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Abstract—The last decade a trend can be observed towards
multi-processor Systems-on-Chip (MPSoC) platforms for satisfy-
ing the high computational requirements of modern multimedia
applications. The research community has mainly focused on
communication issues (e.g. bus vs. networks-on-chip). Real-time
operating systems for MPSoCs however, have gotten very little
attention. Existing techniques like rate-monotonic scheduling
from the real-time community are rarely applicable, because
contemporary high-performance media processors (like Cell,
graphics processors) do not support preemption. Furthermore,
rate-monotonic scheduling cannot deal with multiple (heteroge-
neous) processors, data dependencies, and dynamically varying
execution times that characterize modern media applications.
This paper proposes new techniques to manage the computational
resources of MPSoCs at run-time. We compare a centralized
resource manager (RM) to two versions (Credit based and Rate
based) of a novel, more distributed RM. The distributed RMs are
developed to cope with a larger number of processors as well
as concurrently executing applications. Experiments show that
our distributed resource managers are more scalable, deal better
with application and user dynamics, and require less buffering,
while effectively enforcing throughput constraints.

I. INTRODUCTION

Modern multimedia systems for the consumer market are
increasingly based on multi-processors due to stringent perfor-
mance, power and cost constraints. These MPSoCs typically
use (massive scale) instruction-, data- and task-level paral-
lelism to compensate for a lower clock frequency in order to
consume less energy while satisfying high compute require-
ments. Intel projects the availability of 100 billion transistors
on a 300mm2 die by 2015 [1] which allows to integrate
thousands of processors or equivalent gates on a single chip.
These MPSoCs will execute multiple applications concurrently
that exhibit dynamic behaviour. For example, applications can
be started or stopped by the user at run-time. The resource
manager will also make trade-offs between the quality levels
and compute requirements of the various applications, yielding
even more dynamic application behaviour.

Theoretically, compile-time analysis of all possible use-
cases (a use-case is a combination of applications active at
the same time) can provide performance guarantees, but the
potentially large number of use-cases in a real system makes
such a static analysis impractical [2], while not dealing with
other types of dynamic behavior, like data-dependent execution
times (e.g. object-based vision processing). We therefore need
to shift the burden from compile time analysis to run-time
monitoring and intervention when necessary. This makes run-
time resource management an essential part of MPSoCs.

A major requirement for run-time management approaches
for these MPSoCs is that they no longer can assume pre-
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Fig. 1. Management bottleneck for centralized RM

emption of the hardware platform; The (massively) parallel
processing of multimedia data yields such a large amount of
state in the processors, that it is no longer cost-effective to
implement a context-switch. Even if a context-switch would be
implemented, the time required to perform the context-switch
can not be ignored, which excludes commonly used real-time
scheduling approaches like Rate-Monotonic Scheduling, and
other fixed-priority schedulers. The latest high-performance
media MPSoCs for the consumer market, like the Cell Broad
Band Engine (BBE) [3] and graphics processors, do not
support preemption, thereby acknowledging the necessity of
our non-preemptive assumption.

A resource manager has been presented in literature [2]
that performs management in a central way. It monitors the
progress of applications, and enables and disables the applica-
tions at the smallest possible grain, that of an actor (explained
in more detail in Section III). In this way, the central resource
manager helps applications satisfy their throughput constraints.
However, the central RM is not scalable with the number of
applications and processors.

The centralized RM creates a hot spot in terms of man-
agement as shown in Figure 1. All the information regarding
application progress and QoS is fed to the centralized manager.
The centralized manager has to process the information in
short time and take corrective measures. The compute re-
quirement from the applications overwhelms the centralized
manager.

