
SINGH et al.: RESOURCE AND THROUGHPUT AWARE EXECUTION TRACE ANALYSIS FOR EFFICIENT RUN-TIME MAPPING ON MPSOCS 1

Resource and Throughput Aware Execution Trace
Analysis for Efficient Run-time Mapping on

MPSoCs
Amit Kumar Singh, Member, IEEE, Muhammad Shafique, Member, IEEE, Akash Kumar, Senior Member, IEEE,

Jörg Henkel, Fellow, IEEE

Abstract—There have been several efforts on run-time map-
ping of applications on Multiprocessor-Systems-on-Chip (MP-
SoCs). These traditional efforts perform either on-the-fly pro-
cessing or use design-time analyzed results. However, on-the-fly
processing often leads to low quality mappings, and design-time
analysis becomes computationally costly for large-size problems
and require huge storage for large number of applications. In
this paper, we present a novel run-time mapping approach, where
identification of an efficient mapping for a use-case is done by
the online execution trace analysis of the active applications. The
trace analysis facilitates for fast identification of the mapping
while optimizing for the system resource usage and throughput
of the active applications, leading to reduced energy consumption
as well. By rapidly identifying the efficient mapping at run-time,
the proposed approach overcomes the mappings’ exploration time
bottleneck for large-size problems and their storage overhead
problem when compared to the traditional approaches. Our
experiments show that on average the exploration time to
identify the mapping is reduced 14× when compared to state-
of-the-art approaches and storage overhead is reduced by 92%.
Additionally, energy and resource savings are achieved along with
identification of high quality mapping.

Index Terms—Embedded Systems, Multiprocessor-Systems-on-
Chip (MPSoCs), run-time mapping, design space exploration,
throughput constraint

I. INTRODUCTION

APPLICATION mapping on Multiprocessor-Systems-on-
Chip (MPSoCs) has been identified as one of the most

important problems in embedded systems design [1]–[3]. Un-
der dynamic workloads, run-time mapping is required in order
to optimize for performance and energy consumption towards
fulfilling the end user demands. The run-time mapping can
be accomplished either with or without previously analyzed
results. For mapping without previously analyzed results, i.e.,

Manuscript received August 01, 2014; revised December 20, 2014. This
work is supported in part by the Tier 2 Singapore Ministry of Education
Academic Research grant number R-263-000-B33-112 and German Research
Foundation (DFG) as part of the Transregional Collaborative Research Centre
Invasive Computing [SFB/TR 89]; http://invasic.de

A. K. Singh is with the Department of Computer Science, University of
York, York YO10 5GH, UK (email: amit.singh@york.ac.uk)

A. Kumar is with the Department of Electrical and Computer En-
gineering, National University of Singapore, Singapore 117583 (e-mail:
akash@nus.edu.sg).

M. Shaque and J. Henkel are with the Chair for Embedded Systems, Karl-
sruhe Institute of Technology, Karlsruhe 76131, Germany (e-mail: muham-
mad.shafique@kit.edu; henkel@kit.edu).

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

1 2
5

15
52

203
877

4,140
21,147

115,975
678,570

4,213,597
27,644,437

190,899,322

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u
m
b
er
 o
f
M
ap

p
in
gs

Number of Tasks

220
days

1
2

5
15

52
203

877

4,140

21,147

115,975

678,570

4,213,597

27,644,437

190,899,322

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u
m
b
er
 o
f
M
ap
p
in
gs

Number of Tasks

1000000000

220
days

Fig. 1: Number of possible mappings with varying number of
tasks.

on-the-fly processing, a large body of research exists [4]–[7].
Efficient heuristics have been used to assign new arriving tasks
on the system resources. These heuristics may not guarantee
schedulability and a high quality mapping due to limited
processing power at run-time.

To overcome the run-time processing bottleneck, recently,
the focus has moved to shift the compute intensive analysis
to design-time [8]–[13]. The analyzed results are used at
run-time to facilitate efficient run-time mapping. Such map-
ping approaches also facilitate for a light-weight run-time
platform manager, which is required in modern embedded
systems (e.g., smart phones and tablets). During the analysis,
Design Space Exploration (DSE) is performed to generate
multiple mappings for an application or a use-case (i.e., a set
of simultaneously active applications) [14]. These mappings
are then used to handle dynamism in resource availability
and throughput requirement at run-time. The literature has
advanced for the DSE [15]–[19], but DSE process still imposes
high computational cost. The simulation time to evaluate the
design points (mappings) forms the real bottleneck in the
DSE. Additionally, computational complexity of DSE brings
major concern for the cases when the application/platform
complexity (size) is high and the number of use-cases is
huge due to large number of applications. Such cases require
evaluation of a huge number of mappings.

An example: Fig. 1 shows the number of all the unique
possible mappings as the application complexity increases in
terms of number of tasks. The number of mappings follows

SINGH et al.: RESOURCE AND THROUGHPUT AWARE EXECUTION TRACE ANALYSIS FOR EFFICIENT RUN-TIME MAPPING ON MPSOCS 2

Bell Number [20]. For n = 14, a total of 190,899,322 mappings
are possible (formula provided in later section), which will
take approximately 220 days for evaluation if we assume just
100 milliseconds (ms) to evaluate (simulate) one mapping.
Therefore, computational complexity of DSE needs to be
reduced in order to have an acceptable exploration time.

To accelerate the DSE, state-of-the-art efforts employ either
heuristics to prune the design space [8]–[12] or analyti-
cal estimations along with simulations to perform fast and
accurate evaluations [18], [21]–[24]. The design space is
pruned by performing optimization for one or several metrics,
e.g., performance [12], power [8], and jointly performance
and power [9]–[11]. The approaches employing design space
pruning have several drawbacks such as chances to miss the
evaluation of efficient mappings. Furthermore, they use pure
simulative evaluations and thus exhibit long exploration time
that may not be acceptable. To reduce the exploration time, the
DSE approaches in [18], [21]–[24] employ estimations along
with simulations. They use analytical estimation models to
rapidly identify the points of interest in the design space and
then use simulative evaluations on the identified points for
accurate evaluations.

It should be noted that most of the DSE strategies per-
form exploration for individual applications one after another
(e.g., [12], [13], [15]–[17], [19]). Therefore, we might not
get efficient mappings for all the active applications at run-
time by mapping them one by one. This happens because
the availability of system resources for different applications
varies over time. Therefore, jointly optimizing for all the active
applications at the same time may lead to better results.

There has been some focus on multiple applications DSE,
where multiple application mapping scenarios are explored at
design-time in order to handle dynamism in number of active
applications (use-case or scenario) at run-time [25]–[28]. For
n applications, there are 2n possible use-cases (scenarios).
This indicates that scenario based DSE is not scalable as
the number of scenarios increases exponentially with the
number of applications. Additionally, storage overhead to store
mappings for various use-cases becomes huge. Therefore, there
is a need to devise a strategy for rapid identification of
the efficient (maximum throughput) mapping at run-time for
different use-cases in order to overcome the issues such as
joint optimization for active applications, exploration time and
storage overhead.

Our Novel Contributions and Concept Overview: In
order to address the above-discussed challenges, we propose:

1) A run-time trace analysis strategy to rapidly identify
the efficient mapping for supporting a use-case. The
strategy analyses the execution traces of applications
within the use-case and performs mapping identification
while maximizing for the throughput and resource usage.

2) To enable run-time trace analysis, a design-time strategy
to extract and store the execution traces of individual
applications that are used by the run-time platform
manager during various use-case executions.

3) A trace storage overhead reduction strategy to reduce
the memory requirement.

For each application, the design-time strategy stores exe-

cution traces for 1 task to 1 core mapping such that each
core contains exactly 1 task. This kind of mapping enables
to exploit maximum task level parallelism present in the
application. The run-time identified mapping excels in terms
of several performance metrics such as throughput, energy,
resource usage, etc. The analysis strategy looks at the idle
time of a core and sees if any other executions can be placed
on the same core with minimal throughput degradation of
the use-case applications towards satisfying the throughput
constraints. Our approach performs fast, accurate and high
quality identification at run-time. To the best of our knowledge,
this is the first work that addresses run-time trace-based
analysis for rapid identification of the efficient mapping for
a use-case.

Paper Organization: The remainder of this paper is or-
ganized as follows. Section II introduces some related work.
Section III and IV present system model and a motivational ex-
ample to perform trace-based DSE, respectively. The proposed
novel run-time mapping approach is described in Section V.
Section VI describes our experiments and comparison to the
state-of-the-art. Finally, Section VII concludes the paper.

II. RELATED WORK

The mapping process can be accomplished either at design-
time or run-time. Design-time mapping techniques (e.g., [29]–
[33]) are suitable for static workload scenarios (e.g., a prede-
fined set of applications to be mapped on a static platform) and
thus cannot handle dynamism in applications incurred at run-
time. Examples of dynamism could be supporting different
use-cases at different moments of time. The need of run-
time mapping techniques is witnessed to handle such dynamic
workloads.

The run-time mapping techniques face the challenge to
efficiently map tasks of required applications on the plat-
form resources while keeping accurate knowledge of resource
occupancy. The reported literature on run-time mapping has
broadly spanned in two directions: 1) on-the-fly mapping, and
2) mapping using design-time DSE results.

The on-the-fly mapping techniques perform all the required
computations as and when an application or a set of ap-
plications (referred to as use-case) need to be supported
into the system. There are numerous efforts on on-the-fly
mapping [4]–[7], [34]–[36]. These efforts use different kinds
of heuristics to assign tasks of incoming applications on the
system resources while putting the best efforts to optimize for
one or several performance metrics such as overall execution
time and energy consumption. Since the tasks are assigned
(mapped) to resources by taking quick on-line decisions due
to limited on-line processing capability, these techniques might
lead to low quality mapping.

