
Generic Scrubbing-based Architecture for Custom
Error Correction Algorithms

Rui Santos, Shyamsundar Venkataraman
Department of Electrical & Computer Engineering

National University of Singapore
Email: {elergvds, shyam}@nus.edu.sg

Akash Kumar
Center for Advancing Electronics Dresden

Technische Universität Dresden
Email: akash.kumar@tu-dresden.de

Abstract—Scrubbing has been considered as an efficient mech-
anism to repair faults in the FPGA’s configuration memory, when
they are placed in harsh environments. By using this elementary
mechanism, several academic solutions/algorithms based on error
correction codes (ECCs) have been proposed. However, most of
these proposed solutions are only theoretical and do not properly
deal with the implementation concerns. With this paper we
propose a generic scrubbing-based hardware architecture and
design flow for implementing custom error correction algorithms
based on ECCs. A conducted case study implementing and
evaluating three different algorithms shows the feasibility and
the efficiency of the proposed architecture and design flow.

I. INTRODUCTION

Nowadays, embedded systems play a central role in ad-
vanced and critical technological areas such as transport
(avionics, aerospace, automotive, trains), telecommunication
(satellites, mobile phones, network components), process con-
trol (industrial automation, energy production and distribution)
and health (health monitoring, surgery assistance) sectors. This
diversity in applications and requirements has been leading to
an increase in the complexity of these embedded systems and
consequently to a growing demand for increased performance,
parallelization and signal processing.

As a response to these concerns, commercially-off-the-shelf
(COTS) Static-RAM (SRAM)-based Field Programmable Gate
Arrays (FPGAs) have been gaining a greater role in the em-
bedded systems development. FPGAs offer a high operational
capacity and performance combined with reconfigurable prop-
erties. They also offer a flexible interface, fast I/O response,
and an easy way to implement specific functionalities. How-
ever, in harsh environments, these devices may compromise
the overall system reliability since they are susceptible to
Single Event Upsets (SEUs). These SEUs are events that can
inadvertently change the configuration memory of the FPGA,
thereby corrupting the function results and device outputs.
These events are frequently caused by radiation, electromag-
netic interferences and power fluctuations. Moreover, their
intensity and frequency have been amplified by the trends of
shrinking transistor dimensions and power reduction, hence
requiring such errors to be handled through fault tolerance
and error mitigation strategies.

Several mechanisms have been proposed to mitigate SEUs
in SRAM-based FPGAs. The most common techniques ex-

ploit spatial/hardware redundancy [1] such as Triple Modular
Redundancy (TMR) [2], [3] and Duplication With Compare
(DWC) [4]. Besides TMR and DWC, blind scrubbing is often
used to correct errors after the FPGA has been subjected to
SEUs. This method of fault mitigation periodically rewrites the
configuration frames of the FPGA, overwriting possible faulty
bits caused by SEUs [5], [6]. Another technique of scrubbing
stores Error Correction Codes (ECCs) corresponding to each
frame either within the frame [7] or in an external memory [8]–
[10], rewriting only those frames that have been corrupted
by SEUs. ECCs are able to correct a number of errors in
the frame by using additional redundant bits that help in the
detection and correction of the errors. Common ECCs used in
current works include parity codes, hamming codes and Reed
Solomon codes. Such techniques overcome the need for a large
external memory and have a good fault-tolerance against both
single and burst SEUs.

Scrubbing-based on ECCs has been of particular interest to
researchers, and a number of algorithms have been proposed
using this technique. Examples of such algorithms include
Matrix Codes [10], 2-D Hamming [8], interleaved and com-
pressed hamming codes [9], and 3-D hamming schemes [11].
However, most of these proposed solutions are theoretical and
do not present details on the implementation concerns. This
lack of a good supporting architecture and design flow to
enable the execution of these solutions motivate the need for a
generic scrubbing architecture that is able to handle different
algorithms and hence provide a flexible and convenient way
to implement fault-tolerant designs on FPGAs. To the best of
the authors knowledge, no other works have proposed a similar
architecture to support various algorithms based on scrubbing.