In this paper, we propose two versions of resource managers
which are scalable with number of applications and processors.
Our resource managers ensure admission control- an applica-
tion is only allowed to start if the platform can allocate the
resources demanded by the application. Our distributed RMs
are based on budget based schedulers and differ in their budget



enforcement protocols. The first type of RM- Credit Based
can be used for applications which have strict constraints on
their performance i.e. their performance can not be more than
a fixed level even if resources are available to have better
performance. Our second type of RM- Rate based is suitable
for applications which may have more performance than a
minimum level if the compute resources are available. For
example, streaming encoders are good target for these type of
RMs so that if there are resources available in the MPSoC
platform, they can encode at a higher rate and finish the job
quickly.

In this paper, the distributed resource managers have been
evaluated on the basis of their ability to satisfy the throughput
constraints of multiple applications. We have also performed
experiments by adding applications at run-time and studying
their behaviour. The evaluation metrics used in this paper
include deadline misses, buffer requirement, and maximum
jitter. A deadline miss occurs when an application fails to
meet its deadline. The difference in successive finish times of
an application iteration should be fixed. Due to interference
with other applications, the difference may not be constant.
This variation in successive finish times is defined as Jitter.
Other aspects like processor utilization, and run-time variation
in application throughput constraint have also been studied in
this paper.

Overview: The following section describes related work.
In section III, our application and architecture models are pre-
sented. Section IV presents an example showing the scalability
issues with centralized RM. In Section V, we present our credit
based RM and rate based RM. The evaluation and comparison
of these RMs is presented in Section VI and Section VII
concludes this paper.

II. RELATED WORK

Research on multi-processor real-time scheduling has
mainly focused on pre-emptive systems [4], [5]. Non-
preemptive scheduling has received considerably less atten-
tion. It was shown by Jeffay et al. [6] and further strengthened
by Cai and Kong that the problem of determining whether a
given periodic task system is non-preemptively feasible even
upon a single processor is already intractable [7]. Recently,
more work has been done on non-preemptive scheduling for
multiprocessors. S. Baruah [8] presented sufficient conditions
for a periodic task system to be feasible on multi-processor
platform. In short, non-preemptive scheduling of periodic and
non-periodic tasks on multiprocessor systems is NP-hard.
There are many heuristic based solutions to this problem.

There are a number of budget schedulers [9], [10], [11]
in the literature. These schedulers assign a fixed time for
each task in a replenishment interval. Steine [10] has added
priorities on top of the budgets (PBS). The priorities of all
tasks have to be defined at design time and one task can have
its priority defined during run-time. Their technique can be
used at design time whereas our technique is for run-time
resource management. The work by [11] is for single processor
scheduling.

TDMA is also considered as budget based scheduler. Com-
puting worst-case waiting time taking resource contention
into account for round-robin [12] and TDMA [13] (requires
preemption) scheduling has also been analyzed. However po-
tential disadvantage of these approaches is that the analysis can
be very pessimistic. In [14], internal and external contention in
communication streams is considered, but their region forming

approach is targeted at homogeneous meshed platforms, and
is not suitable for heterogeneous or irregular architectures.
In [9], an architecture driven approach is used to map tasks
first on virtual tiles, which are in turn clustered on elements
connected to the same router. They use TDMA schedulers
at the processors for budget enforcement. Task switching in
TDMA is preemptive while our RMs use non-preemptive
scheduling. The distributed approach of [15] uses a static
mapping algorithm inside its clusters. This approach requires
hardware support for cluster management, while it poses more
constraints on the size and structure of applications.

In [2], a resource manager has been proposed which shifts
the burden from compile time analysis to run-time monitoring
and intervention. They advocate the fact that compile-time
analysis of all possible use-cases can provide performance
guarantees, but the potentially large number of use-cases in a
real system makes such analysis infeasible [2]. However their
resource manager is centralized and not scalable. We have
shown this with the help of experiments in the next section. We
study the factors affecting the scalability of resource manager
and propose two distributed resource managers aimed to be
be more scalable with increasing number of applications and
processing elements.