The mapping techniques using design-time DSE results
achieve a better quality of mapping than the on-the-fly tech-
niques as better mapping decisions taken at design-time are
used [8]–[13]. During the design-time DSE, several mapping
options are explored and those providing high quality for
different kinds of run-time scenarios are stored to be used
at run-time. The run-time process just selects the design-
time computed mapping and configures the platform based

SINGH et al.: RESOURCE AND THROUGHPUT AWARE EXECUTION TRACE ANALYSIS FOR EFFICIENT RUN-TIME MAPPING ON MPSOCS 3

NI
IP

Core NI
IP

Core

NI
IP

Core
NI

IP
Core

L

LL

L

NI

M

P

Core 1

In
te

rc
on

ne
ct

NI

M

P

Core k

t1

t2 t3

t4

(a) Application Model

. . .

(b) Platform Model

e1 e2

e3 e4

Mapping

Task Set T = {t1,t2,t3,t4}
Edge Set E = {e1,e2,e3,e4}

Fig. 2: Example application model, platform model, and
mapping of application tasks on platform resources.

on the corresponding tasks to resources allocation. Although
these approaches provide better quality of mapping, they
incur high storage overhead requirement for large-size appli-
cations/platforms in order to keep the design-time explored
mappings to be used at run-time.

Further, the design-time DSE approaches are computation-
ally costly and cannot finish the evaluation within a limited
time for large-size problems. The main reason being the simu-
lation time to evaluate each explored candidate mapping. De-
sign space pruning (e.g., in [8]–[12]) and analytical estimations
along with simulations (e.g., in [18], [21]–[24]) are employed
to accelerate the DSE process. The design space pruning and
analytical estimations may result in inefficient mappings due
to discarding evaluation of efficient mappings and inaccurate
estimations, respectively. Our previous studies have shown
that design-time DSE strategies employing pruning provide
mapping solutions that are non-optimal by 10%, i.e. 10%
deviation from the optimal solution [12].

Despite taking several measures to accelerate the DSE
process, the exploration time by existing design-time DSE
strategies still remains quite high to be applied to identify the
high quality mapping at run-time. Further, the DSE approaches
require large storage space to store several potential mappings.
In contrast to existing approaches, our approach performs
fast and accurate identification of an efficient mapping at
run-time in order to support a use-case, and overcomes the
exploration time and storage space problem of design-time
approaches. Our run-time approach analyses execution traces
of the active applications within the use-case to identify the
efficient mapping. The execution traces of all the applications
that might need to be supported into the system in various
combinations are extracted and stored at design-time in order
to use them at run-time. Additionally, our approach leads
to reduced energy consumption and better resource usage
(supporting results in Section VI).

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Application and MPSoC Platform Model

An application is a directed graph AG = (T,E), where T
is the set of tasks of the application and E is the set of directed
edges representing dependencies amongst the tasks. Fig. 2(a)
shows an example application graph model. Each task t ∈ T

has attributes 1) execution time (ExecTime) and 2) memory
requirement, when mapped on a core. The ExecTime for each
task is considered as its worst-case execution-time (WCET)
and remains fixed. Each edge e ∈ E represents data that is
communicated between the dependent tasks.

An MPSoC platform is a directed graph PG = (C, V),
where C is the set of cores and V represents the connections
amongst the cores. Fig. 2(b) shows an example platform graph
model. Each core c ∈ C consists of a processor (P), a local
memory (M) and a network interface (NI). The communication
amongst the cores is established by connecting them to a mesh-
based interconnection network through the respective network
interface. Each connection v ∈ V connects two cores and
contributes to the network. Dedicated connections are used
to facilitate communications and thus latency (communication
time) between cores remains constant. Examples of such
network include circuit-switched networks (e.g., AEthereal
[37]) that provide guaranteed throughput, implying constant
latency.

B. Total Energy Consumption Model

The total energy (Etotal) is computed as the sum of dynamic
and static energy as follows.

Etotal = Edynamic + Estatic (1)

where Edynamic is computed as the sum of communication
(Ecomm) and computation (Ecomp) energy, which are required
to transfer and process the data, respectively [12].

The Ecomm depends upon 1) data volume, 2) energy re-
quired to transfer one bit of data and 3) distance between the
communicating points (cores). Energy required to transfer one
bit between core ci and cj is computed as follows.

Ebit(i, j) = Elink
bit × (hops(i, j)− 1) + Erouter

bit × hops(i, j)
(2)

where hops(i, j) are the number of routers between core ci
and cj , and Elink

bit and Erouter
bit are the energy consumed in link

and router, respectively. The Ecomm is estimated by summing
over all communicating task pairs (edges).

Ecomm =
∑

∀comm−cores

data(i, j)× Ebit(i, j) (3)

where data(i, j) is the transferred data volume between com-
municating cores ci and cj . The computation energy to process
all the tasks is estimated as follows.

Ecomp =
∑
∀t∈T

tExecTime × Pdynamic (4)

where Pdynamic is dynamic power consumption of a core.
The Estatic for each core is computed as the product of

overall execution time of the use-case (or application) and
static power consumption of the core. For p used cores, total
static energy is computed as p × Estatic, and unused cores
are considered as power gated so that they don’t contribute to
the overall energy consumption.

SINGH et al.: RESOURCE AND THROUGHPUT AWARE EXECUTION TRACE ANALYSIS FOR EFFICIENT RUN-TIME MAPPING ON MPSOCS 4

C. Mapping Problem

Mapping of an application AG on MPSoC platform PG is
represented as follows.

Mk : AG
map−−−→
n

PG (5)

which assigns n application tasks to k used platform cores.
Fig. 2 indicates mapping of an application with 4 tasks on
platform cores, where t1 and t4 are mapped on core 1 and core
k, respectively, and remaining tasks (t2 and t3) are mapped
on some other platform cores. The application can use a
maximum of 4 cores by allocating 4 tasks on 4 different cores.
Each used core ci gets associated with a set Si, which contains
the tasks mapped on ci. A use-case mapping can be achieved
in the similar way by considering the tasks of all the active
applications.

The total number of mappings to assign n tasks on k cores
subject to at least one task on each core follows Stirling
numbers of the second kind that provides the number of ways
to place n labeled balls (tasks) into k unlabeled boxes (cores)
[38], and is computed as follows.

S(n, k) =
1

k!

k∑
j=0

(−1)k−j(kC2)j
n (6)

kC2 is k-choose-2, and S(n, n) = S(n, 1) = 1.
For n tasks, the total number of mappings using 1 core to

n cores follows Bell number and can be computed as follows.

Bn =

n∑
k=0

S(n, k) (7)

For n=10, Bn = 115,975 mappings. The number of map-
pings increases with number of tasks n and thus the overall
evaluation time. Even employing design space pruning cannot
overcome the evaluation time bottleneck as evaluation of each
mapping takes several milliseconds [39]. Further, design space
pruning lead to several other deficiencies as mentioned earlier.

At run-time, the mapping problem in this paper targets
following constraints and objectives.
Constraints: number of available cores.
Objectives: minimize exploration time; maximize throughput
and resource usage (leading to reduced energy consumption).

IV. MOTIVATION FOR TRACE-BASED ANALYSIS

This section discusses the importance of trace-based anal-
ysis towards performing rapid DSE. Let us consider a simple
example of a use-case containing two multimedia applications:
H.263 and JPEG decoder, which needs to be supported into
the system at run-time.

The applications can be modeled using directed graphs
(DGs) as described in Section III-A. However, we choose a
special class (or subset) of DG called Synchronous Data Flow
Graphs (SDFGs) (details in [40], [41]) that are often used to
model multimedia applications with timing constraints. The
reason behind choosing the SDF is that it provides easier
modeling of multimedia applications and techniques to com-
pute various SDF parameters such as throughput and storage
requirements already exist. Without the loss of generality,

other application models falling into DG category, e.g. CSDF,
can also be considered. The left hand sides of Fig. 3(a) and (b)
show SDFG models of H.263 and JPEG decoder, respectively.
The nodes of an SDFG are referred to as actors, which
implement functions to be executed by reading tokens (data)
from the input edges and write the execution outcomes as
tokens on the output channels. An actor consumes a fixed
amount of tokens from the input edges and produces a fixed
amount of tokens on the output edges upon firing (execution).
An actor fires (executes) when there are sufficient input tokens
on all of its input edges and sufficient buffer space on all of
its output channels. These token amounts are also referred to
as rates. The edges may contain initial tokens, as indicated
by bullet points in Fig. 3(a) and (b). In Fig. 3, H.263 decoder
contains 4 actors connected by edges and there are 6 actors in
the JPEG decoder.

The multimedia applications are characterized by through-
put constraints [42]. Throughput is determined as the in-
verse of the long term period (i.e. the average time needed
for one iteration of the application). For the example
H.263 decoder, period is equal to the summation of Ex-
ecTime(VLD), 2376×ExecTime(IQ), 2376×ExecTime(IDCT)
and ExecTime(MC), where ExecTime is the WCET of respec-
tive actors. This period does not include network and memory
access delays. It should be noted that actors IQ and IDCT have
to execute 2376 times in one iteration (periodic execution)
and the number of executions for each actor is referred to
as repetition vector of the actor. The rate 2376 defines a
resolution of 348 by 288 pixels for the used video frames.
An SDFG with a throughput of 100 Hz has a period of 10
milliseconds (ms), i.e. takes 10 ms complete one iteration.

