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ABSTRACT
Approximate computing, the technique that sacrifices cer-
tain amount of accuracy in exchange for substantial perfor-
mance boost or power reduction, is one of the most promis-
ing solutions to enable power control and performance scal-
ing towards exascale. Although most existing approxima-
tion designs target the emerging data-intensive applications
that are comparatively more error-tolerable, there is still
high demand for the acceleration of traditional scientific ap-
plications (e.g., weather and nuclear simulation), which of-
ten comprise intensive transcendental function calls and are
very sensitive to accuracy loss. To address this challenge,
we focus on a very important but long ignored approxi-
mation unit on today’s commercial GPUs — the special-
function unit (SFU), and clarify its unique role in perfor-
mance acceleration of accuracy-sensitive applications in the
context of approximate computing. To better understand
its features, we conduct a thorough empirical analysis on
three generations of NVIDIA GPU architectures to evaluate
all the single-precision and double-precision numeric tran-
scendental functions that can be accelerated by SFUs, in
terms of their performance, accuracy and power consump-
tion. Based on the insights from the evaluation, we propose
a transparent, tractable and portable design framework for
SFU-driven approximate acceleration on GPUs. Our de-
sign is software-based and requires no hardware or applica-
tion modifications. Experimental results on three NVIDIA
GPU platforms demonstrate that our proposed framework
can provide fine-grained tuning for performance and accu-
racy trade-offs, thus facilitating applications to achieve the
maximum performance under certain accuracy constraints.
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1. INTRODUCTION
Despite the conventional belief that being exact remains

the default attribute for computing, for many promising ap-
plications, such as big data, machine learning and multime-
dia processing, extremely accurate compliance of the pro-
duced results is often not an essential requisite. This un-
doubtedly offers new opportunities for application speedup
or the associated power reduction at the expense of modest
precision loss [1]. Such precision loss is only acceptable when
it is within the tolerance range of the user-defined quality-
of-service (QoS) [2], which heavily depends on the specific
application domain. Besides, many of these applications are
data-parallelism intensive, making them well-suited candi-
dates for the emerging general-purpose GPU computation
(GPGPU) [3]. Concerning the above reasons, approximate
computing has become an attractive research topic for GPUs
[4, 5, 6, 7, 8, 9].

However, most existing GPU approximation designs are
targeted for data-intensive applications [4, 5, 7, 9], which
are comparatively more error-tolerable. Furthermore, they
primarily rely on the spatial or temporal locality among the
nearby-data or the consecutive functions so as to approxi-
mate the requested data/computation based on their neigh-
boring [4, 5, 8, 9] or locally stored historical values [5, 6, 7,
9]. Such approaches, although quite efficient, may commit
uneven errors across data elements or even catastrophic fail-
ures since the locality is not always held and the distortion
to the final results could be considerable. Moreover, for the
numerical-intensive scientific applications (e.g., various sim-
ulation and molecular dynamics) that are usually sensitive
to accuracy loss, the current techniques are often not suit-
able. This is because even a relatively smaller error intro-
duced in an intermediate result may potentially propagate
and be significantly amplified when such applications are
deployed in a supercomputer environment with thousands
of working GPUs [10, 11]. Therefore, gaining performance
while offering lower but still tractable assurance on accuracy
loss becomes the major obstacle for applying approximation
techniques to accuracy-sensitive applications on GPUs.

To address this challenge, we explore a very important but
often ignored approximation unit on GPUs — the special-
functional unit (SFU), and unveil its crucial role in perfor-
mance acceleration for accuracy-sensitive scientific applica-
tions in the context of approximate computing. To better
understand its approximation potentials, we first evaluate all
the nine single-precision and four double-precision numeric
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transcendental functions that could be accelerated by SFUs,
in terms of performance, accuracy and power. Using the in-
sights, we then leverage the GPU SIMT execution model to
dynamically partition warps into executing two versions of
the numerical computation: an accurate but slower version
and a faster but approximate version (i.e., using SFUs), and
then tune this partition ratio to control the trade-offs be-
tween the performance and accuracy, or power and accuracy.
This software approach successfully introduces a relatively
large, uniform and fine-grained tuning space. To accompany
this design, we also propose an efficient heuristic searching
method to quickly locate the optimal partition ratio that
delivers the best performance under user-defined QoS. Fi-
nally, we compact the approach and its searching method
into a transparent, tractable and portable SFU-centric ap-
proximate acceleration framework, which is then validated
on multiple GPU architectures for its effectiveness. This
paper thus makes the following contributions:

• This is the first work that specifically focuses on un-
leashing the approximation potentials of SFU on GPU.
We explore its design, implementation, and fine-grained
invocation methods. Also, we exhaustively evaluate
the transcendental functions that can be accelerated
by SFUs in terms of their latency, throughput, accu-
racy, resource cost, power, energy and the number of
different operations contained.

• By leveraging the GPU SIMT execution model, we
propose a runtime warp-partition method to introduce
a fine-grained and nearly-linear tuning space for the
performance-accuracy trade-offs on GPUs. This ap-
proach is well-suited for the scientific applications that
enforce high accuracy constraints.

• Based on this approach, we propose a transparent,
tractable and portable design framework to automati-
cally tune the performance and accuracy of a GPU ap-
plication and returns the best attainable performance
subjecting to user-defined QoS. This framework can
be integrated into the GPU compiler toolchain, hence
bringing cheap, instant and significant performance
gain with tractable assurance on accuracy loss.

• This is the first work to exploit hardware warp-slot id
for fine-grained performance tuning and is the first to
accelerate double-precision computation on GPUs via
SFU-driven approximations.

2. BACKGROUND
SM Architecture: A GPU processor is composed of sev-
eral streaming-multiprocessors1 (SMs), sharing a L2 cache
and DRAM controllers via a crossbar interconnection net-
work. Shown in Figure 1, an SM features a number of scalar
processor cores (SPUs2), each of which contains a single-
precision floating-point unit and an integer arithmetic/logic
unit — both units are fully pipelined. Additionally, SM

1In this paper, we adopt NVIDIA terminology for conve-
nience. However, similar ideas and approaches can be ap-
plied to other GPUs as well.
2To distinguish scalar-processors from single-precision, we
use SPU to denote scalar-processor-unit while SP to denote
single-precision.
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Figure 1: GPU Architecture

consists of two other function units, including the Double-
Precision Units (DPUs) for double-precision (DP) floating-
point calculation, and the Special-Function Units (SFUs) for
processing transcendental functions and texture-fetching in-
terpolations. Other components, such as the register files,
load-store units (LSUs), scratchpad memory (i.e., shared
memory), and various caches for on-chip data buffering also
reside on the SM.

Execution Model: The execution model of GPU is evolved
from the SIMD model, known as single-instruction-multiple-
threads (SIMT) [12]. The function being executed on GPU
is called a kernel, which initiates thousands of simultaneous
lightweight GPU threads. These threads group into a num-
ber of blocks, called Thread Blocks or Cooperative-Thread-
Arrays (CTAs). Threads within a CTA further form a batch
of execution groups, called warps. A warp is the basic unit
for instruction dispatching and issuing on an SM. Threads
in a warp execute identical instruction stream upon differ-
ent data in lockstep. Significant overhead may occur when
warps are forced to diverge due to branching [13].

GPU supports multi-issuing and multi-dispatching. Dur-
ing execution, the dual- or quad-warp schedulers select two
or four ready warps (with two independent instructions per
warp [14]) to dispatch onto the different function units (e.g.,
SPUs and SFUs). Most instructions are accomplished by
SPUs only. However, DPUs and SFUs can offer extra pro-
cessing bandwidth, the ability to process special functions
(e.g., transcendental functions), or additional precision (e.g.,
double precision) when instructions for different function
units are independent. Although these features are useful,
it is still challenging for users to utilize all three types of
function units in a balanced way. This is the reason why
multi-issuing/dispatching mixed instructions to these func-
tion units remains critical for GPU performance [15, 16].