The key contributions of this paper are:

• a generic scrubbing-based FPGA architecture and design
flow for any error detection/correction algorithms based
on ECC;

• an architecture that provides error monitoring and error
correction;

• implementation and evaluation of three different algo-
rithms demonstrating the feasibility and efficiency of the
proposed architecture and design flow.



The rest of the paper is organised as follows. Section II
presents the background concerning the FPGA reconfigura-
tion mechanisms and the scrubbing mechanisms. Section III
presents related works in the field of scrubbing-based hardware
implementation architectures. In Section IV the proposed
solution is described. Section V presents the design flow
concerns. Section VI evaluates a case study and the presents
the corresponding results. Finally, Section VII presents the
conclusions.

II. BACKGROUND

A brief introduction of the FPGA architecture and common
scrubbing techniques is presented before the discussion of
related works.

A. FPGA Configuration

FPGAs are configured using bitstreams, which contain the
configuration data for each part of the FPGA such as the
Block-RAMS (BRAMs), Look-Up Tables (LUTs), intercon-
nections and Flip Flops (FFs). These individual blocks in the
FPGA are accessible to the user for building a custom design.
The FPGA can be seen as a collection of frames, in which each
of these individual blocks are implemented. For example, the
Xilinx Virtex-6 FPGA (XC6VLX240T-f1156) contains 28, 464
frames in total and each frame contains 2, 592 bits. Current
FPGAs provide the ability to reconfigure at runtime both the
structure and functionality of the implemented design. This
is made possible by the reconfiguration ports in the FPGA.
For example, the Virtex-6 series provides 3 different ports for
reconfiguration: JTAG, SelectMAP and ICAP.

The Internal Configuration Access Port (ICAP) is an internal
port that can be accessed within the FPGA for reconfiguration
while the other 2 ports are external. The smallest region
accessible for reconfiguration is a frame. Any frame in the
FPGA can be reconfigured by addressing it via the Frame
Address Register (FAR).

B. Scrubbing

Scrubbing is a very common technique to correct SEUs
in FPGAs. This method uses an external memory to store
the entire bitstream, called golden copy. The FPGA is then
reconfigured at regular intervals using this golden copy to pre-
vent the build up of errors. This technique, more specifically
referred to as blind scrubbing [6], is very easy to implement.
However, it is not efficient since it wastes a lot of FPGA
resources in scrubbing parts of the FPGA which do not contain
the user design. Moreover, it also incurs a large memory
overhead due to the need for a golden copy.

C. Scrubbing based on Error Correction Codes (ECC)

In order to overcome the disadvantages posed by blind
scrubbing, scrubbing techniques based on Error Correction
Codes (ECCs), which do not incur a large memory overhead,
have been proposed [8]–[11]. In such a technique, ECCs such
as parity or hamming codes are frequently used to detect and
correct errors in a frame. ECCs are computed for the user

TABLE I
COMPARISON OF RELATED WORKS

Feature Xilinx [5] Straka [12] Proposed work

Flexible architecture No Limited Yes
Architecture overhead None TMR/DMR Yes (ECC dependent)
Module size Small Big Small
Handle burst errors No Yes (Limited) Yes (ECC dependent)

FPGA

Dynamic Region / User Design 

User Design

Frames

 Static Region

FLASH

(Golden Copy)

User App 1

User App 2

User App 4

User App 3

Fault-Tolerance 

Module

ICAP

Port

Fig. 1. Top level FPGA implementation perspective.

design at design time and stored in an extra memory. Such a
memory is much smaller than the golden copy used for blind
scrubbing owing to the smaller size of the ECCs. At run-
time, the ECCs for each frame are computed and compared
with the ones in the extra memory. If there is a mismatch in
the ECCs, the errors are corrected and the corrected frame
is written back into the FPGA. In recent years, numerous
algorithms have been proposed to correct errors in the FPGA.
All these techniques require a slightly different hardware
architecture to implement them and efficiently correct the
errors in the bitstream. This motivates the need for a generic
scrubbing architecture that is able to handle different error
detection/correction algorithms based on ECCs and hence
provide a flexible and convenient way to implement fault
tolerant designs on FPGAs.