State-of-the art methodologies (like [8]–[12]) select the best
mapping for all the actors (4 actors of H.263 & 6 actors of
JPEG) from the design-time DSE mappings. The exhaustive
DSE explores 115,975 mappings for a total of 10 actors,
leading to unacceptable exploration time. Even employing
heuristics based explorations to prune the design space cannot
overcome the exploration (evaluation) time bottleneck as the
design space still remains quite huge. Further, such explo-
rations need large storage to store several potential mappings.

It may be beneficial to analyze the execution traces of active
applications (e.g., H.263 & JPEG decoder) to identify the
efficient mapping rapidly. The execution traces of the actors
are captured as the start and end time of their active executions
(firings) and are shown on the right hand side of Fig. 3(a) and
(b) for H.263 and JPEG decoder, respectively. In the shown
executions, each actor and edge is mapped on a different core
and connection between cores, respectively. First, actor VLD
executes for both the applications as there are sufficient input
(initial) tokens on the incoming edges e4 and e6 for H.263
and JPEG, respectively. Thereafter, for H.263, it generates
2376 tokens to be transferred through e1 to process them
one by one by IQ, whereas 6 tokens are generated for JPEG.
The transfer of tokens through edges and their processing by
different actors follows the traces shown in Fig. 3(a) and (b).
For easier understanding and space limitations, the shown trace
considers rates as 3 in places of 2376 and 6. Thus, actors fire
maximum 3 times. It should also be noted that applications

SINGH et al.: RESOURCE AND THROUGHPUT AWARE EXECUTION TRACE ANALYSIS FOR EFFICIENT RUN-TIME MAPPING ON MPSOCS 5

execution-time
of IDCT

MC

IDCT

IQ

VLD
2376

2376

11

1

1

1

1

e1

e2

e3e4

actor
edge

initial tokens
1

input token

output tokens

[26018]

[559]

[486]

[10958]

H.263 decoder

(a) H.263 decoder and its execution trace

(b) JPEG decoder and its execution trace

(c) Packed used and unused time intervals

Fig. 3: Execution trace analysis of applications’ traces to identify an efficient mapping.

exhibit periodic executions, i.e. actor VLD for H.263 and JPEG
fires again after finishing the execution of actors MC and col-
conv, respectively, and similar execution patterns are followed
in the upcoming periods.

Observation: An analysis can be performed to utilize the
used and unused time intervals information represented with
different shades in Fig. 3(a) and (b) towards merging unused
time (idle time) on one core with used times (busy times) on
other core if the executions (used intervals) are not in parallel.
Thus, the core utilization will get increased by imposing
more executions (used time intervals) on it and almost similar
execution can be performed with less number of cores for both
the applications.

A Potential Solution: Fig. 3(c) shows one potential solution
to pack (merge) used and unused time intervals towards
identifying an efficient actors to cores mapping, where only
5 cores are used for the 10 actors and similar execution
patterns as that of Fig. 3(a) and (b) are achieved for both
the applications. Thus, the efficient mapping can be rapidly
identified by trace analysis and merging. However, high quality
and accurate identification is challenging. In the following,
we propose an approach that overcomes the aforementioned
challenges.

V. PROPOSED RUN-TIME MAPPING APPROACH

An overview of our proposed run-time mapping approach
is presented in Fig. 4, which operates in three main steps
(explained in subsequent sections).
• Execution trace extraction of individual applications.
• Trace storage optimization to reduce storage overhead.
• Run-time trace analysis to identify the efficient mapping

in terms of resource usage, throughput and energy con-
sumption in order to support a use-case.

A. Execution Trace Extraction

The execution trace extraction is performed during the
course of throughput computation for a given actors-to-cores
mapping. For throughput computation (not a contribution of
this paper), we deploy the technique of [39]. For each core,
the technique first constructs static-order schedule that orders
the execution of bound actors. Then, all the binding and
scheduling decisions are modeled in a graph called binding-
aware SDFG. Finally, self-timed state-space exploration of the
binding-aware SDFG is performed and throughput is computed
from the periodic part of the state-space.

Trace Capturing: The execution traces of actors of an
application are captured as the start time (ST) and end time
(ET) of their active executions (firings) during one periodic

SINGH et al.: RESOURCE AND THROUGHPUT AWARE EXECUTION TRACE ANALYSIS FOR EFFICIENT RUN-TIME MAPPING ON MPSOCS 6

App.A App.NApp.B

a1

a2
a3

b1

b2

b4

b3

Execution Trace Extraction (Section V-A)

Platform Manager - Employ Trace Analysis (Section V-C)

Resource and Throughput Optimized Mapping

Available Resources
Use-case

(Active Applications)

Throughput

Requirements

D
es

ig
n

-t
im

e
R

u
n
-t

im
e

Trace Storage Optimization (Section V-B)

n1

n2 n4

n3

Optimized Execution Traces

Fig. 4: Overall Flow of the proposed mapping approach
showing the design-time and run-time steps.

execution. The traces are extracted for 1 actor to 1 core
mapping (as shown in Fig. 3(a) and (b)) in order to exploit
maximum task level parallelism. In case there is overlapping
executions amongst multiple iterations, in steady state, there
will be a periodic execution of the application containing
some overlaps. This is due to the fact that in steady state
self-timed execution the application executes periodically and
one period may contain multiple iterations of an SDF graph
application. We capture all the executions during one periodic
execution and there might be overlapping executions as well.
This indicates that our approach is applicable to different kinds
of SDF graphs as they exhibit periodic execution behavior.

During trace capturing, we consider worst-case latency, i.e.
the maximum possible hop in the architecture and thus results
are valid for runtime mapping resulting in different hops. It
should be noted that the communication latency for different
hops in our considered architecture that uses dedicated end-
to-end connections to model the mesh does not vary a lot, e.g.
10 cycles for one hop and 16 cycles for 6 hops. Further, the
actors execution times are in the order of thousands of cycles,
whereas edges execution times are in the order of dozens of
cycles, and most of the time edges execute in parallel with
actors. Therefore, the edges execution has only a slight impact
on the overall execution of the application. This indicates that
the worst-case latency can be chosen as a safe bet and also
helps to cope with the worst-case behavior at runtime.

B. Trace Storage Optimization

We store the traces obtained in the previous step in an
optimized way so that the storage overhead is reduced. For
multiple executions of an actor a on a core t within a periodic
execution of the application, the start and end time of the
first execution (ST1stFire and ET1stFire) and an addition
factor (AF) is stored to get the start and end time of further
executions within the first periodic execution. The total number
of executions (nrExecs) of a on t within a period is also

stored to keep a track of the overall executions on t. The
addition factor (AF) is computed as follows:

AF = ExecT ime(a) +Delay(eoutgoing−from−a) (8)

where ExecTime(a) is obtained as (ET1stFire − ST1stFire)
and delay of outgoing edge of a (Delay(eoutgoing−from−a))
is obtained from the execution traces. In case of multiple
outgoing edges, the edge having maximum execution time
is considered. For all the executions of an edge, the latency
remains constant as dedicated connections are used.

For kth firing of the actor a, the start time STkthFire and
end time ETkthFire are calculated as follows:

STkthFire = ST1stFire + (k − 1)×AF

ETkthFire = STkthFire + ExecT ime(a)
(9)

It is evident that ST1stFire, ET1stFire, AF and nrExecs of
an actor a are sufficient to construct the remaining executions
of a within the first periodic execution of the application, e.g.
remaining executions of actor IQ of H.263 decoder shown in
Fig. 3(a) can be constructed for the first period (from 0 to
P1). In order to construct the execution traces of an actor over
different periodic executions of the application, period P of the
application also needs to be stored. For example, for second
periodic execution (from P1 to 2P1) of H.263 decoder in Fig.
3(a), ST1stFire and ET1stFire of actor IQ are constructed by
adding period P1 to the respective stored values of ST1stFire

and ET1stFire for first periodic execution (from 0 to P1),
and the start time and end times for the remaining executions
(nrExecs-1) of IQ are achieved by employing Equation 9.
Therefore, ST1stFire, ET1stFire, AF and nrExecs of each
actor of the application needs to be stored along with the
application period P to construct the whole execution trace.

Such storing shows significant reduction in the storage
overhead. We demonstrate trace storage optimization for the
multiple executions of actor IQ on core 2 for the H.263
decoder as shown in Fig. 3(a). Actor IQ executes 2376 times
on core 2 in practice. For 2376 executions on core 2, we need
to store only ST1stFire and ET1stFire from traces, computed
AF and nrExecs as 2376. These information are sufficient
to calculate ST and ET of any firing, and overall used time
interval by IQ on core 2.

It should be noted that for the cases when execution pattern
on a core is not consistent (uniform), i.e. executions are not
always separated by a fixed time interval, the start time and end
time of all the executions are stored for one periodic execution.
The period of the application is also stored to construct the
execution traces in different periodic executions as described
earlier. Therefore, in such cases, trace storage optimization
cannot be performed for the executions within a period.