3. SFU DESIGN AND IMPLEMENTATION
In this section, we zoom in on SFU and explore its design

and operation. Based on the experiments on real hardware,
we have observed interesting features of SFU implementa-
tion for approximating both SP and DP floating-point com-
putation, which has not been covered by previous work.

Design: To accelerate the commonly-used transcendental
functions in numeric routines as well as the texture-fetching
interpolation operations from graphic applications, NVIDIA
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Table 1: Invoking SP Transcendental Functions via CUDA and PTX APIs

Func.
CUDA API Intrinsics PTX API Instructions

SP-Accurate Version SFU-Approximate Version SP-Accurate Version SFU-Approximate Version
x/y x/y fdividef(x,y) & –ftz=true div.rn.f32 %f3,%f1,%f2; div.approx.ftz.f32 %f3,%f1,%f2;
1/x 1/x Non-Provided rcp.rn.f32 %f2,%f1; rcp.approx.ftz.f32 %f2,%f1;√

x sqrtf(x) Non-Provided sqrt.rn.f32 %f2,%f1; sqrt.approx.ftz.f32 %f2,%f1;

1/
√

x rsqrtf(x) & –ftz=true
sqrt.rn.f32 %f2,%f1;

1/sqrtf(x)
rcp.rn.f32 %f3,%f2;

rsqrt.approx.ftz.f32 %f2,%f1;

xy
lg2.approx.ftz.f32 %f3,%f1;
mul.ftz.f32 %f4,%f3,%f2;powf(x) powf(x) & –ftz=true Very Complex
ex2.approx.ftz.f32 %f5,%f4;

ex mul.ftz.f32 %f2,%f1, 0f3FB8AA3B;
expf(x) expf(x) & –ftz=true Very Complex

ex2.approx.ftz.f32 %f3,%f2;

log (x)
lg2.approx.ftz.f32 %f2,%f1;

logf(x) logf(x) & –ftz=true Very Complex
mul.ftz.f32 %f3,%f2, 0f3F317218;

sin (x) sinf(x) sinf(x) & –ftz=true Very Complex sin.approx.ftz.f32 %f2,%f1;
cos (x) cosf(x) cosf(x) & –ftz=true Very Complex cos.approx.ftz.f32 %f2,%f1;

Table 2: Invoking DP Transcendental Functions via CUDA and PTX APIs

Func.
CUDA API Intrinsics PTX API Instructions

DPU-Accurate Version SFU-Approximate Version DPU-Accurate Version SFU-Approximate Version

x/y
rcp.approx.ftz.f64 %fd3,%fd2;

x/y Non-Provided div.rn.f64 %fd3,%fd1,%fd2;
mul.f64 %fd5,%fd3,%fd1;

1/x 1/x Non-Provided rcp.rn.f64 %fd2,%fd1; rcp.approx.ftz.f64 %fd2,%fd1;
√

x
rsqrt.approx.ftz.f64 %fd2,%fd1;

x/y Non-Provided sqrt.rn.f64 %fd2,%fd1;
rcp.approx.ftz.f64 %fd3,%fd2;

1/
√

x Non-Provided
sqrt.rn.f64 %fd2,%fd1;

1/sqrt(x)
rcp.rn.f64 %fd3,%fd2;

rsqrt.approx.ftz.f64 %fd2,%fd1;

Table 3: Experiment Platforms. “Plat.” stands for platform. “Dri./Rtm.” stands for CUDA Driver/Runtime
Version.

Plat. GPU Architecture Code CC. Frequency SMs SPs SFUs Warp Slots Memory Bandwidth Dri./Rtm.
1 GTX-570 Fermi GF-110 2.0 1464 MHz 15 32 4 48 152 GB/s 6.5/6.5
2 GTX-TitanZ Kepler GK-110 3.5 824 MHz 13 192 32 64 288 GB/s 7.5/6.5
3 GTX-750Ti Maxwell GM-107 5.0 1137 MHz 5 128 32 64 86.4 GB/s 7.5/6.5
4 Jetson TK1 Kepler GK-20A 3.2 852 MHz 1 192 32 64 17 GB/s 7.0/7.0
5 Jetson TX1 Maxwell GM-20B 5.3 998 MHz 2 128 32 64 25.6 GB/s 7.0/7.0

GPUs since Fermi begin to integrate an array of special
hardware accelerators in the SMs, called Special-Functional
Units (SFUs). The numeric transcendental functions in-
clude sine, cosine, division, exponential, power, logarithm,
reciprocal, square-root and reciprocal square-root [16, 17].
Their implementations are based on the quadratic inter-
polation method through enhanced-minmax-approximations
in the hardware design [18]. Such an approximation pro-
cess is accomplished in three steps: (1) a preprocessing
step to reduce the input argument into a dedicated range,
(2) a processing step to perform quadratic polynomial ap-
proximation on the reduced argument via table look-up for
the required coefficients, and (3) a postprocessing step to
reconstruct, normalize and round the result to its original
argument domain. Please refer to [18, 19] for more details.

Implementation: For single-precision (SP) floating-point
computation, CUDA provides both an accurate implementa-
tion following IEEE-754 standard (labeled as SPU version)
and an approximate implementation (labeled as SFU ver-
sion) for the 9 transcendental functions, shown in Table.1.
As can be seen, only 7 of the 9 transcendental functions
have CUDA intrinsics. For the lower-level Parallel-Thread-
Execution (PTX) assembly representation, we find that the
SFU version for each transcendental function is comprised
of a single or several SFU instructions, while the SP version
is often a complex software-simulated procedure running on
SPUs (or a procedure making modifications to the gross re-
sults obtained from the SFUs).

To initiate the SFU version, two most naive approaches
are (1) invoking the corresponding CUDA intrinsics (e.g.,

sinf [20] in Table 1) within the program, or (2) specifying
the compiler option “-use fast math” to force the utilization
of the SFU version in the generated cubin binary. How-
ever, using “-use fast math” applies to the entire program,
which prevents the transcendental functions to benefit from
fine-grained tuning. For instance, “-use fast math” option
implies “-ftz=true”, which will flash all the denormal values
(i.e., floating-point numbers that are too small to be repre-
sentable in the current precision3) in the program to zero.
Although this will speedup the processing for transcenden-
tal functions on SFUs, it also increases the inaccuracy of
the normal SP computation. If we make “-ftz=false”, it will
however, decrease the maximum speedup for SFUs. Thus,
“-use fast math” is not suitable for fine-grained performance
tuning. On the other hand, using CUDA API intrinsics to
exploit SFU also has two problems: (1) Not all of them
are supported, e.g., 1/x and

√
x; and (2) the flash-to-zero

(-ftz ) configuration cannot be set/unset by the CUDA in-
trinsics. Table.1 shows that only the PTX instructions can
provide the full coverage for all the 9 transcendental func-
tions, and the flexibility to enable/disable the -ftz without
affecting other transcendental functions and regular compu-
tation. We will further discuss this matter in Section 5.1.

Regarding double-precision (DP) floating-point com-
putation shown in Table.2, no CUDA intrinsics are offered
for approximating the nine functions. However, at the PTX
assembly level, we discover that reciprocal (1/x) and reciprocal-
square-root (1/

√
x) can be approximated for acceleration via

3Also known as underflow, it is ±2−126 for SP and ±2−1022

for DP.
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Figure 2: Power Consumption Measured on Jetson
TX-1.