StarSs [16] is a programming model and run-time manager
from Barcelona Super Computing Center. It is an extension
of OpenMP [17]. It consists of a “C-C” compiler which
converts a sequential C-code into a C-code that can execute
on PPE and SPEs of Cell processor. The run-time manager
executes on the PPE and distributes the jobs between the
SPEs whenever it finds a free SPE. The run-time manager is
centralized and communicates with the SPEs using the mail-
boxes. Nanos++ [18] is another centralized resource manager
that consists of a CPU manager and a scheduler. The CPU
manager acts as an admission controller and all applications
send requests to the CPU manager. The CPU manager selects
a scheduling policy and computes the required number of
processors for each application and assigns them. The CPU
manager monitors the performance of applications through file
systems of the processors. Both StarSs and Nanos++ monitor
the performance of applications centrally, in contrast to the
resource managers presented in this paper; they monitor the
performance of the tasks of applications locally to increase the
scalability of distributed RMs.

III. APPLICATION AND ARCHITECTURE MODELING

In this paper, we assume applications to be specified as
Synchronous Data Flow SDFGs [19], where vertices indicate
separate tasks (also called actors) of an application, and edges
denote dependencies between them. SDF is widely used; it is
very suitable to express concurrency in applications, and is
therefore useful to analyze multi-processor systems.

The architecture model consists of processors connected
with each other through point-to-point/NoC interconnects. Our
resource managers consist of an admission controller. The role
of the admission controller is to evaluate the timing constraints
of the new applications against available resources. If the
available resources of the platform are less than the timing
requirement of the new application, the admission controller
rejects the request and the application can request service at
a lower quality level. A similar admission controller has been
presented in [2]. To find the budgets, following information is
required by the admission controller.
• SDF model of each application.



• Worst-case execution time estimates for each task (in
clock cycles).

• Desired performance of each application e.g. frames/sec
etc.

• Mapping of tasks onto the platform is provided. Task
migration is not supported.

• Buffer sizes needed for edges in the graphs.
• Performance prediction of each application in isolation

with the given mapping. This can be achieved using
SDF 3 [20].

proc. 1 proc. 2

proc. 3 proc. 4

Monitoring and control Traffic

RM

(a) Centralized RM [2]

proc. 1 proc. 2

proc. 3 proc. 4

Budget Enforcement

Budget distribution

RM

(b) Distributed RM

Fig. 2. Resource Management on MPSoC: Centralized vs Distributed

Figure 2 shows the functional diagram of the resource man-
ager presented by [2] and our distributed RM. The RM
presented by [2] monitors the throughput of each application
and compares it with its desired throughput. The centralized
RM enables an application performing less than its desired
throughput. Similarly the application having more than its
desired throughput is suspended. The monitoring and control
overhead limits the scalability of the centralized RM as it
has to monitor and control all applications and perform QoS
negotiations as well. To solve this problem, we present two
versions of distributed RMs. These RMs seek to minimize the
involvement of the central manager in the process and invest
more intelligence in the local processor arbiters as shown in
Figure 2(b). The budgets for each application are calculated
centrally but they are enforced on all the processors locally.
The RM does not monitor each application so the scalability
problem of [2] due to monitoring period is eliminated. In the
next section, we present an example to further elaborate this
problem.

IV. MOTIVATING EXAMPLE

The central resource manager monitors the performance of
each application. The monitoring period of central RM should
be less than or equal to smallest period amongst all applica-
tions being monitored otherwise it will not be able to monitor
the variations in that application. To study the scalability of
central RM with increase in number of applications we use
the model of central resource manager as described in [2]. The
computation platform has 10 processors. The central resource
manager performs the following operations for monitoring the
performance of the applications:
• Receive the iteration completion message from each

application.
• Increment the total execution count of the application.
• Find the current period of the application.
• Compare the current period with the desired period.
• Send enable/suspend signal to the application according

to the result of the comparison.
We implemented the above functionality on a Microblaze
processor [21] and measured the clock cycles required for one
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Fig. 3. Increase in deadline misses with increase in number of applications

