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ABSTRACT
Partial reconfiguration (PR) is gaining more attention from
the research community because of its flexibility in dynam-
ically changing some parts of the system at runtime. How-
ever, the current PR tools need the designer’s involvement
in manually specifying the shapes and locations for the PR
regions (PRRs). It requires not only deep knowledge of
the FPGA device, the system architecture, but also many
trial-and-error attempts to find the best-possible floorplan.
Therefore, many research works have been conducted to pro-
pose automatic floorplanners for PR systems. However, one
of the most significant limitations of those works is that they
only consider the PRRs and ignore all other static modules.
In this paper, we propose a novel PR floorplanner called
PRFloor. It takes into account all components in the sys-
tem. The main ideas behind PRFloor are the unique re-
cursive pseudo-bipartitioning heuristic using a new, simple,
yet effective Nonlinear Integer Programming-based biparti-
tioner. The PRFloor performs very well in the experiments
with various synthetic PR system setups with up to 130
modules, 24 PRRs and 85% of the FPGA resource. The
average maximum clock frequency obtained for the actual
PR systems implemented using PRFloor is even 3% higher
than the similar systems without PR capability.
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1. INTRODUCTION
Nowadays, the number of applications that must be in-

corporated into a single FPGA-based system is increasing
rapidly which requires more hardware resources. One of the
solutions is to increase the size of the chips. This is not an ef-
ficient or scalable solution because of the size and power con-
sumption constraints. Consequently, dynamic partial recon-
figuration [25] is gaining special interests from the research
community. Nevertheless, it is not trivial to successfully im-
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Figure 1: The resources in one clock region of Xilinx
Virtex-6 XC6VLX240T. These are BRAM, DSP and
CLB, distributed in a columnar fashion. There are
3 rectangular PRRs placed at different locations in
the same clock region. The placement of PRR 2 and
PRR 3 violates the PR constraint.

plement these kinds of system. One of the reasons is the
limitation of the current PR-supported EDA tools, such as
Xilinx PlanAhead and Vivado. The designers have to spec-
ify the shapes and locations (hereafter called placements for
simplicity) for all PR regions (PRRs) manually. Moreover,
to make a good floorplan, it is essential to plan the layouts
of all modules in the system with respect to the connections
between them and the resource requirements. This process
requires expertise in FPGA architecture, the knowledge of
the connections between components and many trial-and-
error attempts to find the best possible floorplan. Addition-
ally, since the PR systems are getting more complicated with
hundreds of components [8,19], it is almost impossible to do
the work by hand. Hence, having an automatic floorplanner
for PR FPGA-based design is imperative.

Research on floorplanning for VLSI design has been under-
way since long time ago with many sophisticated advance-
ments [13]. Some well-known methods introduced in [13] are
Stockmeyer, Normalized Polish expression, sequence pair,
recursive partitioning, etc. However, floorplanning in FPGA
design has different challenges and restrictions, especially in
state-of-the-art FPGAs. These devices have a variety of
resources: Configuration Logic Block (CLB), Block RAM
(BRAM), Digital Signal Processing (DSP), PCIe, GTX and
so on. All of these resources are predefined, already placed
and non-uniformly distributed on the FPGA fabric. They
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Figure 2: The floorplans given by the tool [20] at
floorplacer.necst.it. The columns in blue, red and
green are CLBs, BRAMs and DSPs, respectively.
The weight costs for CLB, BRAM and DSP are 1,
12 and 60. The red boxes represent PRRs.

are also arranged in a columnar-fashion as can be seen in Fig.
1. Thus, the aforementioned techniques cannot be applied
directly to FPGA. Moreover, in FPGA-based PR systems,
the following constraints must be satisfied. (1) There is at
most one PRR in any column in one clock region [25] as
shown in Fig. 1. (2) In Xilinx PlanAhead, the proxy log-
ics [25] are used for the input/output signals to/from PRRs.
Therefore, the number of CLBs along the edges of the PRRs
should be large enough to avoid routing congestion and to
enhance the timing of the design.