SFUs. This is confirmed by checking the usage of “MUFU”
instructions in the generated cubin binary, which are the
instructions specifically targeted for SFU usage. With 1/x
and 1/

√
x, two other functions div and square-root can also

be implemented indirectly. Therefore, there are totally four
transcendental functions that can be approximated by SFUs
for DP computation. To the best of our knowledge, no exist-
ing literature or tutorial has discussed how to employ these
four SFU-based approximations to accelerate DP-based ap-
plications, as there are no support from either CUDA intrin-
sics or compiler options. We will demonstrate that, if they
are properly used, significant performance improvements can
be achieved for applications with intensive DP computation
(Section 5.3). Note that “ftz” is mandatory for these ap-
proximate functions in DP, i.e., the ”.ftz.” suffix of the PTX
instructions in Table 2. We label the DPU-based implemen-
tation as DPU version.

4. MEASUREMENT AND OBSERVATION:
DETAILED EXPLORATION OF SP, DPU
AND SFU

First, we would like to study the runtime characteristics of
the GPU transcendental functions (have not been explored
previously) before they can be properly deployed into the
real applications. In this section, we design dedicated mi-
crobenchmarks to measure the latency, relative-error, regis-
ter usage, SPU/SFU/DPU operations contained, throughput
per SM as well as power and energy cost for the 9 SP and
4 DP transcendental functions. This information will serve
as the motivation of our proposed design.

Our evaluation platforms are listed in Table 3. Three gen-
erations of NVIDIA GPUs (Platform 1,2,3 ) including Fermi,
Kepler and Maxwell, are used for testing the function laten-
cies. For relative-error, we perform both SPU/DPU and
SFU-based transcendental calculation over 100,000 random
data and compare their results to the versions offered by the
host Intel CPU. The average difference over the elements is
then used as the relative-error. Register usage is collected
based on the statistics reported by the CUDA compiler. For
the operation throughput per SM, sufficient transcendental
function calls are initiated in the microbenchmark and all
of them are completely independent with each other to fully
exploit the instruction-level-parallelism (ILP) of the hard-
ware. We observe the profiled curve until the values become
stable, which are then used as the maximum sustainable
throughput for that operation. These values are then di-
vided by the SM number to get the per-SM throughput. All
the above results are shown in Table 4 and Table 5 for SP
and DP, respectively.

The existing approaches to obtain GPU power consump-
tion are often based on either simulator approximation (e.g.,
GPUWattch [21]) or the power-draw value reported by nvidia-
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Figure 3: Energy Consumption for Jetson TX-1.

smi [22]. However, neither of them reports real GPU power
consumption. In this work, we propose a new approach
that is more accurate and reliable. It leverages the latest
Maxwell-based NVIDIA Jetson TX-1 GPU (Platform 5 in
Table 3, which is mainly designed for embedded utilization)
and measures the power of the board’s computation module
only (i.e., the quad-core CPU and dual-SM GPU). This is
achieved by measuring the voltage alteration of the resis-
tance R264, which is in series with the computation module
when a GPU kernel is running, and then compare it with
the baseline state when the compute module is idle. Inside
the kernel, we use a loop to keep the transcendental func-
tions repeatedly being executed until the average voltage of
the resistance converges to a steady value. As the voltage
change is quite small, we also design an amplifier circuit so
that such small voltage change can be sensitively tracked by
an oscilloscope4. The measured power results are shown in
Figure 2.

We also tried to measure the power of the Kepler-based
Jetson TK-1 board (Platform 4 in Table 3). However, we
found that there is no series resistance to the core module
for this board. The only one that seems promising (i.e., re-
sistance R5C11 ) is in series with the entire board (including
GDDR, fan and other I/O modules), so the voltage is quite
hard to stabilize. Thus, we do not show the TK-1 power
results in this paper. With the measured power, we can cal-
culate the energy consumption with the measured function
latencies. The energy results are shown in Figure 3.

Table 4 and Table 5 show that SFU itself only injects
small error in the individual function calculation. However,
this small error can quickly propagate and get amplified
across the program semantics, causing intolerable accuracy
for some applications. Also, dramatic differences in latency
and throughput have been observed between SPU and SFU
versions on both Kepler and Maxwell platforms. Further-
more, we find that latency is not as good as throughput per
SM (T/M) for indicating the real performance difference be-
tween the two versions. For example, ln(x)’s throughput
difference on Kepler is as high as 9.9x, while the latency
difference is only 37%. This implies that the SFU appears
to be a super-pipelined unit. For power and energy, Fig-
ure 2 and 3 show that (1) the power consumption using
SPU/DPU is slightly higher than that using SFU, except for
x/y in SP; and (2) due to the huge performance differences
between the SP and DP versions on the Maxwell platform,
the overall energy consumption of DP versions (including
their SFU approximations) is significant higher than that of

4The resistance R264 is in series with the compute module.
The voltage difference measured by the oscilloscope in a long
steady state, after being divided by the amplification factor,
is then divided by the resistance value R264 = 0.005Ω to
obtain the electric current of the compute module. The cur-
rent is then multiplied by the measured V dd mod to acquire
the actual GPU power consumption.
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Table 4: SPU Version vs. SFU Version Characterization for SP. Ver. stands for the version. Lat. is the
measured latency in clock cycles. Rel-Err is the relative-error with respect to CPU results. Reg is the
register consumption. F/P/D is the number of operations executed by SFU, SPU and DPU respectively in
the function computation. T/M is the operation throughput per SM in the unit of Gop/s.

Func. Arch. Ver. Lat. Rel-Err. Rg. F/P/D T/M Func. Arch. Ver. Lat. Rela-Err. Reg. F/P/D T/M

x/y

Fermi
SPU 2335 0 12 1/16/0 1.7

1/x

Fermi
SPU 1692 0 13 1/4/0 2.8

SFU 2068 2.3433E-08 10 1/1/0 5.7 SFU 1651 1.1266E-08 8 1/0/0 5.7

Kepler
SPU 1098 0 13 1/14/0 6.0

Kepler
SPU 715 0 14 1/4/0 7.9

SFU 981 2.3433E-08 10 1/1/0 24.0 SFU 597 1.1266E-08 8 1/0/0 23.2

Maxwell
SPU 236 0 14 1/14/0 4.1

Maxwell
SPU 219 0 14 1/4/0 4.7

SFU 36 2.3433E-08 10 1/1/0 25.3 SFU 21 1.1266E-08 10 1/0/0 26.6

√
x

Fermi
SPU 1708 0 10 1/6/0 2.6

1/
√

x

Fermi
SPU 1728 0 13 2/10/0 1.4

SFU 1651 3.0763E-08 8 2/0/0 2.9 SFU 1651 2.7610E-08 8 1/0/0 5.7

Kepler
SPU 711 0 10 1/6/0 6.4

Kepler
SPU 864 0 14 2/10/0 3.8

SFU 613 3.0763E-08 8 2/0/0 12.9 SFU 597 2.7610E-08 8 1/0/0 23.2

Maxwell
SPU 226 0 10 1/6/0 5.0

Maxwell
SPU 464 0 14 2/10/0 2.5

SFU 47 3.0763E-08 10 2/0/0 14.8 SFU 21 2.7610E-08 10 1/0/0 27.1

xy

Fermi
SPU 6073 3.0822E-08 14 3/59/0 8.0

ex

Fermi
SPU 1681 2.3937E-08 10 2/7/0 1.9

SFU 2110 8.0587E-08 10 2/1/0 43.1 SFU 1655 4.0603E-08 8 1/1/0 5.7

Kepler
SPU 1496 3.0822E-08 15 3/60/0 9.1

Kepler
SPU 700 2.3937E-08 8 2/7/0 4.5

SFU 997 8.0587E-08 10 2/1/0 156.7 SFU 612 4.0603E-08 8 1/1/0 23.4

Maxwell
SPU 1029 3.0822E-08 16 3/60/0 3.8

Maxwell
SPU 160 2.3937E-08 8 2/7/0 4.7

SFU 56 8.0587E-08 10 2/1/0 65.8 SFU 31 4.0603E-08 10 1/1/0 20.6

ln(x)