application. It took 240 clock cycles per application to perform
above mentioned functions. We modeled our RMs with timing
information. The length of a monitoring period determines
the number of applications which can be controlled by the
resource manager as the central processor must complete the
above mentioned functionality within the monitoring period.
Assume we have a monitoring period of 7,000 clock cycles
then we can monitor 7000/240 = 29 applications only. If we
increase the number of applications to 30, the applications
cannot meet their constraints as shown in Figure 3. In this
experiment, we increased the number of applications and
kept the monitoring period fixed at 7,000 clock cycles. The
total number of deadline misses of these applications remain
relatively low until 25 applications. For 30 applications, the
total number of deadline misses increase tremendously as
shown in Figure 3. The reason for this increase is the fact that
we cannot monitor all 30 applications in the period of 7,000
cycles so every cycle some applications are not monitored,
resulting in deadline misses.

The other problem with centralized RM is jitter in ap-
plication execution. If the monitoring period is large then
an application will remain enable/disable during the whole
monitoring period resulting in periods where the performance
of application is more than desired performance and periods
where it is less than the desired performace. To handle this
jittery behaviour, large buffers are required to store the outputs
of the applications so that the average behaviour is acceptable.
These large buffers increase the cost of the system and are
highly undesirable. We illustrate this effect in section VI-E.

Note that the scalability problem is made even worse
when Quality-of-Service (QoS) negotiations are performed
in order to deal with scarcity of computational resources.
These negotiations burden the resource manager for each
application (to set the quality level) as well each processor
(monitoring and quality settings). We therefore expect that
future MPSoC systems that enable QoS will profit even more
from our distributed resource manager, which are optimized
for scalability.

We propose two versions of the distributed resource man-
agers that are motivated to address the scalability issues. The
first type of resource manager is called Credit based resource
manager. Here the central admission controller distributes
credits among the processors and they enforce these credits.
This type of manager is useful where the throughput of appli-
cations has to be kept at a certain level. The second distributed
RM is called Rate based resource manager. This RM uses the



same admission controller as used by the credit based manager
and differs in the budget enforcement mechanism. This type
of manager is useful for those applications which can have
more than a certain level of performance.

V. PROPOSED RESOURCE MANAGERS

In this section, we first describe the admission control
and credit calculation mechanism. The same mechanism is
used in both type of RMs. In both versions of distributed
resource managers, there is a central admission controller
connected with the processing cores through a NoC. The
central admission controller is an interface to the user and
calculates the credits and these credits are distributed to the
processors. The arbiters at the processors locally enforce these
credits such that the throughput constraints of the applications
are satisfied.

Algorithm 1 shows the method of calculating the credits.
Each processor has a large replenishment interval of time with
in which all tasks have to execute. The central controller finds
the processing load imposed by each task on each processor.
This load is calculated by multiplying the repetition vector of
each actor with its execution time and the ratio of desired to
predicted throughput. The size of the replenishment interval
should be greater than the total processing load. This process
is repeated for all the processors and an application is only
admitted if all processors satisfy this condition. The credits

Algorithm 1 Admission Control and Credit calculation
1: for all processors do
2: load(processor)=0;
3: for all applications do
4: processing load=0;
5: for all actors ∈ application do
6: if (mapping(application,actor) == processor) then
7: processing load(actor) = γ(actor) × α(actor) × desired thr.
8: load(processor)+=processing load(actor)
9: if (load(processor)/size of replenishment interval(processor)>1) then

10: remove load(application,processor){admission not possible, remove all
actors of the application from all processors}

11: end if
12: end if
13: end for
14: end for
15: end for
16: for all applications do
17: for all actors(application) do
18: credits(actor)=γ(actor) × desired thr.
19: send(credits,actor,processor)
20: end for
21: end for

are calculated as shown in line number 18 in Algorithm 1.
Here γ(actor) is the repetition vector entry of the actor
and desired thr is the desired throughput constraint of the
application. We explain the credit calculation mechanism with
the help of an example. Assume that we want to find the credits
for the inverse quantization actor (IQ) from JPEG decoder. The
JPEG decoder graph used for this example decodes one macro-
block in one iteration. The IQ actor has to be called 6 times
(4 times for luminance data and 2 times for chrominance).
If the desired throughput constraint for JPEG decoder is set
at 1 QCIF picture/sec then it is equivalent to 99 macro-
blocks of JPEG encoded data and the number of credits for
IQ are 6×99 = 594. Assuming a replenishment interval of
one second, the processing load imposed by IQ is 6×2400×
99 = 1,425,600 clock cycles. Here, we assume that 2400
clock cycles are required by the IQ actor to perform inverse
quantization function on one macro-block.