C. Run-time Trace Analysis to Identify Mapping

In order to map applications at run-time, the platform
manager is invoked to find a mapping. The manager takes
the execution traces of the applications to be supported on the
platform and identifies the resource and throughput optimized
mapping based on the number of available cores in the
platform in order to satisfy the throughput requirements. These
active applications form a use-case. The platform manager is

SINGH et al.: RESOURCE AND THROUGHPUT AWARE EXECUTION TRACE ANALYSIS FOR EFFICIENT RUN-TIME MAPPING ON MPSOCS 7

IQ

MC

IQ IQ

IQ IQ IQ

Longest Available Slot

Time

S1

S2

S3

Pack

Best Fit Slot

Longest Available Slot Packing Aim

Best Fit Slot Packing Aim

Core 1

Core 2

0

Fig. 5: Slots formation and aims of proposed approaches to
pack the next slot.

invoked to find a mapping whenever the use-case, i.e. the set of
active applications to be supported at run-time changes. The
manager adopts a trace analysis strategy to rapidly identify
the mapping. Our strategy tries to maximize throughput by
allowing minimum throughput degradation while packing the
execution traces of applications on a given number of available
cores. The executions are tried to be packed as soon as possible
so that there is minimum stretching in the overall execution
trace, resulting in minimum throughput degradation.

The proposed trace analysis strategies utilize used (filled)
and unused (empty) slots of cores, where used slots are formed
by combining multiple adjacent executions (firings) of the
same actor if the gap between adjacent executions is less than
smallest execution time amongst all the actors. The start and
end time of a slot Sn (STSn and ETSn) are determined as
follows:

STSn = STFirstF ire

ETSn = ETLastFire

(10)

provided the smallest execution cannot fit in between any
of the adjacent executions between the first and last firing.
The idle periods define unused slots. The communication
overhead between actors is considered by assigning start time
of each slot after the dependent actor/edge executions. Fig.
5 shows the formed used slots of actors IQ of H.263 and
JPEG decoder when mapped on two separate cores core 1 and
core 2 (executions taken from Fig. 3 (a) and (b)). The formed
slots are S1 and S2, which contain 3 adjacent executions. An
actor may fire a large number of times, e.g., IQ of H.263
decoder fires 2376 times in practice, therefore, forming a slot
of 2376 firings will facilitate for coarse-grained (block level)
processing, resulting in faster computations when compared to
the firing level (fine-grained) processing.

In order to pack a used slot (e.g., S3) of a core on an
unused slot from various unused slots of different cores, we
proposed two strategies. The first strategy aims to choose
longest available (unused) slot as shown in Fig. 5. For a used
slot to be packed (Spack), the available capacity AC (in cycles)
of each core is determined as follows:

ACcore = ETSpack
− ETSLastPackedOn core

(11)

where ET represents the end time. For example, in Fig. 5,
available capacity of core 1 to pack S3 is the difference of
ETS3 and ETS1. If there is no earlier packed slot on the core,
the value of ETSLastPackedOn core

is zero. The second strategy
aims to choose the smallest possible slot, i.e. the best fit slot.

Algorithm 1: Longest Available Slot Packing
Input: Apps, thrConstraints, ExecTraces of Apps using k cores,

available cores p.
Output: efficient mapping using a maximum of p cores.
for each application app do

Pappconstraint =
1

appthrConstraint
;

end
Find Least Common Multiple LCM of periodic constraints
(Pappconstraint) of all Apps;
for each application app do

nrOfExecution[app] = LCM
Pappconstraint

;
end
Construct execution traces of each application based on
nrOfExecution;
Construct Used Slots of k cores;
Sort all slots in ascending order based on their ET;
//pack slots of k cores to p cores
nrEmptyCore = p;
for each slot s do

if packing of actor in s is not fixed then
Calculate available capacities ACs of all the cores (∈
p) by Equation 11;
[UsedCores,ACUsedCores] = Filter(p,ACs);
HACUsedCore =
FindMax(UsedCores,ACUsedCores);
if ((s==0 ‖ ((Ds>HACUsedCore ‖ ETs > ST of an
unpacked slot containing a packed actor) &&
(nrEmptyCore>0)) then

Pack s to an available core availcore ∈ p;
Fix packing of actor in s to availcore;
nrEmptyCore−−;

else
Pack s to UsedCore;
Fix packing of actor in s to UsedCore;

end
else

Pack s to earlier fixed core (for the actor in s);
end

end

1) Longest Available Slot Packing (LASP): The LASP
trace analysis strategy utilizes longest available slot on a core
to pack a new slot (Fig. 5). The LASP strategy is presented in
Algorithm 1. The algorithm takes run-time active applications
(Apps), their throughput constraints and execution traces, and
number of available cores (p) as input, and provides the
efficient mapping using a maximum of p cores. For each active
application, first, the periodic constraint (Pappconstraint) is
found, which is the inverse of application throughput con-
straint. Then, the least common multiple (LCM) of periodic
constraints of all the active applications is identified. This
helps to identify exact number of periodic executions of each
active application (nrOfExecution[app]) within LCM . For
example, in Fig. 3, the number of periodic executions of
H.263 & JPEG decoder within LCM is 2 & 1 respectively.
Thereafter, for the found nrOfExecution, execution traces
of each application are constructed. In order to perform block
level processing, the execution traces are used to construct
used slots as described earlier. The slots are then sorted in
ascending order based on their end time (ET) in order to
facilitate earlier packing of early finished slots so that the
executions are minimally delayed.

SINGH et al.: RESOURCE AND THROUGHPUT AWARE EXECUTION TRACE ANALYSIS FOR EFFICIENT RUN-TIME MAPPING ON MPSOCS 8

The algorithm packs all the sorted slots of k cores to
p available cores. The packing of slots follows the steps
described in Algorithm 1. The first slot is packed on a
completely free core (availcore) and the packing of actor in
the slot is fixed to the same core. Similar fixing is applied to
actors in other slots as well. Such fixing ensures the packing of
all the executions of an actor to the same core and thus avoids
overhead of actor migration to a different core during various
executions of the same actor. The remaining slots are packed
on a used or completely free core depending upon the available
capacities of the used cores (ACUsedCores), already packed
actor, and number of completely free cores (nrEmptyCore).
If no completely free core is left, the slot is packed on
a used core (UsedCore) having highest available capacity
(HACUsedCore), which is selected amongst the used cores
(UsedCores) by using function FindMax(). While packing a
slot, its communication dependencies are taken into account
by assigning the start time of the slot only after the execution
of the longest time consuming edge connecting with an actor
contained in the already packed slots. In case a completely
free core is available and the slot interval (Ds) is greater than
HACUsedCore, the slot is packed to the free core (availcore).
The value of Ds is calculated as follows:

Ds = ETs − STs (12)

where ETs and STs are the end and start time of the slot.
LASP Demonstration: The LASP strategy has been

demonstrated to rapidly identify the mapping for actors of
H.263 decoder and JPEG decoder on 4 cores. The demonstra-
tion considers execution traces of H.263 decoder and JPEG
decoder as shown in Fig. 6(a) and (b), respectively. The
resulting mapping after applying LASP is presented in Fig.
6(c). The intra-core and some other communications are not
shown to have a better representation of the main message.
In order to identify the mapping, first, slots (S1 to S14) are
formed as shown in Fig. 6(a) and (b), and then sorted based
on their end time in the ascending order. The slot numbering
S1, ..., S14 is in the required sorted fashion. The packing of
slots by LASP considers Highest Available Capacity (HAC)
core, i.e. Longest Available Slot (LAS) to pack most of the
slots. For example, LAS for packing slots S3 and S7 is on
Core 1, and on Core 4 for S14 as shown in Fig. 6(c). The
mapping of actors on cores is computed by extracting all the
unique actors in the packed slots on the cores.

Constraints checking and stalls installation: The through-
put of active applications are estimated after all the slots are
packed on p available cores (e.g., on 4 cores from 10 cores
as shown in Fig. 6). For each application App, throughput is
estimated as follows:

thrApp =
nrOfExecution[app]

ETAppLastSlot
(13)

The provided packing (mapping) satisfies throughput con-
straint for all the applications if the estimated throughput
values are greater than or equal to the respective throughput
constraints. The executions of applications are repeated in fur-
ther periodic executions, where the overall period is considered

as the longest obtained period (i.e., smallest estimated through-
put thrSmallest) amongst all the applications. For applications
finishing their executions earlier than the longest obtained
period, the executions are started by introducing appropriate
delays (stalls) so that periodicity of executions are maintained.
For each application, the delays are calculated as follows:

DelayApp =
1

thrApp − thrSmallest
(14)

These delays (stalls) might affect the overall application
throughput. However, they are required to ensure the period-
icity of the applications. It has been observed that the overall
application throughput with and without stalls differs by a
minimal amount, which has been evaluated in the next section.
Thus, stalls can be introduced to ensure the periodicity.

It should be noted that we have considered worst-case
execution times (WCETs) of tasks and they remain fixed. This
also ensures to model the worst-case run-time behavior of the
application. During run-time execution, we enforce start times
of tasks based on the respective WCETs and the intended
delays to start the execution. This provides us an easy way
to ensure the periodicity of the executions. However, in case
a task’s execution time varies at run-time and is less than
the WCET, the created slacks can be utilized by employing
the dynamic voltage and frequency scaling (DVFS) techniques
to achieve energy savings [43], [44], but our focus is not to
exploit DVFS potentials and our approach is orthogonal to
DVFS.

Advantages: The LASP strategy maps executions to p avail-
able cores by giving more priority to already used cores (∈ p).
Therefore,resource utilization of the used cores increases.
For example, Fig. 6(c) shows that the utilization of cores
is increased when compared to the utilization with original
mappings (Fig. 6(a) and (b)). Additionally, the strategy packs
the slots as soon as possible (ASAP) in order to facilitate
earlier packing of early finished slots, resulting in minimal
delays in the overall execution. Further, the strategy may pack
slots (executions) on lower number of cores than the available
ones while achieving the same throughput, e.g., executions of
H.263 and JPEG decoder shown in Fig. 6(a) and (b)) can get
packed on 6 cores even if 8 cores are available. Therefore,
savings in energy consumption as well can be achieved by
applying power gating to the unused cores.