Fermi
SPU 1779 4.6541E-09 11 1/19/0 1.2

sin(x)

Fermi
SPU 1727 8.7079E-09 13 0/17/0 1.1

SFU 1649 6.3260E-07 8 1/1/0 5.7 SFU 1660 9.6523E-07 8 1/0/0 5.7

Kepler
SPU 834 4.6541E-09 11 1/19/0 2.1

Kepler
SPU 804 8.7079E-09 13 0/17/0 2.9

SFU 608 6.3260E-07 8 1/1/0 22.9 SFU 602 9.6523E-07 8 1/0/0 25.0

Maxwell
SPU 298 4.6541E-09 11 1/20/0 1.8

Maxwell
SPU 222 8.7079E-09 17 0/17/0 2.3

SFU 38 6.3260E-07 10 1/1/0 26.3 SFU 25 9.6523E-07 10 1/0/0 22.5

cos(x)

Fermi
SPU 1740 1.4455E-08 13 0/18/0 1.0
SFU 1646 1.1584E-06 8 1/0/0 5.7

Kepler
SPU 824 1.4455E-08 13 0/18/0 2.9
SFU 600 1.1584E-06 8 1/0/0 25.0

Maxwell
SPU 229 1.4455E-08 17 0/18/0 2.1
SFU 25 1.1584E-06 10 1/0/0 22.5

Table 5: DPU Version vs. SFU Version Characterization for DP.

Func. Arch. Ver. Lat. Rel-Err. Rg. F/P/D T/M Func. Arch. Ver. Lat. Rela-Err. Rg. F/P/D T/M

x/y

Fermi
DPU 1889 0 19 1/0/15 7.8

1/x

Fermi
DPU 2485 0 16 1/0/8 10.5

SFU 1204 2.5561E-07 10 1/0/1 28.8 SFU 2166 2.5545E-07 8 1/0/0 42.3

Kepler
DPU 1236 0 20 1/0/15 8.4

Kepler
DPU 774 0 14 1/0/10 13.0

SFU 1104 2.5561E-07 10 1/0/1 30.4 SFU 902 2.5545E-07 8 1/0/0 44.9

Maxwell
DPU 1793 0 20 1/0/15 2.2

Maxwell
DPU 1761 0 13 1/0/10 3.4

SFU 2057 2.5561E-07 10 1/0/1 7.9 SFU 1346 2.5545E-07 9 1/0/0 11.7

√
x

Fermi
DPU 2319 0 13 1/0/13 8.5

1/
√

x

Fermi
DPU 2551 0 16 2/0/21 5.3

SFU 2171 2.8951E-07 10 2/0/0 42.1 SFU 2165 2.2110E-07 10 1/0/0 42.4

Kepler
DPU 949 0 14 1/0/13 9.1

Kepler
DPU 1296 0 14 2/0/23 7.0

SFU 921 2.8951E-07 8 2/0/0 44.3 SFU 897 2.2110E-07 8 1/0/0 44.9

Maxwell
DPU 1947 0 14 1/0/13 2.4

Maxwell
DPU 3317 0 14 2/0/23 1.6

SFU 1355 2.8951E-07 9 2/0/0 11.7 SFU 1340 2.2110E-07 9 1/0/0 11.7

the SP versions, in spite of their lower power. These obser-
vations motivate us to propose our design for tackling the
performance-accuracy trade-offs using SFU approximation
on GPUs, which will be discussed next.

5. SFU-DRIVEN APPROXIMATION ACCEL-
ERATION: A SOFTWARE APPROACH

From the experiments, we observe that SFUs can signif-
icantly boost the performance for transcendental-function
intensive applications. But meanwhile their approximations
also introduce errors that are sometimes too large to be ac-
cepted. Although Table 4 and 5 demonstrate that SFUs
only introduce relatively small errors in each transcenden-
tal computation, the process about how these small errors
propagate and eventually accumulate to intolerable results
is often complicated. This is the reason why within a single
thread context choosing the proper functions to approximate
while keeping the overall error under control remains quite
difficult [23, 24, 25]. Additionally, compared with the data-
intensive applications, the numerically intensive applications
are often much more sensitive to accuracy. Therefore, a
fine-grained accuracy tuning scheme is in great need so that

the most desirable performance can be achieved under more
strict accuracy requirement. Ideally, such fine-grained tun-
ing range should be within a small accuracy offset and com-
prises consecutive accuracy tuning points. In other words,
applied techniques should be controlled to some extent and
not cause significant accuracy difference between two dis-
crete tuning points (e.g., techniques such as loop perfora-
tion [25] and specific optimization transformations [4] often
cause large accuracy differences between tuning points).

GPU offers massive identical threads operating upon dif-
ferent data elements. If part of the threads on GPU could
execute the approximate version while the remaining ones
process the accurate version (such a design paradigm is la-
beled as horizontal design), it essentially opens the door
to a new design direction that is perpendicular to the con-
ventional ones, which seek to choose the appropriate func-
tions for approximation in a single-thread context (labeled
as vertical design). Comparatively, the horizontal design
should have a much simpler and more tractable accuracy-
performance trade-off relationship than the vertical one, as
the error effects are similar from various threads but very dif-
ferent across functions. We will demonstrate our exploration
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on the trade-off relation between performance and accuracy
for the proposed horizontal design in Section 5.3. In fact,
the horizontal design is one of the most highlighted features
that differentiates a GPU from the CPU family, which can
also be applied to resolve other design trade-offs, such as the
one between thread volume and cache-performance [26].

Furthermore, the parallelism granularity is an important
issue for enabling the horizontal design. Since warp diver-
gence incurs significant overhead, instead of working at the
fine-grained thread level, we focus on the medium-grained
warp level to reduce the design space and eliminate the
warp-divergence overhead. For the rest of this paper, we
will demonstrate how to practically and properly schedule the
candidate warps between the accurate but slower SPU/DPU
version and the approximate but faster SFU version. More
specifically, we will answer the following questions:

• How to implement the SPU/DPU and SFU versions of
transcendental functions in a flexible way?

• How to control the approximation degree?

• How to decide the optimal warp scheduling so that the
best performance can be achieved under a QoS constraint?

5.1 Flexible SPU/DPU/SFU APIs Invocation
There are three types of APIs that can be applied for

approximating transcendental functions on GPU: CUDA,
PTX and SASS. PTX routine is an intermediate machine-
independent bytecode that is translated from CUDA pro-
gram, and can be parsed and executed on-the-fly at runtime
(or just-in-time). Shader-Assembly (SASS) code is gener-
ated by assembling PTX bytecode through ptxas assembler,
which is the machine-dependent assembly code for GPU.
Modifying SASS code requires enormous knowledge about
the detailed hardware implementation, which is often con-
cealed by the vendors. Migration is also very difficult for
SASS code because it is hardware specific. Most impor-
tantly, there is no official SASS assembler. Therefore, SASS
is excluded as an option to implement approximation.

On the other hand, PTX APIs are the specific PTX in-
structions, as listed in the right side of Table 1. As previ-
ously discussed, for the SFU version, all the 9 transcendental
functions can be approximated via PTX APIs in the follow-
ing format with less than three instructions:

function.approx.ftz.f32 %f3, %f1, %f2;

“approx” stands for the approximate version, “ftz” indicates
that flashing-to-zero is true for denormal values, and“f32” is
for SP. However, for the accurate SPU version, we discover
that only div, rcp, sqrt and rsqrt can be expressed via 1 to 2
PTX instructions. The other five transcendental functions
require complex representation if using PTX instructions.
For instance, for sin and cos, the SPU-based implemen-
tations contain more than 140 lines of PTX code without
counting the loops inside. Manipulating such a big block of
PTX routines while keeping consistent with its upper and
lower context (e.g., register naming, memory consistency,
etc) remains very tedious and error-prone. Therefore, we
cannot implement both accurate and approximate transcen-
dental computation on GPU solely with PTX instructions.