In fact, many research works have been conducted to pro-
pose such floorplanners [3, 6, 14, 15, 17, 20, 24]. But none of
those considers the possible placements for all components in
the system with different constraints for static modules and
PRRs. They only analyze the connections between PRRs
which, in some cases, may not have any direct link in the
systems with Network-on-Chip (NoC) [8, 19]. Even worse,
they overlook the resource requirements of the static mod-
ules in the system. It leads to the situation where there
are not sufficient resources for static modules. These prob-
lems are illustrated in Fig. 2. In Fig. 2a, Region 1 and 2
are communicating indirectly via NoC. Therefore, it would
be better if they are placed close to each other to facili-
tate the place and route (PnR) process in placing the NoC.
In Fig. 2b, Region 3 requires only 50 CLBs, 40 BRAMs
and 20 DSPs. However, the placement for that region occu-
pies 40 DSPs. Consequently, it is not possible to implement
static modules if they require 10 DSPs since there are only
8 blocks left. The authors in [3] were aware of this problem
but they suggested treating static modules similar to PRRs
which puts unnecessary PR constraints on them. Alterna-
tively, the work described in [2] does floorplan both static
modules and PRR but they only support one PRR. As a
result, these floorplanners are only suitable to the systems
with no or small number of static modules and PRRs.

Besides, one of the most widely used methods in VLSI
floorplanning is recursive cut-size driven multilevel netlist
bipartitioning [5,13,26]. It reduces the problem size through
bipartitioning and finds the appropriate relative locations of
the modules in the system. These methods are only appli-
cable for homogeneous FPGA as contended in [16, 21]. Al-
though [16, 21] and even [11] support multi-resource aware
bipartitioning, they do not anticipate an important issue:
the resources occupied by the placements of module in two
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Figure 3: The two possible placements of Module A
in two partitions. A requires 4 CLB columns which
can be fully satisfied in the right partition. But in
the left partition, the placement occupies an extra
BRAM column. The bipartitioner may end up as-
signing A to the left partition because it does not
consider the actual resources occupation.

partitions may not be the same. It is because of the non-
uniform distribution of FPGA resources as illustrated via
an example in Fig. 3. Thus, estimating module resources
based solely on the synthesized netlist is not accurate.

Contribution: In this work, all of the above issues are
addressed by our novel floorplanner for PR systems, PRFloor.
Our contribution is twofold.

• We propose a unique recursive pseudo-bipartitioning
heuristics using a new, simple, yet effective Nonlinear
Integer Programming (NLP) [12] bipartitioner. The
NLP bipartitioner supports heterogeneous FPGA. Be-
sides, the resources occupied by the modules in differ-
ent partitions can be different.

• PRFloor finds the placements for PRRs in the system
considering not only the connections between them but
also between the static modules and the resources re-
quirements of all modules.

The experiments are carried out using the set of PR sys-
tems proposed by [19] with up to 24 PRRs. The largest
FPGA utilization is 85%. The numbers of modules (includ-
ing PRRs) in the experimental systems are from 99 to 130.
These systems are significantly larger than the experiments
reported in most of the PR floorplanners in literature. The
longest time taken by the PRFloor is less than 9 minutes
for the systems with 24 PRRs. Interestingly, by using the
PRFloor, the average maximum clock frequency obtained
for the synthesizable PR systems is even 3% higher than
the comparable systems without PR capability. Given the
fact that the PR systems usually have lower clock frequency
than the similar static ones; this result clearly shows how ef-
fective our PRFloor is in producing high quality floorplans.
The NLP-based bipartitioner also produces good results. It
reduces the average cut-size by 15% as compared to the
state-of-the-art bipartitioner [11] in a set of random systems
with up to 300 modules.

The remaining paper is organized as follows. The recent
PR floorplanners are discussed in Section 2. The proposed
algorithm is presented in Section 3, followed by experimen-
tal results in Section 4. Finally, the conclusions and future
works are presented in Section 5.



2. RELATED WORK
The general floorplanners for FPGAs have been addressed

extensively in classical works such as [1, 4, 7, 22]. Nonethe-
less, we only consider the ones that support the recent het-
erogeneous FPGA and are compliant with PR constraints
[2,3,6,14,15,20,24]. The application-specific PR-supported
floorplanner proposed in [17] is not covered here because it
is only applicable to their pipeline architecture.

The Floorplacer in [14] is based on Simulated Anneal-
ing (SA). The SA places the PRRs from the bottom-left of
FPGA towards the upper-right and tries to minimize the re-
source wastage of these PRRs. The Floorplacer expects that
the remaining area would be feasible for static modules. The
communication aspects of the system are ignored. The au-
thors further improved the method in [15]. They added the
distance to corresponding Input/Output Blocks minimization
objective to the SA algorithm. However, the problem of
static modules is still not addressed properly.

Another SA method proposed by Bolchini et al. [3] is
based on the sequence pair representation. The method
has some improvements in local search and violation con-
straints to speed up the process. The approach does take
the connections between PRRs and static modules into ac-
count if needed. However, the method handles PRRs and
static modules in the same manner which imposes unneces-
sary strict PR constraints to the regions dedicated to static
modules. For instance, in their approach, the PRRs have
to span the whole clock regions. However, this condition is
not necessary for static modules. As a result, the floorplan-
ner will be more likely to fail to place the PRRs when the
resource utilization is high.

