Fault Scenarios

HT BB TP TPI

Fig. 5. Migration overhead with constant throughput

of [14] (referred to as HT) and the fixed-order band and band
reconfiguration technique of [12] (referred to as BB). Our base
technique is referred to as TP and the one including the initial
mapping of Algorithm 3 as TPI. Experiments were conducted
with synthetic application graphs with 6 tiles and 8 actors with
throughput as a constraint.

Figure 5 plots the migration overhead for all four techniques
for different fault-scenarios. A fault-scenario (m-n) implies 2-
fault condition with the first fault occurring at tile m and the
next at tile n. For ease of representation, few of the single and
double-fault conditions are included. The results obtained are
normalized with respect to the migration cost obtained using
HT technique. For our base technique (TP), the initial mapping
is selected as the one which gives the highest throughput. This
makes the initial mapping part of the HT and TP algorithm
similar. However, for every fault-scenario, HT retains the
highest throughput mapping, while TP selects the mapping
with the least cost satisfying the throughput requirement.

There are few trends to be observed from the above figure.
The BB technique involves migration of only the tasks on
faulty tiles. This can potentially degrade the throughput below
the constraint as has been observed in the experiments for
most of the fault-scenarios. The other three techniques are
throughput driven and may have additional migrations to
achieve the highest throughput (HT technique) or satisfy
throughput constraint (TP/TPI). The TP technique outperforms
the HT technique and achieves 26% less migration overhead
on an average for all single and double-fault scenarios. Further,
the TPI technique based on the initial mapping of Algorithm
3 results in further reduction of migration overhead with an
average 41% savings with respect to HT technique.

0

0.5

1

1.5

2

2.5

BB TP TPI BB TP TPI BB TP TPI

JPEG Decoder H263 Decoder MP3 Encoder

N
or
m
al
iz
ed

 T
hr
ou

gh
pu

t p
er
 u
ni
t

m
ig
ra
tio

n
co
st

single double

Fig. 6. Throughput per unit migration overhead for 3 real applications

C. Throughput-Migration Cost Joint Performance

Figure 6 plots the normalized throughput per unit migration
overhead of BB, TP and TPI with respect to HT technique.
Experiments are conducted with three real applications – JPEG
decoder (5 actors), H263 decoder (6 actors) and MP3 encoder
(14 actors) on a reference architecture with 6 tiles. The result
for BB, TP and TPI are normalized with respect to HT and
therefore, HT is omitted from the graph. The two bars for
each category correspond to the average throughput/cost of
all single and double fault scenarios.

As can be seen from the figure, the TPI based technique
in general has the highest throughput/cost among all the other
techniques. The performance of BB degrades with increase
in the number of actors (MP3 encoder for example). This is
expected because, although the migration overhead is low for
BB, throughput degradation is not accounted. The performance
of TP and TPI are better than that of HT and BB.

Although the above observations demonstrate the advantage
of our approach with respect to the existing techniques, it is
worth mentioning that both TP and TPI achieve similar results
as the HT technique when throughput is considered as the only
objective.

D. Throughput-Cost Performance with Increasing Tasks

The scalability of our technique is studied by varying
the number of actors on architecture with 6 tiles. Beyond
12 actors, the HT algorithm becomes infeasible due to the
exponential growth of the possible solutions. Hence results
are included up to 12 actors. Figure 7 plots the average
throughput/cost of all 1, 2 and 3-fault scenarios for the
algorithms normalized with respect to that obtained using HT
algorithm.

As can be seen in the figure, the performances of all four
algorithms are comparable for a small number of actors. The
performance difference becomes significant as the number of
tasks exceeds the number of tiles. As expected, throughput/cost
of the BB technique is least and the TP technique performs
better than the HT technique. Finally, TPI outperforms all the
other techniques significantly due to fault-aware initial map-
ping. From the above results it can concluded that considering
Pareto-optimal points and with a proper choice of an initial
mapping, migration overhead can be reduced significantly.

VII. CONCLUSIONS & FUTURE DIRECTION

In this paper, SDF graph is used for fault-tolerance
analysis of cyclic multimedia applications. Different optimal

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

4 5 6 7 8 9 10 11 12

N
or
m
al
ize

d
Th

ro
ug
hp

ut
/C
os
t

Number of Tasks

HT BB TP TPI

Fig. 7. Normalized throughput/cost with 6 tiles and varying actors

points are considered on the throughput-cost Pareto space to
decide on a mapping for a fault-scenario. This is essential
for modelling the streaming multimedia applications where
throughput often comes as a constraint. Results show that the
technique proposed in this paper can reduce the migration
overhead by 26% while continuing to satisfy the application
throughput requirement. Further, the proposed technique
outperforms the existing technique in terms of joint metric
like cost/throughput. Moreover, by proper choice of an initial
mapping, a further reduction of 15% in migration overhead is
achieved. There are however certain areas for improvement.
Consideration of heterogeneous architecture and minimization
of storage overhead associated with the different mappings
are left as a future work.

REFERENCES

[1] A. Jerraya et al., The what, why and how of MPSoC. The Morgan
Kaufmann Series in Systems on Silicon, 2005.

[2] W. Wolf, “Multimedia applications of multiprocessor systems-on-chips,”
in DATE, 2005.

[3] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,”
Micro, 2003.

[4] I. Koren and C. Krishna, Fault-tolerant systems. Morgan Kaufmann.
[5] Y. Xie et al., “Reliability-aware co-synthesis for embedded systems,”

JSP, 2007.
[6] A. Dogan et al., “Matching and scheduling algorithms for minimizing

execution time and failure probability of applications in heterogeneous
computing,” TPDS, 2002.

[7] L. Huang et al., “Lifetime reliability-aware task allocation and schedul-
ing for MPSoC platforms,” in DATE, 2009.

[8] V. Izosimov et al., “Design optimization of time-and cost-constrained
fault-tolerant distributed embedded systems,” in DATE, 2005.

[9] T. Streichert et al., “Dynamic task binding for hardware/software recon-
figurable networks,” in SBCCI, 2006.

[10] O. Derin et al., “Online task remapping strategies for fault-tolerant
Network-on-Chip multiprocessors,” in NOCS, 2011.

[11] Y. Zhang et al., “Workload-balancing schedule with adaptive architecture
of MPSoCs for fault tolerance,” in BMEI, 2010.

[12] C. Yang et al., “Predictable execution adaptivity through embedding dy-
namic reconfigurability into static MPSoC schedules,” in ISSS-CODES,
2007.

[13] J. Huang et al., “Analysis and optimization of fault-tolerant task schedul-
ing on multiprocessor embedded systems,” in ISSS-CODES, 2011.

[14] C. Lee et al., “A task remapping technique for reliable multi-core
embedded systems,” in ISSS-CODES, 2010.

[15] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE.

[16] M. Pittau et al., “Impact of task migration on streaming multimedia
for embedded multiprocessors: A quantitative evaluation,” in Estimedia,
2007.

[17] S. Sriram and S. Bhattacharyya, Embedded Multiprocessors; Scheduling
and Synchronization. Marcel Dekker, 2000.

[18] S. Stuijk et al., “SDF3: SDF For Free,” in ACSD, 2006. [Online].
Available: http://www.es.ele.tue.nl/sdf3