As discussed in Section 3, all the SPU-based CUDA APIs
have their original expressions, shown in the left side of Ta-
ble 1. But for the SFU approximation, reciprocal and square-
root do not have their CUDA intrinsics, unless recompiling
the entire source file with “-use fast math”. However, this

//CUDA API to implement accurate SPU version
float expRT = expf(-R*T);
//PTX API to implement approx SFU version with denormal
asm("mul.ftz.f32 %0, %1, 0f3FB8AA3B;":"=f"(tmp):"f"(-R*T));
asm("ex2.approx.ftz.f32 %0, %1;":"=f"(expRT):"f"(tmp));

Listing 1: CUDA-based SPU version vs. PTX-based
SFU version.

is too coarse-grained and may affect other kernels unexpect-
edly. Moreover, one cannot flexibly control the denormal
behavior for a single function by using CUDA intrinsics in
the SFU approximation version. Specifying -ftz=true/flase
would change all the kernels in the current source file.

To summarize, CUDA APIs cover all the accurate SPU
versions and show the convenience for program transforma-
tion, while PTX APIs cover the entire SFU versions and
offer the maximum flexibility for approximation. Therefore,
our design combines the two via the embedded PTX [27].
Listing 1 shows the two versions of the exp function.

Note that there is another strong reason for implement-
ing the SPU versions via PTX APIs. As shown in Table 2,
there is no CUDA intrinsics offered at all for the DP ap-
proximation. This paper proposes the first SFU-driven ap-
proximation approach for DP computation via PTX APIs
on GPU.

5.2 Control Approximate Degree Horizontally
Now we need a way to control the approximation degree

so that the trade-offs between performance and accuracy
are subject to QoS. Ideally, to allow fine-grained tuning,
the approximation degree range should be relatively large
(within in a certain accuracy expectation though) while the
gap between discrete degrees remains small. In our hori-
zontal design, this is achieved by tuning the partition of the
homogeneous warps between the SPUs/DPUs and the SFUs.

Our basic approach is that we set a threshold for the ap-
proximate degree (labeled as λ) at the beginning of the ker-
nel. During the consequent execution, in case a transcen-
dental function is invoked,
• for warps with hardware index less than the threshold

(warp id < λ), they perform the SFU version via embedded
PTX instructions.
• for warps with hardware index larger than or equal to

the threshold (warp id ≥ λ), they perform the SPU/DPU
version via CUDA APIs.

The warp index used here is not the common software
warp id in the programming context calculated by dividing
the thread id with the warp size, but essentially the hard-
ware warp-slot id of a GPU SM, which can be acquired by
fetching from the special register – “%warpid” via PTX in-
structions. There are three reasons for using the hardware
warp id in our design: (1) The hardware warp ids contain
a larger tuning range, since its corresponding warp-slots are
for an entire SM while the software warp ids are only for a
CTA. More specifically, an SM usually accommodates mul-
tiple CTAs (up to 16 for Kepler and Maxwell), so tuning
according to hardware warp-slots is more fine-grained. For
example, assume a SM has 16 CTAs and each contains 4
warps. Therefore, all the warp-slots of the SM are occupied
and the occupancy is 1. If software warp id is used to parti-
tion the warps, the tuning range is from 0 to 4. However, if
hardware warp slot id is applied, the tuning range becomes
from 0 to 64 (48 for Fermi, see Table 3). (2) Using hard-
ware warp slot ids can achieve better load-balancing. Unlike
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#define PI 3.14159265358979f
__device__ inline void BoxMuller(float& u1,float& u2){
float r=sqrtf(-2.0*logf(u1)); float phi=2*PI*u2;
u1=r*cosf(phi); u2=r*sinf(phi);

}
__global__ void BoxMullerGPU(float *d_Random,int nPerRng){
const int tid=blockDim.x*blockIdx.x+threadIdx.x;
for (int iOut=0;iOut<nPerRng;iOut+=2)
BoxMuller(d_Random[tid+(iOut+0)*MT_RNG_COUNT],

d_Random[tid+(iOut+1)*MT_RNG_COUNT]);
}

Listing 2: The Original Mersenne Kernel.

__device__ inline void BoxMuller_sfu(float& u1,float& u2){
float r, t1, t2; float phi=2*PI*u2;
asm("lg2.approx.ftz.f32 %0, %1;":"=f"(t1):"f"(u1));
asm("mul.ftz.f32 %0, %1, 0f3F317218;":"=f"(t2):"f"(t1));
asm("sqrt.approx.ftz.f32 %0, %1;":"=f"(r):"f"(-2.0*t2));
asm("cos.approx.ftz.f32 %0, %1;":"=f"(u1):"f"(phi));
asm("sin.approx.ftz.f32 %0, %1;":"=f"(u2):"f"(phi));
u2=u2*r; u1=u1*r;

}
__global__ void BoxMullerGPU(float *d_Random,int nPerRng){
const int tid=blockDim.x*blockIdx.x+threadIdx.x;
unsigned warpid;
//const bool flag=(threadIdx.x>>5)<Lambda;//soft_id
asm("mov.u32 %0, %%warpid;":"=r"(warpid));//hard_id
const bool flag=(warpid<Lambda);//approx degree
if(flag){//SFU approximate version

for(int iOut=0;iOut<nPerRng;iOut+=2)
BoxMuller_sfu(d_Random[tid+(iOut+0)*MT_RNG_COUNT],

d_Random[tid+(iOut+1)*MT_RNG_COUNT]);
}else{//SPU accurate version

for(int iOut=0;iOut<nPerRng;iOut+=2)
BoxMuller(d_Random[tid+(iOut+0)*MT_RNG_COUNT],

d_Random[tid+(iOut+1)*MT_RNG_COUNT]);
}}

Listing 3: Transformed Mersenne Kernel.

using software warp ids, warps are dynamically binded to
the hardware warp-slots at runtime. This will average out
the scenarios where some warps are always scheduled and
consequently finished earlier than other warps in a CTA
(i.e., the starvation problem). For example, specifying “if
warp id < 8” using hardware warp id has almost the same
performance as the scenarios such as if warp id ≥ 56 and
if warp id < 4 or ≥ 60. (3) The approximate degree is 1
warp among two consecutive tuning steps for using hardware
warp-slot id, but num CTA per SM for using software warp
id. (4) Obtaining the hardware warp id can be completed
in a single register-read operation. However, it requires an
additional integer division (or right-shifting) instruction to
gain software warp id.

Additionally, when transcendental functions are invoked
inside a loop, to reduce the branching overhead (though
there is no warp-divergence), we put the warp partition pro-
cess outside the loop to reduce the overhead.

We demonstrate this process using an example. Listing 2
shows the the BoxMullerGPU kernel from Mersenne [28], in
which log, sqrt, sin and cos functions are invoked repeatedly
in a “for” loop. Listing 3 shows the modified SFU-driven
approximate tuning kernel. As can be seen, a new approxi-
mate device function “BoxMuller_sfu” is generated using
embedded PTX for the SFU version. Then by specifying
the “Lambda” variable either statically at compile-time or
dynamically at runtime, we are able to change the parti-
tion of warps between SFUs and SPUs, which serves as the
approximate degree for fine-tuning the trade-offs between
performance and accuracy.