A. Credit Based Resource Manager
The central admission controller sends the credits to the pro-

cessors according to the mappings of actors onto processors.
To enforce these credits, each processor has a kernel which
loads these credits into counters. Each actor is repeated the
number of times as specified in its counter in one replenish-
ment interval. After completion of the interval, the counters are
reloaded with their values as received by the central controller
and this process continues. During the execution, if an actor
is not ready then it is skipped and the processor is assigned
to other actor so that the processor time can be used more
efficiently.

Note that in contrast to Time Division Multiple Access
(TDMA), the replenishment interval of credit based RM is not
necessarily always equal to maximum replenishment interval.
It might be possible that some applications are stopped by
the user so the length of that replenishment interval will be
smaller than the maximum replenishment interval.

Algorithm 2 Credit based RM
1: Relod Credits()
2: while (size of replenishment interval(processor)>0) do
3: if (actor == ready ∧ (credits(actor) > 0)) then
4: execute(actor)
5: credits(actor)=credits(actor)-1
6: end if
7: actor=next actor in list
8: end while

B. Rate Based Resource Manager
The dependence of the credit based RM on the size of

replenishment interval can be removed by the Rate based
RM. In the rate based RM each processor has a local arbiter.
The admission controller of the rate based RM calculates
the credits in the same way as the credit based RM. The
admission controller sends these credits to each distributed
arbiter located at each processor. This arbiter receives these
credits and executes these actors in such a way that the actor
having the least achieved-to-desired execution ratio, is given
the highest priority. Note that the rate based RM allows the
applications to execute continuously so long as the ratio is
maintained. This means that the applications can have more
throughput than the desired throughput. To implement such an
arbiter, a data structure for each actor is defined which contains
the information required during the operation of the arbiter.
This data structure contains registers to store the desired rates
Rdai (credits), achieved rates Raai and ratio of achieved-to-
desired rates Rrai for each actor ai. The ratios of the achieved-
to-desired rates are stored in non-decreasing order. Each time
an actor executes, its achieved execution rate is incremented
by one. Each time a processor needs to execute an actor it

Algorithm 3 Rate based distributed Manager
1: for all actors ai do
2: Receive rates(){Receive rates from admission controller}
3: init(Rdai

, Raai
, Rrai

)
4: end for
5: loop
6: for all actors ai do
7: if (ai == ready && Rrai

== min rate) then
8: Execute the actor
9: Raai

++
10: Rrai

= Raai
/ Rdai

11: min rate = find min rate()
12: end if
13: end for
14: end loop



finds the actor having least ratio and executes that actor if it
is ready as shown in line 11 of Algorithm 3. In SDF semantics,
an actor is ready when its input data is available and there is
space in its output buffer.

We explain the mechanism of rate based RM by an example.
Assume two applications a JPEG decoder and an H.263
decoder are to be executed on the platform. We assume
that two actors, inverse quantization actor (IQ) from JPEG,
and IDCT actor from H.263 decoder, are mapped onto a
single processor. The constraint for JPEG decoder is 1 QCIF
frame/sec as described in the previous example. The H.263
decoder has a performance constraint of 20 frames/sec then
the credit for IDCT actor is 40. Assume that both actors have
been executed twice then the achieved-to-desired ratios of IQ
and IDCT are 2/594=0.003 and 2/40=0.05 respectively. The
achieved-to-desired ratio of IQ is lower than that of IDCT so
the IQ actor has the higher priority to use the processor as
compared to IDCT. The platform will execute IQ actor and
will update the achieved execution count of IQ (line 9-10 of
Algorithm 3) and will calculate the priorities again.