III. RELATED WORKS

There exist a number of works presenting scrubbing archi-
tectures to make the user design fault tolerant. However, they
come with their own set of advantages and disadvantages. This
section describes a few important works along with their pros
and cons.

Xilinx provides a pre-verified solution to detect and correct
errors in FPGAs [5]. This solution, called Soft Error Mitigation
(SEM), is able to correct up to 1 error per frame in Virtex-6
FPGAs and is able to detect up to 2 errors per frame with
a typical detection latency of 18 ms and an added correction



ICAP

Port

User Design

Fault-Tolerance Module

ICAP 

Interface

Module

Frame CopyHamming 

Module

Auxiliary

Memory

Error Detection/

Correction 

Module

FLASH

(Golden 

Copy)
Flash 

Interface 

Module
1 2

Fig. 2. Fault-Tolerance Module – implementation architecture.

latency varying from 20µs for uncorrectable errors to 660µs
for correction by the “replace” technique. The advantages
of this controller are that the solution comes pre-verified
and is also integrated in the FPGA flow process. Hence, its
implementation is straight forward with the user only having
to interface the controller with the user design. However, the
SEM controller can only detect up to 2 errors per frame and
is hence not suitable for multi-bit upsets. Nowadays, multi-bit
upsets are becoming an important issue, since they increase
when technology scales down [13]. Moreover, multi-bit upsets
are also stronger in the space environment. There, the hardened
FPGAs give a suitable response to this problem. However, this
kind of FPGAs is really costly, which is incompatible with a
new category of budget space devices (like nano-satellites).
In this sense, works and fault-tolerant architectures applied
on COTS FPGAS that use more complex ECCs are gaining
special importance [14]. On the contrary, the SEM controller
does not support user-defined ECCs, thereby its flexibility and
error correction is limited.

Straka et al. [15] propose four different fault-tolerant FPGA
architectures coupled with Partial Dynamic Reconfiguration
(PDR). This technique applies PDR through a hardware con-
troller and hence performs well in terms of speed and area.
In addition to the fault tolerant architecture, the authors also
propose a fault simulation framework to inject FPGAs with
SEUs. This framework is implemented externally to the FPGA
and injects errors through the JTAG interface. Though the
error correctability of such an architecture is quite good, it still
incurs a large penalty in terms of the area and power overhead
since the underlying fault masking principle still uses TMR or
DWC with voters or checkers. Additionally, the architectures
proposed are not flexible to other forms of error masking or
correction techniques.

Various other works [16]–[18] have been proposed that
are quite similar to the above mentioned works. However,
these works lack proper implementation of the proposed
architecture. As can be seen from Table I, current works
do not provide a flexible architecture to implement different
error detection/correction algorithms. Moreover, current works
lack a simple way to detect and correct burst errors without
expensive redundancy schemes. In this work, we aim to
provide a flexible scrubbing architecture and a design flow
with a robust implementation, which the user can use to

implement various algorithms.

IV. PROPOSED ARCHITECTURE

This section describes the features of the proposed generic
scrubbing-based hardware architecture, called the Fault-
Tolerance Module (FTM). This architecture allows custom
error detection/correction algorithms, which use ECCs, to be
implemented in a uniform design flow. Figure 1 describes the
top level architecture of an FPGA, which is divided in two
main regions — the Dynamic Region and the Static Region.
The dynamic region is composed of several applications
belonging to the user design. Through reconfiguration of the
FPGA, user applications can be easily added or removed from
the user design. The Static Region is the area that remains
static during the runtime of the FPGA and is an application-
independent region that is used to implement the logic of
the partial dynamic reconfiguration. Due to this independence
from the user design, it is an ideal region to place the FTM.
The FTM has two main interfaces — the ICAP configuration
port, which allows reading and writing frames from the user
design, and the flash memory port, which allows reading from
the flash memory. The flash memory contains the original
ECCs, which were previously computed for all the frames of
the user design as described in Figure 1.

The FTM consists of several sub-modules, with each one
implementing a specific function. Figure 2 shows the overall
FTM architecture, as well as the interconnection schematic
among the different sub-modules. The subsequent subsections
introduce these sub-modules and describe their function.