The overhead of the proposed design is very small. Since
we work at the medium-grained warp level, warp-divergence
is avoided. In terms of spatial overhead, only the flag vari-
able has a lifetime across the kernel and costs a 1-bit predi-
cate register per thread. Furthermore, as observed in Table 4
and 5, the SFU versions always consume less registers than
the SPU versions. Therefore, adding a branch should not
incur additional registers (in this way the occupancy keeps
unchanged). Also, because the predicate-register checking is
internally supported by the GPU hardware as one stage of
the pipeline, the only overhead is the issuing delay for this
extra branching. Such branching overhead can be signifi-
cantly mitigated by being moved outside the loop, as shown
in Listing 3. Other overheads such as the delay for fetching
the hardware warp id, comparing with the threshold and
setting the flag (i.e., the predicate register [29]) are negligi-
ble.

5.3 Exploring Performance-Accuracy Trade-
off

In this subsection, we attempt to explore the exact trade-
off relationship between performance and accuracy on a wide
range of scientific applications using the approach discussed
previously. By doing so, we can build an strategy to answer
how to decide the optimal approximate degree to achieve the
best performance under certain QoS. We select applications
that contain transcendental numeric functions in their ker-
nels from Rodinia [32], Parboil [31], SDK [28], Polybench
[33] and Shoc [34] benchmark suites, as listed in Table 6.
We apply the program transformation discussed and plot the
curves of normalized application execution time and relative-
errors5 (against the SPU/DPU version) with respect to the
variation of approximate degree λ on Platform-1,2,3 in Ta-
ble 3. The figures for the 20 single-precision applications on
Maxwell are shown in Figure 4. We also plot the figures for
the 4 applications that contain double-precision computa-
tion in Figure 5. Since the shapes on Fermi and Kepler are
similar, they are omitted here due to page limitation. From
the figures, we have the following observations:

(1) Without considering the accuracy loss, our SFU-driven
method demonstrates very significant performance speedup
on the commodity GPU hardware (e.g., up to 5.1x for SP
on Maxwell). We want to particularly highlight the DP sce-
narios (e.g., CFD, S3D and COR), as conventional wisdom
believes SFU is specific for SP acceleration on GPUs. Based
on our finding, other than directly programming in embed-
ded PTX, there is currently no other software-level approach
that can easily achieve such kind of DP acceleration.

(2) Although the performance gains from using SFU ver-
sions are impressive, they do incur accuracy losses. For
some cases, such losses are intolerable for scientific applica-
tions (e.g., BLA, CUT, NB, GUS, MEN, CFD, MRQ) be-
cause the SP/DP version on GPU is already not as accu-
rate as the CPU counterpart (see Table 4). Note that these
applications are only small benchmarks or proxy applica-
tions on a single GPU that are available to us. In future,
when large-scale numeric applications containing hundreds
of these proxy kernels run on thousands of GPU nodes in a

5How to calculate the QoS for applications from various
domains still misses a unified approach [35]. Here we use
mean-relative-error as an example. However, other metrics
can be applied to our design as well via the replacement of
the error-calculation method.
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Table 6: Benchmark Characteristics

Application Description abbr. Domain Hotspot Kernel Transcendental Functions Ref
BlackScholes Black-scholes option pricing BLA Compute Finance BlackScholesGPU sqrt,div,log,exp,rcp [28]

single Monte Carlo single Asian option SIN Compute Finance generatePaths sqrt,exp [28]
MonteCarlo Monte-Carlo option pricing MCO Compute Finance MonteCarloKernel exp [28]

cp Coulombic potential COP Molecular dynamics cenergy rsqrt [30]
cutcp Distance-cutoff coulombic potential CUT Molecular dynamics lattice6overlap rsqrt [31]

lavaMD Particle potential and relocation LAV Molecular dynamics kernel gpu cuda exp [32]
nbody Fast n-body simulation NBO Molecular dynamics integrateBodies rsqrt [28]

oceanFFT FFT-based ocean simulation OCN Molecular dynamics generateSpectrum rcp,sqrt,sin,cos [32]
backprop Back propagation BKP Machine Learning layerforward pow,log [32]

nn K-nearest neighbors KNN Machine Learning euclid sqrt [32]
corr Correlation computation COR Linear algebra reduce kernel div,sqrt [33]

gaussian Gaussian elimination solver GUS Linear algebra Fan1 div [32]
mersenne Mersenne-twister random generator MEN Simulation BoxMullerGPU log,sqrt,sin,cos [28]

cfd Redundant flux computation CFD Simulation comp step factor sqrt,rcp,div [32]
s3d Combustion process simulation S3D Simulation ratt2 kernel div [34]

mri-q Q matrix for MRI reconstruction MRQ Image processing ComputeQ GPU sin,cos [31]
bilateralFilter Bilateral smoothing filter BIF Image processing d bilateral filter div,exp [28]

srad Speckle reducing anisotropic diffusion SRD Image Processing srad rcp,div [32]
grabcutNPP GrabCut with NPP NPP Image Processing GMMDataTerm log,exp [28]

imageDenoising Image Denosing IMD Image Processing KNN exp,rcp [28]

supercomputer, a relatively small distortion to a result (e.g.,
COP on SP and COR on DP) can result in a significantly er-
roneous outcome. Thus, there is a clear trade-off between
performance gain and accuracy loss.

(3) Differ from our expectation that the point for best per-
formance might be located in the middle of the curve where
SFUs and SPUs are exploited simultaneously, the results
show that using our approach the best performance is al-
most always achieved when all the warps are executed
in SFUs while the worst when all of them are executed in
SPUs/DPUs 6. Correspondingly, the least accuracy loss oc-
curs for pure SPUs/DPUs while the most for pure SFUs.

(4) More importantly, the results show that the trade-
off relationship between performance and accuracy
with respect to approximate degree is nearly-linear.
There are five obvious exceptions here: OCN, BKP, SRD,
NPP and IMD. All of them represent the scenario where ker-
nels use SP floating-point as the basic data-type during ini-
tial computation, and then convert them to integers for the
finial results of the applications. This actually matches their
domains, which are image processing and machine learning.

(5) For some figures, there appears a flat region at the end
of the curve where the performance and accuracy become
constant (i.e., beyond the green dot line). This is because
for some applications, not all the hardware warp-slots are
fully occupied due to the low occupancy (e.g., cases with
ocp < 1 in Figure 4 and 5). For example, the performance
and accuracy when setting λ = 49 ∼ 64 are essentially the
same as those under λ = 48, if only 48 hardware warps slots
are filled (i.e., ocp = 0.75). Therefore, the tuning space may
be reduced by skipping these redundant tuning points.

5.4 Finding the Optimal Approximate Degree
In this subsection, we attempt to find the optimal approx-

imate degree concerning the user-defined QoS. Assume the
execution time function with respect to approximate degree
λ is T (λ) (e.g., the black curves in Figure 4) while the error
function is E(λ) (e.g., the red curves in Figure 4). Then the

6We have observed an exception here for SIN on Fermi, in
which the optimal performance point locates in the middle.
This explains why later in Figure 8, SIN’s SFU bar is lower.

searching problem can be formalized as:

min(T (λ)) | E(λ) ≤ QoS

This problem is difficult to solve if T (λ) and E(λ) are general
functions. However, as T (λ) is negatively correlated to E(λ)
and from Figure 4 we observe that T (λ) is monotonically
decreasing with λ, the problem thus can be reformulated as

max(λ) | E(λ) ≤ QoS

or simply finding the root of equation E(λ) = QoS provided
that E(λ) is continuous. However, as λ here is discrete, it is
essentially the last point before the root of E(λ) = QoS.

A naive approach to find the optimal λ is to start searching
from the pure-SFU version with λ = 64 or 48, and evaluate
all the points along the reduction of λ until E(λ) ≤ QoS.
This simple approach is labeled as SMP.