Note that both RMs are very simple so hw/sw implemen-
tation is not expensive in terms of area/run-time overhead.
This makes them suitable for run-time resource management
of embedded systems.

VI. COMPARISON BETWEEN THE RESOURCE MANAGERS

In this section, we compare the centralized and distributed
resource managers. The basis of comparison are different
kinds of scenarios which are possible during run-time. These
scenarios include:
• run-time admission of a new application
• run-time stoppage of an application
• variation in execution time of the actors
• run-time variation in application throughput constraint

Application
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Application
Manager 1

Application
Manager 3

User Interface

Computation Platform Resource
Manager

Fig. 4. Overview of the system setup
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Figure 4 shows the overview of the experimental setup. It
consists of a user interface, local application managers (one
for each application), a resource manager, and the computation
platform. The user-interface simulates input from and output to

the user; for example, in case of mobile phone, input can come
from a keypad, while the output can be in the form of screen
display or sound. The simulation models of our distributed
resource managers have been developed using the modeling
language POOSL [22]. POOSL is a very expressive modeling
language with a set of powerful primitives and completely
formally defined semantics.

We have used two application models: JPEG decoder and
H.263 decoder, as shown in Figure 5. The JPEG decoder
consists of 6 actors namely, Variable Length Decoding (VLD),
Inverse Quantization (IQ), Inverse Zigzag (IZZ), Inverse Dis-
crete Cosine Transform (IDCT), Reorder (Re-order) and Color
Conversion (CC). The H.263 decoder has four actors namely
Motion Compensation (MC), IDCT, IQ and VLD. The com-
putation platform consists of 6 processors and the figure
also shows the mapping of actors onto processors. In the
experiments, the monitoring period for centralized RM is 40
million clock cycles. The processors in credit based RM and
rate based RM are executing at 40 MHZ. The replenishment
interval for credit based RM is 1 second so that the RMs
are matched. We also compare the buffer requirement and
processor utilization of these RMs.

A. Admission of New Application

In this experiment, a new application enters the MPSoC
platform and requests for resources at (simulation) time 700
million clock cycles. The applications already executing on
the platform are a JPEG decoder at 1 QCIF/sec and a H.263
decoder at 40 frames/sec. Another instance of H.263 decoder
enters the platform and requires to run at a throughput
constraint of 20 frames/sec. Figure 6(a) shows the behaviour
of centralized RM against this dynamic situation. The appli-
cations already executing do not show any impact on their
performance. The high jitter in the application execution is due
to the fact that the applications remain enable/disable across
the monitoring period. The throughput of applications gets
more than the desired throughput in monitoring period where
they remain enabled. Similarly the application throughput
decreases in the monitoring period where they remain disabled.

Our admission controller evaluates the resources needed for
the application according to Algorithm 1 and allows it to
execute. Figure 6(b) shows robustness of our credit based RM.
The applications already executing on the platform do not have
any adverse effect on their performance due to virtualization
of the resources. Moreover, the jitter in application execution
is very small as compared to the centralized RM. Figure 6(c)
shows the response of the rate based RM. The performance of
JPEG and H.263 decoders decrease immediately as soon as the
second instance of H.263 decoder is accepted by the RM. This
is because of the fact that when the second instance of H.263
decoder enters, it has the lowest achieved to desired ratio so it
gets preference and quickly gains the required performance
level. As the time goes by other applications also get the
compute resources and the system very quickly converges
towards the new steady state.