The complexity of LASP depends upon the number of
formed slots ns that need to be packed on p available cores.
For a given value of ns and p, the worst-case complexity (C) is
calculated as the maximum number of operations that need to
performed for all the slots. A maximum of ns × p operations
are possible as p cores need to be evaluated for each slot.
Therefore, the complexity of the trace analysis is O(nsp).
The timing overheads for various application scenarios are
provided in next Section (Section VI-E.)

2) Best Fit Slot Packing (BFSP): The BFSP strategy
follows similar steps as that of LASP, but uses the best fit slot
instead of the slot having highest available capacity. Therefore,
instead of calling function FindMax() within Algorithm 1, it
calls function FindBestFit(), which is described in Algorithm
2. The function scans from minimum to maximum available

SINGH et al.: RESOURCE AND THROUGHPUT AWARE EXECUTION TRACE ANALYSIS FOR EFFICIENT RUN-TIME MAPPING ON MPSOCS 9

0

Core 1

IQ

e1

e2

e3 e3 e3

MC
e4

Core 2

Core 3

Core 4

P1

0
VLDCore 1

IQ IQ IQ
e1

e2

IZZ

e3

IZZ IZZ

e4

Core 2

Core 3

Core 4

P2

IDCT

e5 e5

e6

Core 5

Core 6

IDCT IDCT

e5

IQ IQ IQ

e1

e2

e3 e3 e3

MC
e4

2P1

IQ IQ

Time

Time

(b) Execution Traces of JPEG decoder for 1_actor-to-1_core mapping

(c) Packing on 4 cores by LASP

S3

S1

S2

S4

S5

S6

S7

S9

S8

S10

S12

S11

(a) Execution Trace of H.263 decoder for 1_actor-to-1_core mapping

S13

S14

0

Core 1 IQ
e2

MC

Core 2

Core 3

Core 4

IQ IQ IQ
e2

e3

MC
e4

IQ IQ

S3S1

S5

S7 S8

S12

S11 S13

VLD

S2

IQ IQ IQ

S4

LAS for S3 on Core 1

IZZ IZZ IZZ

S6

LAS for S7 on Core 1

IDCT IDCT IDCT

S9

S10

e5 e5 e5e3

e2

e3

e4

S14

LAS for S14 on Core 4

H.263 Used timeUnused time JPEG Used timeLEGEND: Communication time

Sl
ot

 fo
rm

at
io

n
(S

1,
…

,S
14

) f
or

 th
e

us
e-

ca
se

 c
on

ta
in

in
g

H
.2

63
 d

ec
od

er
 a

nd
 JP

EG
 d

ec
od

er

Sl
ot

 p
ac

ki
ng

 o
n

4
av

ai
la

bl
e

co
re

s
VLD VLD

IDCT IDCT IDCT IDCT IDCT IDCT

reorder reorder reorder

col-conv

col-conv

reorderreorderreorder

VLD VLD

IDCT IDCT IDCT IDCT IDCT IDCT

1_actor-to-1_core mapping

VLD
IQ
MC

VLD
IQ

MC

VLD
IQ

IDCT

IDCT

reorder

IZZ
col-conv

VLD

IQ

IDCT

reorder

IZZ

col-conv

MCVLD

IDCTIQ

1_actor-to-1_core mapping

Resulting mapping on 4 cores

Fig. 6: Slot formation for the execution traces of H.263 and JPEG decoder, and resulting mapping (packing) after applying
LASP.

Algorithm 2: FindBestFit()
Input: UsedCores, ACUsedCores.
Output: Best fit core BFcore.
Sort UsedCores based on ACUsedCores in ascending order;
for each core c (∈ UsedCores) do

if Ds ≤ ACc then
BFcore = c;
break;

end
end

capacity cores and terminates as soon as a core that can
provide a fit is found.

BFSP Demonstration: The BFSP demonstration considers
the same execution traces (H.263 decoder and JPEG decoder)
as shown in Fig. 6(a) and (b), and tries to identify a mapping
for the same number of available cores (4 cores) as that of
LASP demonstration. The resulting mapping after applying
BFSP is presented in Fig. 7. Similar to LASP, the intra-core
and some other communications are not shown to have a better
representation of the main message. In the resulting packing,
the Best Fit Slot (BFS) to pack slots S3, S7 and S14 are
available on core 2, core 3 and core 1, respectively, as shown

in Fig. 7. The best fit slots are the ones that can accommodate
a slot by leaving minimum possible unused time on a core.
The mapping of actors on cores is computed in the similar
manner as in LASP.

The BFSP also provides similar advantages as that of LASP.
However, as it chooses the best fit slot, the higher available
slots are left that might get used by other unpacked slots.
Therefore, in some suitable cases, it might provide better
packing than LASP and the same has been demonstrated in
the next section. However, if the longest available slots are
left unused, a lower load balancing will be achieved. The
computational complexity of BFSP is similar to LASP.

VI. EXPERIMENTAL RESULTS

The proposed approach has been implemented as an exten-
sion of the publicly available SDF3 tool set [41]. Experiments
are performed on a Quad Core processor at 2.4 GHz. As a
benchmark to evaluate the quality of the approach, models of
real-life streaming multimedia applications H.264 decoder (3
actors), H.264 encoder (9 actors), H.263 decoder (4 actors),
H.263 encoder (5 actors), MPEG-4 decoder (5 actors), JPEG
decoder (6 actors), and MP3 decoder (14 actors) have been
considered to form various use-cases. For each application,

SINGH et al.: RESOURCE AND THROUGHPUT AWARE EXECUTION TRACE ANALYSIS FOR EFFICIENT RUN-TIME MAPPING ON MPSOCS 10

Time

IQ IQ IQ

S4

IZZ IZZ IZZ

S6

IDCT IDCT IDCT

S9

S10

e5 e5 e5

e3

col-conv
S140

Core 1

IQ

e1

e2

MC
e4

Core 2

Core 3

Core 4

IQ IQ IQ

e1

e2

MC
e4

IQ IQ

S3

S1

S5 S7

S8

S12

S11

S13
VLD

S2

e1

BFS for S3 on Core 2 BFS for S7 on Core 3 BFS for S14 on Core 1

H.263 Used timeUnused time JPEG Used timeLEGEND: Communication time

VLD VLD

IDCT IDCT IDCT IDCT IDCT IDCTreorder reorder reorder

Fig. 7: Resulting mapping (packing) after applying BFSP.

TABLE I: Approaches considered for comparison

Approaches Abbreviation References
Simulation-based Exhaustive DSE EDSE [10]

Simulation-based Pruned DSE PDSE [12]
Simulation and Analysis based DSE SADSE [23], [24]

Load Balancing LB [26]
On-the-fly Nearest Neighbor NN [4]

On-the-fly Communication-aware
Nearest Neighbor CNN [5]

Run-time Mapping utilizing
DSE results HybridMap [8]–[12], [28]

Longest Available Slot Packing LASP Proposed
Best Fit Slot Packing BFSP Proposed

its throughput requirement and other details such as execution
times of actors and input/output tokens on edges are specified
in the application model. To support the mapping of a use-
case by existing approaches, its application models are merged
into one application graph and their execution rates are speci-
fied. The target platform contains homogeneous ARM7TDMI
cores.

We present results obtained from our approach to find
the efficient mapping solution and compare them with var-
ious existing approaches reported in the literature, which
are abbreviated in Table I. The EDSE flow evaluates all
possible mappings for a given number of available cores,
whereas PDSE prunes the mapping space. The EDSE and
PDSE employ simulations to evaluate the mappings in order
to compute their throughput. SADSE employs simulations
and estimations to accelerate the evaluation process. The
estimations are performed to identify the efficient mapping
in terms of throughput and then simulation is employed on
the mapping to achieve accurate results. The LB identifies a
mapping such that loads on available cores are balanced and
simulation is employed to evaluate the mapping. The on-the-
fly heuristics find a mapping at run-time and then throughput
of the mapping is computed. The NN strategy tries to map the
communicating actors on the neighboring cores, whereas CNN
strategy tries to map the maximum communicating pairs of
actors on the same core. In HybridMap, the DSE is performed
in advance and the DSE results are stored to be used at run-
time towards facilitating efficient mapping. The LASP and
BFSP identify the efficient mapping by employing proposed
estimation methods.
A. Speed-up and Throughput

Fig. 8 shows speed-up of various exploration approaches
when normalized with respect to (w.r.t.) EDSE at different

0.1

10

1000

100000

10000000

2 4 6 8 10 12
Sp
ee
d‐
up

 (w
. r
. t
. E
DS

E)
Available Cores

LASP BFSP NN CNN LB SADSE PDSE EDSE

1247s

48s

3.44ms

3.67ms

38013s

38s

12945s

26s

3.91ms

176s

12s

4.23ms

4.9s

4.44ms

4.9s

4.69ms
3.2s

3.28s
3.8s

3.95s

4.2s 4.2s

Fig. 8: Speed-up and exploration time of various approaches
w.r.t. EDSE.

number of available cores for the use-case containing H.263
decoder and encoder. The figure also indicates the exploration
time for EDSE, SADSE, CNN and LASP. The exploration
time of the approaches highly depends upon the number of
mappings to be simulated. For each mapping, evaluation time
(contributing to the overall exploration time) includes time to
find the mapping and its throughput computation. The EDSE
cannot finish exploration within a limited time in some cases
as a huge number of mappings need to be evaluated, and
exploration time for such cases is calculated based on the
evaluation time for one mapping and the total number of
mappings. The number of evaluated mappings by PDSE for a
use-case containing n actors is computed as follows.