To accelerate the searching process, based on the nearly-
linear observations about E(λ), we further propose a linear-
approaching method motivated from Newton’s Method. We
use the cutcp application as an example. As illustrated in
Figure.6, assume the QoS of this case is 0.85E − 05. To
start, we first run the transformed kernel with λ = 0, which
corresponds to the pure SPU/DPU version and dump the
results. The performance T (λ = 0) can also be measured if
we want to calculate the speedup later. Next, we execute
the kernel with λ = 64 (48 for Fermi) which corresponds to
the SFU version. Similarly, we measure T (λ = 64/48) and
dump the results. Additionally, we measure the occupancy
of the SFU version to reduce the search space (discussed in
Section 5.3). For cutcp, the occupancy of the SFU version
is 0.75, which indicates that the searching space is from 0
to 48. Then, by calculating the relative-error of the SFU
version, we locate the position of P0 in Figure 6. Based
on the nearly-linear observation about E(λ), we draw a line
from P0 to the origin and intersects it with the QoS level
(the magenta line). The intersection is denoted as V 1, where
λ = 30. We run the kernel again with λ = 30 and calculate
the relative-error E(30), which locates P1. If P1 is less than
QoS, it is the new lower-bound and we move the origin to
P1; if P1 equals to the QoS, we return P1; if P1 is larger
than QoS, it is the new upper-bound and we set P1 as the
updated terminal point, as shown in Figure 6. We then
connect P1 to the origin to form a new straight line, which
intersects QoS at V 2 where λ = 26. We run the kernel again
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Figure 4: Performance-Accuracy Trade-offs for SP Applications on Maxwell GPU. The green dot line is based
on the occupancy (i.e., ocp in the x-label). It indicates the border of the tuning space beyond which both
the time and error curves keep steady. The relative-error is referring to the pure SPU version.
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Figure 5: Performance-Accuracy Trade-offs for DP Applications on Maxwell GPU.

with λ = 26 and find that E(26) at V2 happens to be the
same as the QoS. Therefore, the search process terminates
and returns λ = 26. Otherwise, it repeats such a process
until E(λ) is finally equal to QoS. We label this heuristic
method as HEU. Note that this linear-approaching method
converges only when E(λ) is roughly smooth. However, this
is not always the case (e.g., NBO, CFD, BIF in Figure.4).
In these scenarios, HEU may get trapped in a local optimal
value. Therefore, in order to ensure E(λ∗) < QoS, when it

is not satisfied, we add an extra phase to assess the points
along the reduction of λ from the local optimal, all the way
untill E(λ∗) < QoS.

Compared to the naive SMP approach and the exhaustive
search that traverses the entire λ searching space (labeled
as OMG), our proposed HEU method can be much more
efficient (will be validated in Section 7). The HEU method
is also integrated into our SFU-driven approximation frame-
work, which will be discussed next.
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Figure 6: The proposed linear-approaching method
(HEU) to locate the optimal λ for cutcp on a
Maxwell GPU. The searching process terminates af-
ter two steps when QoS is satisfied.

Algorithm 1 Kernel Transformation (Refer to Listing 3)

1: Inline all device functions into the global kernel
2: Insert the flag assignments at the beginning of the kernel
3: for each transcendental function call do
4: if the call is inside a loop then
5: Replicate the loop
6: else
7: Replicate the call
8: end if
9: Convert the call to its SFU-based version (Table 1,2)

10: Compact the calls into the if-else branching
11: end for

6. THE OVERALL FRAMEWORK
In this section, we describe the overall framework for our

SFU-driven approximation acceleration design. As shown
in Figure 7, when the application kernel is given, the frame-
work first checks if it invokes any transcendental functions
(SP or DP), especially the ones within a loop or nested loops.
If so, it performs the program transformation discussed in
Section 5.2. Such a transformation can be fully automatic
as the mapping between the embedded PTX and the cor-
responding transcendental functions are fixed. The auto-
matic transformation procedure is depicted in Algorithm 1.
Then the framework will perform the heuristic method dis-
cussed in Section 5.4 to find the optimal λ for achieving the
best performance under certain QoS. The only difference is
that if the relative-error of the SFU version is less than QoS
(e.g., OCN, BKP, SRD, NPP and IMD), it is returned im-
mediately. Note that the “SFU/SPU result” indicated in
Figure 7 is for the entire application instead of a single ker-
nel. During the search, one can also profile the number
of SPU/DPU/SFU operations performed in each step, and
then combine the power/energy information in Figure 2 and
3 to calculate the power/energy consumption.

Our design is highlighted for its transparency, tractabil-
ity and portability. It is transparent because it is a pure-
software design that converts the code at compile time and
runtime, so that it requires no extra efforts from both ap-
plication developers and hardware designers. It also brings
significant, instant and cheap speedup with guaranteed ac-
curacy. Meanwhile, it is tractable because it is simple to
understand and can be fully automatic (i.e., integrated into
the CUDA toolchain). In addition, the horizontal approach
it adopts introduces the nearly-linear performance-accuracy

trade-off curves with a relatively large, uniform and fine-
grained tuning space. Finally, regarding portability, our
design works for all the current generations of GPUs with
SFUs equipped, and it does not rely on architecture-related
properties except for the limitation of the hardware warp-
slots (Table 3).

7. VALIDATION
In this section, we validate our SFU-driven approximate

acceleration design in the overall framework. We test 20
SP and 4 DP applications shown in Table 6 on the Fermi,
Kepler and Maxwell platforms (Platform 1,2,3 in Table 3).
To be convenient, here we define QoS ratio as the ratio
of QoS with respect to the error-rate of the SFU version,
which is supposed to be the highest based on the obser-
vations in Section 5.3. Note that QoS ratio is not QoS.
For example, if the QoS of the pure SFU version regard-
ing an application is 0.7, which means the error-rate of the
SFU version is 1-0.7=0.3; then a QoS ratio of 0.8 equals
to a QoS of 1-0.3*0.8=0.76. We use QoS ratio because the
QoS values for the SFU-versions of different applications are
distinct. The QoS ratio offers a unified assessment criteria
for comparison among applications. We also implement the
naive (SMP), the heuristic (HEU ) and the exhaustive search
(OMG) methods described in Section 5.4 for searching effi-
ciency comparison. Figure 8, 9 and 10 illustrate the results
for applying our framework to locate the optimal approx-
imate degree of the 20 SP applications on the three GPU
platforms with the QoS ratio7=0.8, respectively. Figure 11
shows the results for the 4 DP applications. In these four
figures, SPU/DPU is the baseline with no approximation.
SFU is the maximum attainable speedup via the proposed
approach when all the transcendental functions are calcu-
lated by the SFUs. The green numbers marked on top of the
bars indicate the total search rounds or steps, as described
in Section 5.4. Such numbers indicate the numbers of execu-
tions during the search, or the searching overhead. We also
show the geometric-mean of the performance speedup across
the 20 SP and 4 DP applications to provide a general sense
of acceleration under our framework. These figures demon-
strate that given a specified QoS, HEU can achieve close
to the best attainable performance with smaller searching
iterations, compared to SMP and OMG.

Figure 12, 13 and 14 illustrate that the normalized power
and energy reduction for SP and DP on the Maxwell Jetson-
TX1 GPU (Platform 5 in Table 3) for calculating the tran-
scendental functions in the 20 SP and 4 DP applications via
the proposed methods (SMP, HEU and OMG, which is the
most optimal can be achieved at that QoS level) under the
QoS ratio=0.8. As can be seen, although the power reduc-
tion does not seem to be tremendous (around 5% for SP
and 10% for DP), the energy reduction is quite significant –
more than 75% and 25% for SP and DP respectively, which
implies that our approximate method can also be quite ef-
fective for addressing power/energy constraining problems
on GPUs.