B. Application stopped by the user

This experiment starts with three applications executing on
the platform. The JPEG decoder is executing at 1 QCIF/sec
and two H.263 decoders are executing at 40 and 20 frames/sec
respectively. The JPEG decoder is stopped by the user at
simulation time of 700 million clock cycles.
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Fig. 6. Example of run-time application admission at simulation time of 700 million clock cycles
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Fig. 7. JPEG application stopped by the user at 700 million clock cycles

The behaviour of centralized RM under this dynamic con-
dition is shown in Figure 7(a). The centralized RM can handle
this situation and there is no effect on other applications
because of virtualization of resources. Figure 7(b) shows the
behaviour of our credit based RM. There is no effect on
other applications as our credit based distributed resource
manager provides virtualized platform for each application.
The applications execute concurrently but do not interfere with
others for the resources.

Figure 7(c) depicts the response of our rate based RM in
the event of application stoppage. After the JPEG decoder has
stopped, the second instance of H.263 gets the processor more
often as its ratio is the lowest. The system goes into steady
state and both H.263 decoders share the resources freed by
the JPEG decoder. The performance of one of H.263 decoder
is twice of the second instance of H.263 decoder and both are
above their specified throughput constraints.

C. Variation in Actor Execution Times
In this experiment, the execution time of the actors is varied

randomly between 1 clock cycle to the actual execution time
of the actor. We use uniform random number generation for
this experiment. Figure 8(a) shows that the variation in the
execution time has no effect on the throughput for centralized
RM. Similarly our credit based RM has no effect on the
throughput of the applications as shown in Figure 8(b). The
reason for this result is the fact that the credits in our
distributed resource managers are calculated as the number
of iterations each actor has to execute for satisfying the
application throughput constraints. This property makes it
independent of the variations in the actor execution times.

However, the rate based distributed RM is slightly effected
by the variation in actor execution times. The variation in

execution time affects the achieved to expected ratios and
consequently the throughput of applications observe some
variation but the magnitude of this variation is pretty small
as shown in Figure 8(c).
D. Variation in Application Throughput Constraint

In this experiment, the H.263 decoder is required to decode
40 frames/sec and the constraint for the JPEG encoder is
2 QCIF frames/sec. The distributed credit based resource
manager finds the credits based on this information. The
arbiters in the processors enforce these credits as shown in
Figure 9(b). Now at 700 million clock cycles, the distributed
resource manager receives a request from the user to decrease
the frame rate of H.263 decoder from 40 frames/second to
20 frames/second. This implies that the distributed resource
manager has to re-calculate the credits based on the new
application constraints and it re-sends them to the processors.
Figure 9(b) shows that the new credits are enforced by the
processors and the new throughput constraint is met success-
fully. Further, there is no effect on the throughput of the other
application.

For the same experiment with the centralized RM, there is
performance degradation for the JPEG decoder. The reason
for this degradation is the monitoring period of centralized
decoder as shown in Figure 9(a). It is clear that the response
of centralized RM is slow as compared to that of credit based
RM. Figure 9(c) shows the same experiment with rate based
RM. The resources freed by the second instance of H.263 are
consumed by the H.263 decoder executing at higher rate and
the system achieves steady state quite quickly.
E. Buffer Requirement

The throughput constraints for this experiment have been
assumed to be 2 QCIF frames/sec for JPEG decoder and
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Fig. 8. Variation in actor execution times
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Fig. 9. Run-time change in application constraints of H.263 decoder
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Fig. 10. Comparison of buffer requirement

40 frames/sec for H.263 decoder. This translates to 4.95
×10−06 iterations/clock cycle for JPEG and 1.0 ×10−06

iterations/clock cycle for H.263 decoder. In this experiment,
we study the jitter in application execution introduced by the
RMs. The jitter results in large buffers at the output of the
applications to store the frames/macro-blocks decoded by the
applications. The desired buffer space shown in the Figure 10
is ideal buffer space required assuming no jitter in application
execution.

Figure 10(a) shows that the control is not as smooth and the
platform needs higher buffer space because when an applica-
tion achieves more throughput than the desired throughput then
the frames decoded are to be stored in a buffer memory. The
jitter in the application execution is introduced due to monitor-
ing period. Figure 10(a) shows the buffer requirement of both
applications. The JPEG decoder has to decode 198 macro-
blocks in one second e.g. 2 QCIF frames/sec. H.263 decoder
has to decode 99×40 macro-blocks/sec e.g. 40 frames/second.