A. ICAP Interface Module (ICAPIM)

The ICAP Interface Module implements the suitable finite
state machine to read and write individual frames to/from
the user design. The reading process of a particular frame is
triggered by the Error Detection/Correction Module (EDCM)
and can be summarised by the steps shown in Figure 3–Top.
The reading process is initialized by the synchronization step,
which performs the necessary operations to synchronize the
ICAP and set up the “read mode”. Then, the address of the
frame to be read has to be written to the ICAP frame address
register and the reading operations can be performed. During
this step, the ICAP Interface Module (ICAPIM) receives the
frame data content word by word, through a 32-bit data bus.



Synchronization Set FAR address
Reading frame 

operation
Desynchronization

Synchronization
Set 

Device ID

Writing frame 

operation
Desynchronization

Set FAR 

address

Fig. 3. Top) ICAP frame reading flow; Bottom) ICAP frame writing flow

For example, Virtex-6 frames are composed by 81 words [19]
and Virtex-5 by 41 words [20]. Each frame word received from
the ICAP port is then stored inside registers within the Frame
Copy (FC). After the reading step, the ICAP desynchronization
operations are executed.

The writing process is also triggered by the EDCM upon
the detection and respective correction of the errors in the
Frame Copy. The writing process follows a similar flow to
the reading process, as described in Figure 3–Bottom [21],
[22]. The synchronization step is slightly different, since the
ICAP has to be set up in the “write mode”. Moreover, another
different is related with the device ID that has to be written
in the respective ICAP register.

B. Frame Copy (FC)

The Frame Copy implements a set of registers to store all
the words of a single frame, creating a 2D-bit matrix. By
storing the frame in registers, the error detection/correction
algorithm implemented in the EDCM can quickly access the
frame content in different ways, such as matrix rows, matrix
columns or even matrix diagonals. For instance, the algorithms
proposed by 2-D Hamming [8] and P 2H/H3 [11] require the
access to the matrix columns, i.e., the concatenation of one
bit of each register word. The implementation of this Frame
Copy memory is a way to overcome an intrinsic COTS FPGA
architectural limitation, since the COTS FPGA architecture
does not provide a direct access to the contents of the frame
as columns or diagonals through the ICAP Port.

C. Flash Interface Module (FIM)

The Flash Interface Module implements the hardware logic
to interface with the flash memory. At design time, the
computed ECCs of the user design frames are stored in the
flash memory. During the runtime execution, the ECCs of each
frame are read in the “burst mode”. With this option, the flash
reading process is faster, since flash device initialization steps
are only required for each frame and not for each ECC read.
The reading operation is triggered by the EDCM, which sends
an enable read signal and a flash address to the Flash Interface
Module. The flash address indicates the starting position where
the ECCs of a given frame are stored. During the reading
operation the ECCs are sent to the Auxiliary Memory, which
stores them internally.

D. Auxiliary Memory (AM)

Typically, the flash memory operates at a different frequency
than the ICAP. Therefore, in order to eliminate the need for
synchronization, an Auxiliary Memory is inserted in the flash

Synchronization
Set FAR 

address

Read frame 

operation
Desynchronization

Ham. 

Mask 

(bit 6)

Ham. 

Mask 

(bit 4)

Ham. 

Mask 

(bit 3)

Ham. 

Mask 

(bit 2)

Ham. 

Mask 

(bit 1)

Ham. 

Mask 

(bit 0)

Ham. 

Code (6)

Ham. 

Code (4)

Ham. 

Code (3)

Ham. 

Code (2)

Ham. 

Code (1)

Ham. 

Code (0)

Data 

Word

Ham. 

Mask 

(bit 5)

Ham. 

Code (5)

Fig. 4. Hamming Module – implementation architecture.

reading chain. This Auxiliary Memory has the capacity to store
the ECCs of two frames from two different regions. Therefore,
during the operation of error detection in one frame, using the
respective ECCs stored in one of the regions of the Auxiliary
Memory, the Flash Interface Module can parallely read the
respective ECCs of the next frame to be processed. These
ECCs are then stored in the other region of the Auxiliary
Memory that is not in use.