8. RELATED WORK
Approximate computing, which broadly refers to tech-

nique that harvests substantial performance/energy benefits
7We choose QoS=0.8 as an example for demonstration pur-
poses. Users should determine the proper QoS metric and
level for their individual application.
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Figure 7: SFU-Driven Transparent Approximate Acceleration Framework.
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Figure 8: Performance speedup with QoS ratio=0.8 on Fermi GPU in SP.
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Figure 9: Performance speedup QoS ratio=0.8 on Kepler GPU in SP.
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Figure 10: Performance speedup with QoS ratio=0.8 on Maxwell GPU in SP.
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Figure 11: Performance speedup QoS ratio=0.8 on Fermi, Kepler and Maxwell GPUs in DP.

BLA SIN MCO COP CUT LAV NBO OCN BKP KNN COR GUS MEN CFD S3D MRQ BIF SRD NPP IMD G-M
40%
50%
60%
70%
80%
90%
100%
110%
120%

P
o
w
e
r

0
.9
6

0
.9
6

0
.9
6

0
.9
5

SPU SMP HEU OMG SFU

Figure 12: Normalized power reduction with QoS ratio=0.8 on Maxwell Jetson-TX1 in SP.
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Figure 13: Normalized energy reduction with QoS ratio=0.8 on Maxwell Jetson-TX1 in SP.

at the expense of modest accuracy loss, has prevailing at all
levels of hardware and software designs. On one hand, the
emerging big-data, multimedia and machine learning appli-
cations are much more insensitive to the computation accu-

racy. On the other hand, the low level hardware design faces
ever-growing concerns on energy, resilience and sustainable
scaling of performance. The majority of the existing research
has been related to some traditional topics at both hardware
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Figure 14: Normalized power and energy reduction with QoS ratio=0.8 on Maxwell Jetson-TX1 in DP.

level (e.g., fault-allowable storage [36], voltage overscaling
[37], DRAM refresh [38], analog circuits [39], neural acceler-
ation [40], descent fault recovery [41], remote memory data
prediction [42], function memorization [5, 7], control/mem-
ory divergence [6]) and software level (e.g., loop perforation
[25], task skipping [43], loop early termination [4, 44], pro-
gram transformation [23], compilation [24], bitwdith reduc-
tion [38]). However, it is often not suitable to deploy the cur-
rent approximate techniques directly to the scientific appli-
cations (e.g., weather simulation and molecular dynamics),
which are usually numerically intensive and very sensitive to
accuracy loss. This is especially true when future large-scale
scientific applications are executed on thousands of hetero-
geneous HPC nodes (e.g., CPUs+GPUs) and a small in-
accurate intermediate result can accumulate or propagate
quickly to become significant [10, 11].

Recently, trading the accuracy of the results for better
performance has been studied on GPUs [4, 5, 6, 7, 8, 9], as
they become the essential computation units in both data
centers and HPC systems. Samadi et al. [4] proposed three
optimization techniques to automatically generate a series
of GPU kernels with different aggressiveness of approxima-
tions. They also adopt an iterative sampling-calibration run-
time tuning system to select the kernel in the series that is
the most aggressive but complying to the specified QoS, pro-
vided that the same kernel is invoked repeatedly. Later, they
found that for data-parallel applications, six common-used
algorithm patterns could be approximated based on their
specific properties [5]. Arnau et al. [7] proposed a look-up-
table based task-level memorization approach to remove the
redundant fragment computation when processing graphical
applications in low-power mobile GPUs. Sartori and Kumar
[6] applied the approximate concept to address the control
and memory divergence on GPUs. They claimed that, for
some error-tolerated applications, if the lockstep execution
and memory coalescing are strictly enforced by approximat-
ing divergent paths to regular/coalesced paths, significant
performance can be achieved with limited output quality
degradation. Yazdanbakhsh et al. [8] focused on the long
memory latency and limited memory bandwidth of GPUs,
and predict the requested memory value without actually
fetching it from the off-chip memory. Finally, Sutherland et
al. [9] predicted the requested memory values using the GPU
texture fetch units based on a thread’s local history. How-
ever, the work above primarily exploits the spatial and/or
temporal locality — the similarity among memory elements,
computation lanes, historical memory loads, etc. They use
hardware (e.g., look-up-table) or software (e.g., program
transformation) approaches to approximate some of the re-
quested data or computation with the predicted value based
on locality. They often cannot provide accuracy assurance
as locality is not always held, and if the crucial elements
are approximated significantly inaccurate, catastrophic fail-
ures may occur. That is why most of the work above fo-
cused on applications that inherently have high tolerance
for errors (e.g., machine learning or image applications), e.g.,

≥ 10% inaccuracy for approximation. Furthermore, the ex-
act trade-off trends between the performance and accuracy
are mostly nonlinear, sometimes even unknown beforehand.
This is also why many of them require a profiling phase to
test the kernel versions or train the look-up table. In ad-
dition, the performance-accuracy tuning space is relatively
small and coarse-grained for most of the work above. In con-
trast, our SFU-centric approximation approach introduces
nearly-linear performance-accuracy trade-off curves with a
relatively large and fine-grained tuning space, for accuracy-
sensitive scientific applications.

9. LIMITATIONS AND FUTURE WORKS
Limited by the situation that only 9 single-precision and 4

double-precision approximate numeric functions are imple-
mented in the SFUs, the propsed design can only accelerate
applications that contain these functions. Furthermore, lim-
ited by the fixed accuracy of the current SFU design (with
error less than 1E-06, see Table 4), we are unable to trade
more accuracy with additional performance/energy gains.
With regard to the future work, from hardware perspec-
tive, we can either design special-function accelerators that
are faster but with higher error tolerance, or create accel-
erators that are more general-purpose such as the neural
accelerator for GPUs [45]. From the software perspective,
application developers can provide alternative approximate
kernel implementations. For instance, in the leukocyte appli-
cation from Rodinia benchmark [32], the heaviside() kernel
has another “simpler and faster” approximate implementa-
tion which targets actanf(). Using a similar idea proposed
in this work, we can co-schedule this user-defined approx-
imate version with the accurate version without hardware
involvement. [46] actually offers some software-based ap-
proximate functions, such as sin, cos, exp and rcp. Finally,
it is also possible to apply the co-scheduling approach to ap-
proximate/accurate memory access of GPUs, such as guess-
ing the data value when it is missed in the cache [8], or
approximating a value based on the surrounding elements
via interpolation in the texture cache [9].

10. CONCLUSION
In this paper, we focus on a crucial GPU component which

however, has long been ignored — the Special Function
Units (SFUs), and show its outstanding role in performance
acceleration and approximate computing for GPU applica-
tions. We exhaustively evaluated the 9 single-precision and
4 double-precision numeric transcendental functions that are
accelerated by SFUs in terms of their latency, accuracy,
power, energy, throughput, resource cost, etc. Based on
these information, we proposed a transparent, tractable and
portable design framework for SFU-driven approximate ac-
celeration on GPUs. It leverages the SIMT execution model
of GPU to partition the initiated warps into a SPU/DPU-
based slower but accurate path, and a SFU-based faster
but approximated path, and then tune the relative parti-
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tion ratio among the two to control the trade-offs between
the performance and accuracy of the kernels. In this way,
a fine-grained and almost linear tuning space for the trade-
off between performance and accuracy can be created for a
scientific application with approximate acceleration. With
the linear tuning curve, we propose a simple yet effective
heuristic method to search the optimal approximate degree
that delivers the best performance subjecting to a user-
predefined QoS level. The entire tuning process can be
encapsulated as an automatic pure-software approximate-
optimization framework, which is demonstrated to be effec-
tive for delivering immediate and substantial performance
gains over a series of commodity GPU platforms.
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