PDSE(n, p) = 1 +n C2 +
(n−1) C2 +

(n−2) C2+
(n−3)C2 + ...+(p+1) C2

= 1 +

n−1∑
k=1

((k+1)C2)−
p−1∑
k=1

((k+1)C2)

(15)

where first a mapping using n cores is evaluated (1 map-
ping), then the mappings using (n− 1) cores (nC2 mappings)
and so on until the mappings using p cores ((p+1)C2) are
evaluated. The approach selects the best mapping (in terms of
throughput) at m cores to evaluate mappings using (m − 1)
cores. Table II shows the number of mappings to be evaluated
at varying number of available cores (2 to 12) by EDSE and
PDSE, which are computed by Equation 6 and 15, respectively,
for the H.263 decoder/encoder use-case (i.e., n = 9).

The number of evaluated mappings beyond n cores is one
as the use-case will use a maximum of n cores. Therefore, for
higher number of available cores, the exploration strategies

SINGH et al.: RESOURCE AND THROUGHPUT AWARE EXECUTION TRACE ANALYSIS FOR EFFICIENT RUN-TIME MAPPING ON MPSOCS 11

TABLE II: Number of Mappings for 9 actors

Number of available Cores
Approaches 2 4 6 8 10 12

EDSE 255 7770 2646 36 1 1
PDSE 120 111 86 36 1 1

0.1

10

1000

100000

10000000

1000000000

2 4 6 8 10 12

Av
er
ag
e
Sp
ee
d‐
up

 fo
r

3
us
e‐
ca
se
s

(w
.r.
t.
ED

SE
)

Available Cores

LASP BFSP NN CNN LB SADSE PDSE EDSE

Fig. 9: Average speed-up over different use-cases w.r.t. EDSE.

take almost the same time as those in n cores, as shown
in Fig. 8. It can also be observed that LASP and BFSP
perform very fast exploration to identify a mapping along
with its throughput estimation. Further, the speed-up of LASP
is higher than that of BFSP because BFSP performs some
additional computations to find the best slot. On an average,
LASP achieves a speed-up of 4115x when compared to the
SADSE, and 1021x compared to on-the-fly CNN approach.
Fig. 9 shows average speed-up at different number of available
cores over 3 use-cases: H.263 decoder/encoder, JPEG/MPEG
decoder and H.264 decoder/encoder. It can be observed that
our approach achieves significant speed-up when compared to
existing approaches.

Fig. 10 shows time to find the best possible mapping (in
milliseconds) by different on-the-fly processing approaches at
varying number of available cores. In contrast to earlier timing
results, the shown times for CNN and NN do not include
throughput computation time for the found mapping. Differ-
ently from CNN and NN, our approaches HASP and BFSP
identify the mapping along with it’s throughput estimation.
These approaches find just one mapping based on the available
resources by taking quick online decisions. Therefore, the
timing results will always be better than other approaches
that find multiple mappings, e.g., EDSE, PDSE and SADSE.
Further, these approaches take less time than LB as LB tries
for several allocation options to find a load balanced mapping.
On an average, LASP provides a speed-up of 14× and 16×
when compared to NN and CNN, respectively.

0

20

40

60

80

2 4 6 8 10 12

Ti
m
e
to
 fi
nd

 m
ap

pi
ng

(in
 m

s)

Available Cores

CNN NN BFSP LASP

Fig. 10: Time to find mapping.

TABLE III: Best mapping throughput (× 10−10/time-units)

Number of available Cores
Approaches 1 2 3 4 5 6 7

PDSE/SADSE 1916 2643 4636 4649 4692 7901 7901
LB 1916 1848 1854 1868 1868 1868 1868
NN 1916 2549 3212 4319 4456 6308 6656

CNN 1916 2595 3723 4339 4540 6372 6940
LASP 1916 2643 4626 4649 4672 7783 7783
BFSP 1916 2643 4629 4649 4692 7783 7783

0.90
0.92
0.94
0.96
0.98
1.00
1.02

2 4 6 8 10 12 14Th
rt
ou

gh
pu

t (
no

rm
al
ize

d
w
.r.
t
PD

SE
/S
AD

SE
)

Available Cores

LB NN CNN LASP BFSP PDSE/SADSE

Fig. 11: Throughput comparison at different number of avail-
able cores for MP3 decoder.

Table III shows the throughput values of the efficient
(highest throughput) mapping for different number of avail-
able cores for H.263 decoder/encoder use-case when various
approaches are employed. Similar results are obtained for
other use-cases. A couple of observations can be made from
Table III. 1) Throughput obtained by approaches employing
simulations (e.g., PDSE and SADSE) is the same. 2) For few
cases, BFSP achieves better throughput than LASP due to
better slot packing. 3) The throughput obtained by proposed
estimation approaches LASP and BFSP are close to that of
the approaches employing simulations. On an average, the
throughput values deviate by 0.77% for LASP and 0.63% for
BFSP when compared to simulation based approaches. This
deviation is obtained due to slight error in the estimations.
Therefore, estimated throughput values are close to the accu-
rate values.

Fig. 11 shows the throughput values of the efficient mapping
at different number of available cores when various approaches
are employed for the use-case containing MP3 decoder.
The throughput values are normalized w.r.t the approaches
PDSE/SADSE. It can be observed that at different number
of available cores, our fast approaches (LASP and BFSP)
achieve almost the same quality of mapping as that of existing
approaches that employ simulations, whereas other approaches
lead to inferior results due to inefficient actors to cores alloca-
tion decisions. The slight deviation in the quality (throughput)
by our approaches w.r.t. PDSE/SADSE is obtained mainly
due to negligible error in the estimations. Therefore, estimated
throughput values are close to the accurate values.
B. Storage Overhead

Table IV shows storage requirement by different applica-
tions when various approaches are employed. The approaches
EDSE, PDSE, SADSE and HybridMap store the same number
of mappings to be used at run-time. In contrast, our approaches
LASP and BFSP store execution traces of the applications.
For our approach, the table shows storage overhead without
(No-optimiz.) and with (Optimiz.) trace storage optimization.
On an average, our approaches reduce the storage requirement

SINGH et al.: RESOURCE AND THROUGHPUT AWARE EXECUTION TRACE ANALYSIS FOR EFFICIENT RUN-TIME MAPPING ON MPSOCS 12

TABLE IV: Storage overhead (kB) of different approaches

Storage Requirement
EDSE/
PDSE/

SADSE/ LASP/BFSP
Apps use-cases mappings HybridMap No-optimiz. Optimiz.

3 7 72 3.4 5.8 3.2
4 15 184 10.5 9.5 5.7
5 31 432 27.8 12.4 6.2
6 63 1024 75.7 15.9 9.5
7 127 2944 313.8 16.4 11.5

by 92% when compared to existing approaches. The number
of mappings is computed as the summation of number of
required mappings for each use-case that can be formed by
the applications. For a use-case containing n actors, a total
of n mappings using 1 core to n cores are required in
order to handle the dynamism in resource availability. For m
applications, a total of (2m − 1) use-cases are possible. For
3 applications, JPEG, H.264 decoder and H.264 encoder are
considered. For 4th, 5th, 6th and 7th applications, additional
applications MPEG, H.263 decoder, H.263 encoder and MP3
are considered. A couple of observations can be made from
Table IV. 1) LASP and BFSP require less storage space
when compared to existing approaches as LASP/BFSP store
execution traces of only the active applications, whereas other
approaches store all the mappings for different possible use-
cases that are possible by varying combination of the active
applications. 2) For lower number of applications, storage
requirement of existing and proposed approaches are almost
the same as the existing approaches need to store a small
number of mappings, whereas the storage requirement differs
significantly for large number of applications. 3) Our trace
storage optimization process shows further reduction in the
storage requirement.

C. Energy and Resource Savings

The total energy consumption is computed as the sum of
dynamic and static energy by employing the energy consump-
tion model introduced in Section III-B. Fig. 12 shows energy
consumption and number of used cores for different number
of available cores when PDSE and LASP are employed. The
results shown are for a use-case containing H.264 decoder and
H.264 encoder. The approach PDSE provides better results
than other approaches such as LB and NN, similar to the
throughput results as shown in Table III and Fig. 11. Therefore,
the energy and resource savings results obtained by other
inferior approaches than that of PDSE are not reported and
only PDSE has been considered to compare with our proposed
approaches. On an average, LASP reduces energy consump-
tion and resources used by 5% and 15% respectively when
compared to PDSE. The energy consumption and resource
usage (number of used cores) by PDSE and LASP are almost
the same for lower number of available cores as both the
approaches achieve similar mappings that use all the available
cores. For higher number of available cores, LASP uses less
number of cores than PDSE. The PDSE uses a maximum
of 12 cores that is the same as the number of actors in the
use-case, whereas LASP uses a maximum of 9 cores as it
tries to use minimum number of cores while providing the
same throughput. Moreover, LASP consumes lower energy

0
2
4
6
8
10
12
14

0

20

40

60

80

100

2 4 6 8 10 12 14 16

U
se
d
Co

re
s

En
er
gy
 co

ns
um

pt
io
n
(m

J)

Available Cores

Energy (PDSE) Energy (LASP)
Resources used (PDSE) Resources used (LASP)

Fig. 12: Energy consumption and resource usage.

TABLE V: Stall installation penalty (%) in various use-cases
containing different combinations of decoder (de.) and encoder
(en.)

Use-case1 Use-case2 Use-case3
H.263 de. H.263 en. JPEG de. MPEG de. H.264 de. H.264 en.