E. Hamming Module (HM)

The Hamming Module implements the necessary hardware
to compute the hamming codes of a generic input word
with a maximum length of 128 − 7 bits. The 7 bits are the
number of hamming bits that are embedded in a 128-bit word.
Figure 4 describes the internal hardware logic. Each hamming
bit is generated by XORing the significant input word bits
defined by the corresponding mask for that hamming bit. The
computed hamming code is then XORed with the original
hamming code stored in the flash, to identify any error in
the data word and its location.

F. Error Detection/Correction Module (EDCM)

The EDCM plays a central role since it triggers and controls
all the operations in the architecture. Figure 5 presents the
flowchart that describes the sequence of operations. When
the execution starts, the ECCs of frame n are read from
the flash and stored in one of the regions of the Auxiliary
Memory. Then, frame n is read from the ICAP and stored in
the Frame Copy. After these two operations, all the neces-
sary data becomes available for the execution of the custom
error detection/correction algorithm. First the error detection
operation is executed. If any error is detected in frame n, the
error correction operation is executed and frame n, which is
placed in the Frame Copy memory, is written back to the user
design through the ICAP Port. If frame n is free of errors
the next frame on the user design is read through the ICAP
Port. Note that during the reading of frame n from the ICAP,
the ECCs of frame n+1 are read from the flash device. With
this process, the corresponding ECCs of frame n are available
to be used by the error detection/correction algorithm when



Read ECCs of frame 

n from the flash
Start

Read frame n from 

the ICAP

Error detection

Read ECCs of frame 

n+1 from the flash

Any error 

detected?

Error Correction
Write frame n to the 

ICAP

n = n + 1

Y

N

Fig. 5. Error Detection/Correction Module – operations flowchart.

it starts processing frame n. Therefore, any interruption on
the algorithm execution is avoided, since the flash memory is
typically slower than the ICAP.

The dashed line in Figure 5 identifies the operations per-
formed by the custom error detection/correction algorithm.
The area of influence of these operations is well defined,
allowing an easy exchange of the algorithm in the proposed
architecture. Any exchange of the used algorithm can be
done transparently, i.e, without any interference or required
modifications in the other architecture modules.

V. DESIGN FLOW

Figure 6 illustrates the overall design flow of the proposed
generic scrubbing-based architecture. The steps in green high-
light the traditional flow of the design implementation. The
red and blue blocks are additional steps that have been added
in the proposed technique.

The first step in the flow is the generation of the error
correction module macro. This macro consists of the entire
FTM including the error detection/correction algorithm speci-
fied by the user. As mentioned in Section IV-F, the architecture
has been implemented in a way that is easy for the user to
insert any algorithm in the EDCM. Once the error correction
module macro has been generated, the macro is added to
the user design and is synthesized and routed along with the
user design. Once the bitstream is generated for the entire
design, including the error correction module macro, ECC
codes are computed and stored in the flash memory, which
is looked up during the runtime of the FPGA. The FPGA is
then finally configured with the generated bitstream. Once the
user design starts to run on the FPGA, the EDCM is initialized
and controls the error detection and correction processes as has
been explained in Section IV-F.

User Design

Synthesis

Placement &

 Routing

Bitstream 

Generation

FPGA 

Configuration

ECC Codes

Computation

Flash Memory

Configuration

Error Correction 

Module Macro

Fig. 6. Proposed solution – design flow.

VI. CASE STUDY AND EXPERIMENTAL RESULTS

This section evaluates the proposed hardware architecture
taking into account three error detection/correction algorithms
that already have been published. The next subsection presents
in detail these three algorithms.

A. Evaluated Error Detection/Correction Algorithms

Park et al. [8] propose a built-in 2-D Hamming Product
Code (2D − HPC) scheme. This technique, using ECC-
based scrubbing, is able to perform error correction by using
hamming codes built from arranging the FPGA configuration
frame in a 2-D array. Hamming codes are computed for each
row and column of this 2-D array at design time. At run-
time these rows and columns are iterated while computing
their ECCs and comparing with the ones stored earlier. The
algorithm iterates the rows and columns until all errors have
been corrected or until a predetermined number of iterations
is reached.