This is equal to almost 3 Mbytes of buffer space. The extra
buffer space needed for centralized RM is quite large as
compared to ideal buffer space requirement.

Figure 10(b) shows the buffer requirement for credit based
RM. The actors from the applications are executed according
to their credits and this process repeats each second. It is
evident that our credit based RM requires very small amount
of extra buffer space as compared to the ideal buffer space. The

TABLE I
COMPARISON OF JITTER (IN CLOCK CYCLES) BETWEEN THREE RMS

App. Centralized based Credit based Rate based
Avg. max. Avg. max. Avg. max.
jitter jitter jitter jitter jitter jitter

JPEG 256,528 1.59e8 43,200 123,600 355 93,600
H.263 281,766 2.79e8 172,800 1,983,003 730 172,800

buffer requirement for rate based RM is more than credit based
RM and centralized RM as shown in Figure 10(c). The high
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Fig. 11. Scalability of RMs with number of applications and processors

buffer requirement is due to the fact that in the rate based RM,
there is no replenishment interval so the applications execute
continuously. This leads to the case where they can have more
than a minimum desired throughput. In the credit based RM,
when credits are exhausted, the applications are stopped and
re-enabled during the next replenishment interval. The rate
based RM tries to execute the applications according to their
achieved-to-desired ratios. The rate based RM can be suitable
for applications which can tolerate more than specified levels
of throughput. For example, encoders can benefit from such
RMs so that they can encode at a faster rate whenever there
is enough resource in the platform.

Table I compares the jitter (clock cycles) in application
execution for three type of RMs. The maximum jitter for
centralized RM is the highest. This is due to the fact that the
applications in centralized RM can be executing or disabled
for longer periods of time. Hence the time difference between
two successive executions of applications can be very large.
In Credit based RM, the maximum jitter is smaller than the
centralized RM. This results in low buffer requirement. The
maximum jitter for Rate based is the lowest. The average jitter
of distributed RMs is also lower than the centralized RM. Low
jitter is also an evidence of low buffer requirement.

F. Processor Utilization of RMs
The processor utilization of three RMs is shown in Table II.

The applications and their constraints are the same as used in
the experiment of subsection VI-E. The processor utilization is
the ratio of time spent on the applications to the total processor
time. Table II shows that the average processor utilization of
the Rate based RM is highest of all RMs. This is due to the
fact that the applications execute continuously and try to use
the compute resources to the maximum.

TABLE II
PROCESSOR UTILIZATION OF RMS.

Centralized Credit-Based Rate based
0.1672 0.1625 0.8074

G. Scalability of RMs
In this experiment, the scalability of our RMs is evaluated

with increasing number of processors and applications. Two
platforms models consisting of 10 and 20 processors are built.
The platform with 10 processors is used to simulate up to 30
applications and from 40-70 applications, the platform with 20
processors is used. Figure 11 shows that both RMs are scalable

with number of applications and processors. The figure also
shows that the deadline miss rate of Rate based RM is lower
than Credit based RM.

VII. CONCLUSIONS
We have presented two versions of a distributed resource

manager (RM) for multi-processor Systems-on-Chip, and com-
pared them to a centralized resource manager. Experiments
show that the credit based RM is very effective for enforcing
throughput constraints, and the rate based RM is effective for
obtaining a high resource utilization in the context of appli-
cations that can profit from the availability of more resources.
Both distributed RMs can cope with a larger number of
processors as well as large number of concurrently executing
applications compared to a centralized RM. Furthermore, our
experiments demonstrate that they deal better with application
and user dynamics, and require less buffering. We conclude
that our approach is effective for controlling the computational
resources in a multi-processor platform, can deal with data
dependencies and dynamically varying execution times that
characterize modern media applications, without requiring
support for preemption. We can therefore fill the gap left by
existing techniques like rate-monotonic scheduling that cannot
satisfy the abovementioned requirements.
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