1.40% 0.00% 2.20% 0.00% 3.05% 0.00%

than PDSE for higher number of available cores as LASP
uses lesser number of cores than PDSE.

D. Stalls Installation Penalty

The stalls introduced to ensure the periodicity of the ap-
plications might degrade their overall throughput. In order to
evaluate the throughput degradation, we have computed stalls
installation penalty as the percentage deviation in the achieved
throughput without and with stalls. Table V shows the stall
installation penalty for different applications considered in var-
ious use-cases when LASP is employed. For each use-case, the
penalty has been averaged over different number of used cores
to support the use-case. It can be observed that there is no
penalty for one of the applications in each use-case. The reason
being that this application is minimum throughput (longest
period) one and its periodicity is automatically ensured. The
periodicity of the other application that finishes earlier than the
longest period is maintained by introducing appropriate delays
(stalls) computed by Equation 14. For such applications, the
overall throughput with and without stalls differs by a very
minimal amount (e.g., 1.40% for H.263 decoder), as shown
in Table V. On an average, the throughput differs by only
2.21%. It can also be observed that through degradation by
stalls installation is maximum for H.264 decoder as large
delay needs to be introduced to ensure the periodicity with
H.264 encoder. Since throughput degradation is quite small
and our approach provides several other advantages (e.g., low
exploration time, storage overhead and energy consumption),
the small stalls installation penalty can be compensated.

E. Run-time Suitability

Table VI shows the time required (in milliseconds) to map
various use-cases on 4 available cores when HybridMap and
LASP are employed. For run-time suitability, the HybridMap
approach seems to be the most suitable existing approach as
it identifies a high quality mapping rapidly by utilizing the
design-time DSE explored results. Further, the HybridMap ap-
proach provides better quality mapping and takes lesser time to
find the mapping than other run-time mapping approaches such
as NN and CNN that try to identify a mapping without any

SINGH et al.: RESOURCE AND THROUGHPUT AWARE EXECUTION TRACE ANALYSIS FOR EFFICIENT RUN-TIME MAPPING ON MPSOCS 13

TABLE VI: Time required (in ms) to map various use-cases

Use-case HybridMap LASP
Applications Select Config. Total Explor. Config. Total

H.263 decoder 0.15 8.00 8.15 3.67 8.00 11.67H.263 encoder
JPEG decoder 0.17 8.00 8.17 5.13 8.00 13.13MPEG decoder
H.264 decoder 0.18 8.01 8.19 5.36 8.01 13.37H.264 encoder

prior analysis. Therefore, it has been considered to compare
with our proposed run-time approach.

The total time to map a use-case consists of time to find
the actors to cores allocation and then accordingly configure
the platform. In HybridMap, the efficient mappings using
different number of cores are computed at design-time and
stored for using at run-time. Thus, mapping is not computed
at run-time, but selected from the storage. Therefore, for
HybridMap, the time required for selection and configura-
tion contribute to the total time, whereas time required for
exploration and configuration contribute to the total time of
LASP. The HybridMap takes lesser time for mapping than
that of LASP and thus can guarantee for schedulability (fast
mapping). However, HybridMap requires large storage to keep
the various mappings and large DSE time (shown earlier). Our
approach overcomes above issues while taking similar orders
of mapping time as that of HybridMap. Additionally, our
approach provides high quality mapping and takes much less
time than on-the-fly approaches ([4]–[7]), which perform all
the computations (e.g., mapping and throughput computations)
at run-time, as shown in Section VI-A. Therefore, the issues
of HybridMap and on-the-fly approaches are overcome by
our approach, making it very suitable for efficient run-time
management.

VII. CONCLUSIONS

We present a novel run-time trace analysis strategy to
rapidly identify the maximum throughput mapping to support
a use-case while optimizing for throughput and resource usage.
The strategy analyzes execution traces of use-case applications
to facilitate rapid identification. Experiments show that storage
overhead and energy consumption are also reduced in addition
to the exploration time while providing near-optimal mapping
solutions. In future, we plan to extend/explore the approach
for heterogeneous MPSoCs in order to identify the premier
mapping for a variety of available cores.

REFERENCES

[1] P. Marwedel, J. Teich, G. Kouveli, I. Bacivarov, L. Thiele, S. Ha,
C. Lee, Q. Xu, and L. Huang, “Mapping of applications to MPSoCs,”
in Proceedings of IEEE/ACM/IFIP Conference on Hardware/Software
Codesign and System Synthesis (ISSS+CODES), 2011, pp. 109–118.

[2] R. Marculescu, U. Ogras, L.-S. Peh, N. Jerger, and Y. Hoskote, “Out-
standing Research Problems in NoC Design: System, Microarchitecture,
and Circuit Perspectives,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems (TCAD), vol. 28, no. 1, pp. 3–21,
2009.

[3] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
Multi/Many-core Systems: Survey of Current and Emerging Trends,”
in Proceedings of ACM Design Automation Conference (DAC), 2013,
pp. 1:1–1:10.

[4] E. L. d. S. Carvalho, N. L. V. Calazans, and F. G. Moraes, “Dynamic
task mapping for MPSoCs,” IEEE Des. Test of Comp., vol. 27, no. 5,
pp. 26–35, 2010.

[5] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, “Communication-
aware heuristics for run-time task mapping on NoC-based MPSoC
platforms,” Elsevier Journal of Systems Architecture (JSA), vol. 56, pp.
242–255, 2010.

[6] V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest, and H. Corporaal, “Run-
time management of a MPSoC containing FPGA fabric tiles,” IEEE
Transactions on Very Large Scale Integration Systems (TVLSI), vol. 16,
pp. 24–33, 2008.

[7] O. Moreira, J. J.-D. Mol, and M. Bekooij, “Online resource management
in a multiprocessor with a network-on-chip,” in Proceedings of ACM
Symposium on Applied Computing (SAC), 2007, pp. 1557–1564.

[8] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Dynamic Power-Aware
Mapping of Applications onto Heterogeneous MPSoC Platforms,” IEEE
Transactions on Industrial Informatics, vol. 6, no. 4, pp. 692 –707, 2010.

[9] C. Ykman-Couvreur, P. A. Hartmann, G. Palermo, F. Colas-Bigey,
and L. San, “Run-time resource management based on design space
exploration,” in Proceedings of IEEE/ACM/IFIP Conference on Hard-
ware/Software Codesign and System Synthesis (ISSS+CODES), 2012,
pp. 557–566.

[10] P. Yang, P. Marchal, C. Wong, S. Himpe, F. Catthoor, P. David,
J. Vounckx, and R. Lauwereins, “Managing dynamic concurrent
tasks in embedded real-time multimedia systems,” in Proceedings of
IEEE/ACM/IFIP Conference on Hardware/Software Codesign and Sys-
tem Synthesis (ISSS+CODES), 2002, pp. 112–119.

[11] C.-L. Chou and R. Marculescu, “Designing heterogeneous embedded
network-on-chip platforms with users in mind,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 29, no. 9, pp. 1301–1314, 2010.

[12] A. K. Singh, A. Kumar, and T. Srikanthan, “Accelerating throughput-
aware runtime mapping for heterogeneous MPSoCs,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 18, no. 1,
pp. 9:1–9:29, 2013.

[13] C. Lee, S. Kim, and S. Ha, “Efficient Run-time Resource Management of
a Manycore Accelerator for Stream-based Applications,” in Proceedings
of IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time
Multimedia (ESTIMedia), 2013, pp. 51–60.

[14] L. Benini, D. Bertozzi, and M. Milano, “Resource Management Policy
Handling Multiple Use-Cases in MPSoC Platforms Using Constraint
Programming,” in Proceedings of International Conference on Logic
Programming (ICLP), 2008, pp. 470–484.

[15] G. Mariani, P. Avasare, G. Vanmeerbeeck, C. Ykman-Couvreur,
G. Palermo, C. Silvano, and V. Zaccaria, “An industrial design space
exploration framework for supporting run-time resource management
on multi-core systems,” in Proceedings of IEEE Conference on Design,
Automation and Test in Europe (DATE), 2010, pp. 196–201.

[16] B. Giovanni, L. Fossati, and D. Sciuto, “Decision-theoretic design
space exploration of multiprocessor platforms,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 29, pp. 1083–1095, 2010.

[17] F. Angiolini, J. Ceng, R. Leupers, F. Ferrari, C. Ferri, and L. Benini, “An
Integrated Open Framework for Heterogeneous MPSoC Design Space
Exploration,” in Proceedings of IEEE Conference on Design, Automation
and Test in Europe (DATE), vol. 1, 2006, pp. 1 –6.

[18] Z. J. Jia, A. Pimentel, M. Thompson, T. Bautista, and A. Nunez,
“NASA: A generic infrastructure for system-level MP-SoC design space
exploration,” in Proceedings of IEEE/ACM/IFIP Workshop on Embedded
Systems for Real-Time Multimedia (ESTIMedia), 2010, pp. 41 –50.

[19] M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich, “Efficient symbolic
multi-objective design space exploration,” in Proceedings of IEEE Asia
and South Pacific Design Automation Conference (ASP-DAC), 2008, pp.
691–696.

[20] H. Becker and J. Riordan, “The Arithmetic of Bell and Stirling num-
bers,” American journal of Mathematics, pp. 385–394, 1948.

[21] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis, “Rapid design
space exploration of heterogeneous embedded systems using symbolic
search and multi-granular simulation,” SIGPLAN Not., vol. 37, no. 7,
pp. 18–27, 2002.