Venkataraman et al. [11] propose two ECC-based scrubbing
schemes to detect and correct errors in FPGAs. The H3

scheme applies SECDED hamming codes to a 2-D frame
matrix in 3 different directions: rows, columns and diagonals.
They claim that applying hamming code to diagonals improves
fault tolerance for burst errors. Moreover, the P 2H scheme
applies parity codes to the rows and columns, while applying
hamming codes to the diagonal. The P 2H scheme has a lower
ECC memory overhead than the H3 scheme due to the use of
parity codes for the frame rows and columns.

Table II summarizes the ECC memory overhead regarding
the FPGA frame size and error correction percentage1 for
each of the schemes discussed. H3 is ideal for applications
that require a high level of reliability, without any concern
about the resources used to achieve that level. P 2H is ideal
for applications that have more concerns on the memory
resources. Therefore, they are looking for a solution that uses

120 errors injected per frame (32× 32); H3 and P 2H results shown for
optimal schemes



TABLE II
RESULTS OF PREVIOUS WORKS ON ECC-BASED SCRUBBING

ECC memory overhead Error correction %

2D-HPC scheme [8] 40% 98%
H3 scheme [11] 60% 100%
P 2H scheme [11] 25% 80%

a lower number of resources, but at the same time keeps the
reliability levels high. Finally, the 2D − HPC scheme is a
combination of the previous two.

B. Proposed Architecture Implementation Results

The proposed architecture has been implemented and ver-
ified on two different Xilinx boards (one with a Virtex-5
XUPV5-LX110T and the other with a Virtex-6 XC6VLX240T-
f1156) with the three different error detection/correction al-
gorithms described in the previous subsection. The entire
architecture executes at 100MHz, the maximum frequency
recommended by Xilinx for the ICAP configuration port.
Table III presents the FPGA resources used by each module
in the FTM (Figure 2). As can be observed, the proposed
FTM is very dependent on the algorithms used to detect and
correct the errors in the configuration frames. The EDCM
that implements the algorithms is the module that uses most
of the FPGA resources. Among the algorithms, the P 2H ,
being the most complex, is also the one that consumes more
FPGA resources when compared to the others implemented
in the same FPGA. Moreover, P 2H also has the lowest
maximum working frequency. When we compare the FPGA
resources consumed by EDCM using same algorithm and
implemented in Virtex-5 and Virtex-6 FPGAs, the difference
can be explained by the length of the Frame Copy. In Virtex-
5 the frame length is 41 words, in contrast to the 81 words
per frame in Virtex-6. Moreover, the logic to access the 81
registers in the Frame Copy is bigger and more complex when
compared to the one that accesses 41 registers.

Table IV compares the proposed fault-tolerance architecture
with the Xilinx SEM IP Core. The proposed solution uses
more FPGA resources than the Xilinx solution for any algo-
rithm implemented in the EDCM. This trend is expected, since
the Xilinx solution is simpler than the implemented algorithms
in the EDCM. However, the Xilinx solution can only correct
one error per frame, since it generates the hamming codes
for the entire frame. In contrast, the implemented algorithms,
although more complex, present a much better error correction.
For instance, they can correct up to 55 errors per frame 100%
of the time (for the H3 scheme).

C. ICAP Controller

Table V presents the measured time to read and write one
FPGA configuration frame through the implemented ICAP
controller. The Virtex-5 reading and writing times are faster
than the Virtex-6 ones due to the difference in the size of
the frames. Virtex-5 contains only 41 words per frame as

TABLE IV
FPGA RESOURCES USED BY THE PROPOSED FTM

Mechanism Slices Registers (%) LUTs (%)
Virtex-5 Virtex-6 Virtex-5 Virtex-6

Xilinx SEM 1 1 1 1
FTM with 2D −HPC 2 1 7 4
FTM with H3 3 1 9 8
FTM with P 2H 3 1 15 15

TABLE V
ICAP – TIMING RESULTS.

Frame Operation Virtex-5 (µs) Virtex-6 (µs)

Reading 1.55 2.36
Writing 1.12 1.94

compared to 81 words for Virtex-6. This leads to a larger
time in reading and writing the frames for Virtex-6. Moreover,
the reading of a frame takes more time than the writing of
the frame due to the difference in the ICAP protocol for the
two processes. Since the reading protocol has an additional
synchronization steps before the frame can be read from the
ICAP Port, the time taken to read the frame is longer than the
time taken to write it.

D. Error Detection/Correction Algorithms – Timing Results

In order to test and evaluate the implemented error detec-
tion/correction algorithms, two main operations were consid-
ered. The first one is the time to detect errors in one frame.
This time includes the time to read one frame from the ICAP
port and to execute the algorithm. The second one is the time
to correct one error in a frame. This time includes the time
to read a frame from the ICAP port, the time to detect and
correct one error and finally the time taken to write back
the corrected frame into the ICAP port. For all the hardware
implementations, the clock frequency was set to 100MHz.
Table VI presents the obtained execution times. As expected,
the algorithms’ execution times on Virtex-6 are higher than
those of the implementations on Virtex-5, since the frame size
in Virtex-6 (81 words) is bigger than the one in Virtex-5 (41
words). Regarding the implementations on the same FPGA,
the obtained timing results are also according to expectations.
The 2D−HPC and P 2H have almost the same performance.
The former verifies the existence of errors on the rows and
columns of the frame matrix. The latter, for a small number
of errors, only checks for errors on one diagonal of the matrix
frame. H3 is the slowest, since it has to find errors on rows,
columns and diagonal of the frame matrix.

VII. CONCLUSION

With the increased importance of embedded systems and
proliferation of COTS FPGAs in both academic and com-
mercial sectors, the number of SEUs affecting such devices
have also been on the rise. This paper proposes a generic
architecture for such COTS FPGAs using scrubbing-based



TABLE III
FPGA RESOURCES USED BY THE PROPOSED FTM

Module Slices LUTs BRAMs FFs Max. Frequency (MHz)
Virtex-5 Virtex-6 Virtex-5 Virtex-6 Virtex-5 Virtex-6 Virtex-5 Virtex-6 Virtex-5 Virtex-6

ICAPIM 125 104 378 273 0 0 246 246 217.85 258.09
HM 13 9 19 19 0 0 6 7 245.76 411.69
AM 0 0 0 0 1 1 0 0 - -
FIM 10 15 20 25 0 0 55 34 338.61 508.38
EDCM+FC with 2D −HPC 1818 2916 4490 8240 0 0 1519 2876 147.92 168.86
EDCM+FC with H3 2155 4235 5930 15001 0 0 1552 2931 145.61 167.88
EDCM+FC with P 2H 4209 7758 9667 23301 0 0 1860 3338 144.64 164.59

TABLE VI
ERROR DETECTION/CORRECTION ALGORITHMS – TIMING RESULTS.

Algorithm Operation Virtex-5 (µs) Virtex-6 (µs)

2D −HPC
Detection 2.30 3.51
Correction 4.17 6.60

H3 Detection 3.82 4.64
Correction 5.61 8.80

P 2H
Detection 2.31 3.52
Correction 4.19 6.62

custom error correction algorithms. The architecture enables
the implementation of any algorithm that is based on scrubbing
and provides a simple design flow for the application synthesis.
Moreover, the architecture also supports error monitoring and
error correction. Such a design allows the user to choose
the error detection and correction algorithms suitable for the
application and implement them easily using the FTM macro.

The architecture has been implemented and verified on
two different Xilinx boards (Virtex-5 XUPV5-LX110T and
Virtex-6 XC6VLX240T-f1156) with 3 different error detec-
tion/correction algorithms proposed recently by other authors.
The implemented architecture occupies under 15% of the
overall FPGA size (for a Virtex-6 board) while taking care
of the error detection and correction process through reading
and writing frames from the FPGA ICAP module. A thorough
breakdown of the individual modules and their resources used
have also been presented.

Plans for the future work include releasing an open-source
tool to help integrate the proposed architecture into the user’s
design. Such a tool would enable researchers across the
world to compare error detection/correction algorithms based
on scrubbing on a common architecture and evaluate their
performance. Moreover, further optimization on the proposed
architecture in terms of area and power overhead will also be
carried out in extension to the current work.