[22] J. Kim and M. Orshansky, “Towards formal probabilistic power-
performance design space exploration,” in Proceedings of ACM Great
Lakes symposium on VLSI (GLSVLSI), 2006, pp. 229–234.

[23] R. Piscitelli and A. Pimentel, “Design space pruning through hybrid
analysis in system-level design space exploration,” in Proceedings of
IEEE Conference on Design, Automation and Test in Europe (DATE),
2012, pp. 781 –786.

SINGH et al.: RESOURCE AND THROUGHPUT AWARE EXECUTION TRACE ANALYSIS FOR EFFICIENT RUN-TIME MAPPING ON MPSOCS 14

[24] A. K. Singh, A. Das, and A. Kumar, “RAPIDITAS: RAPId Design-
Space-Exploration Incorporating Trace-Based Analysis and Simulation,”
in Proceedings of IEEE Euromicro Conference on Digital System Design
(DSD), 2013, pp. 836–843.

[25] P. van Stralen and A. Pimentel, “Scenario-based design space exploration
of MPSoCs,” in Proceedings of IEEE International Conference on
Computer Design (ICCD), 2010, pp. 305 –312.

[26] S. Stuijk, M. Geilen, and T. Basten, “A Predictable Multiprocessor
Design Flow for Streaming Applications with Dynamic Behaviour,” in
Proceedings of IEEE Euromicro Conference on Digital System Design
(DSD), 2010, pp. 548 –555.

[27] G. Palermo, C. Silvano, and V. Zaccaria, “Robust optimization of
SoC architectures: A multi-scenario approach,” in Proceedings of
IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time Multi-
media (ESTIMedia), 2008, pp. 7 –12.

[28] W. Quan and A. D. Pimentel, “A Scenario-based Run-time Task
Mapping Algorithm for MPSoCs,” in Proceedings of ACM Design
Automation Conference (DAC), 2013, pp. 131:1–131:6.

[29] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti, and M. Milano,
“Communication-aware allocation and scheduling framework for stream-
oriented multi-processor systems-on-chip,” in Proceedings of IEEE
Conference on Design, Automation and Test in Europe (DATE), 2006,
pp. 3–8.

[30] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De Micheli,
“A methodology for mapping multiple use-cases onto networks on
chips,” in Proceedings of IEEE Conference on Design, Automation and
Test in Europe (DATE), 2006, pp. 118–123.

[31] G. Chen, F. Li, S. Son, and M. Kandemir, “Application mapping
for chip multiprocessors,” in Proceedings of ACM Design Automation
Conference (DAC), 2008, pp. 620–625.

[32] C. Marcon, E. Moreno, N. Calazans, and F. Moraes, “Comparison of
network-on-chip mapping algorithms targeting low energy consump-
tion,” IET Computers Digital Techniques, pp. 471 –482, 2008.

[33] H. Javaid and S. Parameswaran, “A design flow for application specific
heterogeneous pipelined multiprocessor systems,” in Proceedings of
ACM Design Automation Conference (DAC), 2009, pp. 250–253.

[34] L. Chen, T. Marconi, and T. Mitra, “Online scheduling for multi-core
shared reconfigurable fabric,” in Proceedings of IEEE Conference on
Design, Automation and Test in Europe (DATE), 2012, pp. 582 –585.

[35] J. Huang, A. Raabe, C. Buckl, and A. Knoll, “A workflow for runtime
adaptive task allocation on heterogeneous MPSoCs,” in Proceedings of
IEEE Conference on Design, Automation and Test in Europe (DATE),
2011, pp. 1 –6.

[36] F. Wang, Y. Chen, C. Nicopoulos, X. Wu, Y. Xie, and N. Vijaykrishnan,
“Variation-aware task and communication mapping for mpsoc archi-
tecture,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), no. 2, pp. 295 –307, 2011.

[37] K. Goossens, J. Dielissen, and A. Radulescu, “AEthereal Network on
Chip: Concepts, Architectures, and Implementations,” IEEE Des. Test,
vol. 22, no. 5, pp. 414–421, 2005.

[38] C. Cooper and R. E. Kennedy, “Patterns, Automata, and Stirling Num-
bers of the Second Kind,” Math. Comput. Educ., vol. 26, no. 2, pp.
120–124, 1992.

[39] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, B. D. Theelen,
M. R. Mousavi, A. J. M. Moonen, and M. J. G. Bekooij, “Throughput
Analysis of Synchronous Data Flow Graphs,” in Proceedings of IEEE
Conference on Application of Concurrency to System Design (ACSD),
2006, pp. 25–36.

[40] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trans. Comput.,
vol. 36, pp. 24–35, 1987.

[41] S. Stuijk, M. Geilen, and T. Basten, “SDF3: SDF For Free,” in Pro-
ceedings of IEEE Conference on Application of Concurrency to System
Design (ACSD), 2006, pp. 276–278.

[42] M. A. Bamakhrama and T. Stefanov, “Managing latency in embedded
streaming applications under hard-real-time scheduling,” in Proceedings
of IEEE/ACM/IFIP Conference on Hardware/Software Codesign and
System Synthesis (ISSS+CODES), 2012, pp. 83–92.

[43] A. K. Singh, A. Das, and A. Kumar, “Energy Optimization by Exploiting
Execution Slacks in Streaming Applications on Multiprocessor Sys-
tems,” in Proceedings of ACM Design Automation Conference (DAC),
2013, pp. 115:1–115:7.

[44] P.-H. Tseng, P.-C. Hsiu, C.-C. Pan, and T.-W. Kuo, “User-Centric
Energy-Efficient Scheduling on Multi-Core Mobile Devices,” in Pro-
ceedings of ACM Design Automation Conference (DAC), 2014, pp. 85:1–
85:6.

Amit Kumar Singh (M09) received the B.Tech. de-
gree in Electronics Engineering from Indian School
of Mines, Dhanbad, India, in 2006. Thereafter, he
worked with HCL Technologies, India for year and
half before starting his PhD at School of Com-
puter Engineering, Nanyang Technological Univer-
sity (NTU), Singapore, in 2008. He completed his
PhD in 2012. From February 2012 to August 2014,
he worked with the Department of Electrical and
Computer Engineering, National University of Sin-
gapore (NUS) as a post-doctoral researcher. Since

September 2014, he is working with Department of Computer Science,
University of York, UK. His research interests include system level design-
time and run-time optimizations of 2D and 3D multi-core systems with
focus on performance, energy, temperature, and reliability. He has published
over 35 papers in these areas in leading international journals/conferences.
Dr. Singh was the receipt of PDP 2015 Best Paper Award, HiPEAC Paper
Award, and GLSVLSI 2014 Best Paper Candidate. He is TPC member of
IEEE/ACM conferences like ISED and MES, and has served as session chair
in conferences like APESER and DATE.

Muhammad Shafique (M11) received the Ph.D.
degree in computer science from the Karlsruhe In-
stitute of Technology (KIT), Germany, in 2011. He
is currently a Research Group Leader at the Chair
for Embedded Systems, KIT. He has over ten years
of research and development experience in power-
/performance-efficient embedded systems in leading
industrial and research organizations. He holds one
U.S. patent. His current research interests include
design and architectures for embedded systems with
focus on low power, reliability, and adaptivity. Dr.

Shafique was the recipient of 2015 ACM/SIGDA Outstanding New Faculty
Award, six gold medals, the CODES+ISSS 2011 and 2014 Best Paper Awards,
AHS 2011 Best Paper Award, DATE 2008 Best Paper Award, DAC 2014
Designer Track Poster Award, ICCAD 2010 Best Paper Nomination, several
HiPEAC Paper Awards, and the Best Master Thesis Award. He is the TPC co-
Chair of ESTIMedia 2015 and has served on the TPC of several IEEE/ACM
conferences like ICCAD and DATE.

Akash Kumar (M05-SM13) received the B.Eng.
degree in computer engineering from the National
University of Singapore (NUS), Singapore, in 2002.
He received the joint Master of Technological De-
sign degree in embedded systems from NUS and the
Eindhoven University of Technology (Tue), Eind-
hoven, The Netherlands, in 2004, and received the
joint Ph.D. degree in electrical engineering in the
area of embedded systems from TUe and NUS, in
2009. Since 2009, he has been with the Department
of Electrical and Computer Engineering, NUS. Cur-

rently, he is an Assistant Professor in the department. His research interests
include design, analysis and resource management of low-power and fault-
tolerant embedded multiprocessor systems. He has published over 80 papers in
leading international electronic design automation journals and conferences on
these topics. He is also a member of technical program committees of major
conferences in the design automation area like, DAC, DATE, ASPDAC, etc.

Jörg Henkel (M95-SM01-F15) is currently with the
Karlsruhe Institute of Technology (KIT), Germany,
where he is directing the Chair for Embedded Sys-
tems (CES). Dr. Henkel received the masters and
the Ph.D. (Summa cum laude) degrees, both from
the Technical University of Braunschweig, Germany.
He then joined the NEC Laboratories, Princeton,
NJ, USA. He holds ten U.S. patents. His current
research interests include design and architectures
for embedded systems with focus on low power and
reliability. Prof. Henkel was the recipient of the 2008

DATE Best Paper Award, the 2009 IEEE/ACM William J. McCalla ICCAD
Best Paper Award, the CODES+ISSS 2011 and 2014 Best Paper Awards. He
was the Chairman of the IEEE Computer Society, Germany Section, and the
Editor-in-Chief of the ACM Transactions on Embedded Computing Systems.
He is also an Initiator and the Spokesperson of the national priority program
called Dependable Embedded Systems of the German Science Foundation,
and the General Chair of ICCAD 2013. He is a Fellow of the IEEE.