REFERENCES

[1] I. Koren and C. Krishna, Fault-tolerant systems. Morgan Kaufmann,
2007.

[2] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and M. Wirthlin, “Improv-
ing FPGA Design Robustness with Partial TMR,” in 44th Annual IEEE
International Reliability Physics Symposium Proceedings, 2006.

[3] C. Bolchini, D. Quarta, and M. D. Santambrogio, “SEU mitigation
for SRAM-based FPGAs through dynamic partial reconfiguration,” in
Proceedings of the 17th ACM Great Lakes symposium on VLSI, 2007.

[4] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan, “Push-assisted
migration of real-time tasks in multi-core procs,” SIGPLAN Not., 2009.

[5] C. Carmichael, M. Caffrey, and A. Salazar, “Correcting Single-Event
Upsets Through Virtex Partial Configuration,” Xilinx, Tech. Rep., 2000.

[6] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA partial reconfig-
uration via configuration scrubbing,” in Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference on, 2009.

[7] K. Chapman, “SEU Strategies for Virtex-5 Devices,” Xilinx Application
Note, 2010.

[8] S. P. Park, D. Lee, and K. Roy, “Soft-error-resilient FPGAs using built-
in 2-D Hamming product code,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 20, pp. 248–256, 2012.

[9] M. Lanuzza, P. Zicari, F. Frustaci, S. Perri, and P. Corsonello, “A self-
hosting configuration management system to mitigate the impact of
Radiation-Induced Multi-Bit Upsets in SRAM-based FPGAs,” in IEEE
International Symposium on Industrial Electronics, 2010.

[10] C. Argyrides, D. K. Pradhan, and T. Kocak, “Matrix codes for reliable
and cost efficient memory chips,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2011.

[11] S. Venkataraman, R. Santos, S. Maheshwari, and A. Kumar, “Multi-
directional error correction schemes for SRAM-based FPGAs,” in Field
Programmable Logic and Applications (FPL), 2014 24th International
Conference on, 2014.

[12] M. Straka, L. Miculka, J. Kastil, and Z. Kotasek, “Test platform for
fault tolerant systems design properties verification,” in Design and
Diagnostics of Electronic Circuits & Systems (DDECS), 2012 IEEE 15th
International Symposium on, 2012.

[13] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Impact of
Scaling on Neutron-Induced Soft Error in SRAMs From a 250 nm to a
22 nm Design Rule,” Electron Devices, IEEE Transactions on, 2010.

[14] P. M. B. Rao, M. Ebrahimi, R. Seyyedi, and M. B. Tahoori, “Protect-
ing SRAM-based FPGAs Against Multiple Bit Upsets Using Erasure
Codes,” in Proceedings of the 51st Annual Design Automation Confer-
ence, ser. DAC ’14, 2014.

[15] M. Straka, J. Kastil, Z. Kotasek, and L. Miculka, “Fault tolerant
system design and SEU injection based testing,” Microprocessors and
Microsystems, vol. 37, pp. 155–173, 2013.

[16] Z. Ghaderi, S. Miremadi, H. Asadi, and M. Fazeli, “HAFTA: Highly
Available Fault-Tolerant Architecture to Protect SRAM-Based Recon-
figurable Devices Against Multiple Bit Upsets,” Device and Materials
Reliability, IEEE Transactions on, vol. 13, pp. 203–212, 2013.

[17] G. L. Nazar, L. P. Santos, and L. Carro, “Scrubbing Unit Reposi-
tioning for Fast Error Repair in FPGAs,” in Proceedings of the 2013
International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, 2013.

[18] A. Harding and M. Wirthlin, “Improving the Reliability of Xilinx 7
Series FPGAs through Configuration Scrubbing,” 2014.

[19] Virtex-6 FPGA Configuration User Guide, UG360 (v3.8), Xilinx Inc.,
2014.

[20] Virtex-5 FPGA Configuration User Guide, UG191 (v3.2), Xilinx Inc.,
2008.

[21] ML505 Evaluation Platform User Guide, UG347 (v3.1.2), Xilinx Inc.,
2011.

[22] Virtex-6 FPGA ML605 Hardware User Guide, UG534 (v1.8), Xilinx
Inc., 2012.