The floorplanner suggested in [24] uses a greedy approach
called Columnar Kernel Tessellation. For each PRR, all the
kernels are generated from the available resources of the
FPGA. The kernels are then replicated in the columnar fash-
ion to satisfy the requirements of the PRR. The smallest ker-
nel is chosen for that PRR and the next PRR is processed.
The procedure is repeated several times with different ini-
tial kernels to find the best floorplan. The post process
procedure is executed after the above operation to further
optimize the wirelength by moving or swapping the PRRs
vertically. Similarly, Duhem et al. [6] suggest an exhaustive
method to find all possible placements for each PRR. The
resulting regions are then sorted with respect to the cost of
the shapes and resource wastages. After that, the regions are
greedily selected for each PRR considering non-overlapping
constraint and the threshold for the physical distances be-
tween only PRRs. Again, these approaches do not consider
the static modules at all.

The only approach that takes into account both static and
PR modules (PRMs) is proposed in [2]. They suggested a
three-stage process. First, it creates a dummy module which
is the union of all PRMs that are mapped to one PRR.
Then, the PnR is run for the new non-PR design consisting
of this dummy module and the other static modules. The
center of mass of this dummy module is identified. Finally,
a placement which is closest to that center is selected among
all possible placements of the PRR. For more than one PRR,
the authors suggest executing the above process iteratively
for each PRR but it is left for future work.

The most recent floorplanner is proposed in [20]. It is
based on Mixed-Integer Linear Programming (MILP). The
analytical model formulated only for the set of PRRs with
respect to their resource requirements and connectivities.
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Figure 4: The cut-size driven recursive bipartition-
ing. The connections between modules are illus-
trated by the solid lines. In a), the vertical cut
(dashed line) is done to vertically separate the re-
gion into two halves. Similarly, in b), the next hori-
zontal cut (dashed line) is performed for the newly
created partition on the left.

Since the MILP takes into account the global search space,
it is proven to provide better floorplans compared with the
previous works [3, 24]. Nevertheless, this method overlooks
the static modules as illustrated in Fig. 2.

As can be seen from the above literature review, except
the work [2], there is no floorplanner that considers all mod-
ules in the PR system therefore they all suffer from the prob-
lems discussed in Section 1.

3. PROPOSED APPROACH

3.1 NLP-based Bipartitioner

3.1.1 Recursive bipartitioning
Recursive cut-size driven multilevel netlist bipartitioning

is used widely in VLSI floorplanning [5, 13, 26]. The basic
idea of the cut-size driven recursive bipartitioning is shown
in Fig. 4. In general, the cuts are recursively performed
to divide the circuit into two partitions such that the cut
line crosses the least amount of wires while balancing the
weights of modules in two new partitions. The order of
the cuts, i.e vertical and horizontal cuts, is not known a
priori and it must be decided by the algorithm based on the
analysis of the circuit. Nonetheless, further details of this
problem are beyond the scope of this paper; the reader can
refer to [5, 13,26] for more information.

3.1.2 The proposed bipartitioner
As discussed in Section 1, the prior approaches cannot

be applied directly to FPGA because the FPGA resources
are predefined and placed in specific locations. Addition-
ally, none of the current multi-resource aware partitioners
[11,16,21] can provide a solution for the resource occupation
issue. That is the resources taken by the possible placements
of one module in two partitions can be different. Therefore,
we propose a novel bipartitioner that is capable of (1) min-
imizing the number of nets crossing two partitions and (2)
supporting multi-resource bipartitioning in which:

• The available resources, type and quantity, in two par-
titions can be different.

• The resources occupied by the possible placements of
one module in two partitions can be different.



• The resources occupied by the modules in two parti-
tions can be balanced individually with respect to each
type of resource.

The partitioning algorithms presented in [16, 21] support
the hypergraph representation of the connections between
modules. Our bipartitioner and [11] work on the graph
representation instead. Our method transforms a group
of nodes connected by one particular hyperedge to a fully
connected graph. Even though using hypergraph is more
straight forward to represent the connections between mod-
ules in a circuit, in practice, converting them to graph has
minor effect on the quality of the bipartitioning solutions.
The correctness of the bipartitioning solutions is not af-
fected. The only concern is the extra memory used to store
the graph. However, using graph makes it easier to construct
the NLP model for our bipartitioner.

In our bipartitioner, the partitioning problem is modeled
as an NLP optimization problem [12]. The binary variable
mi, of which value is either 0 or 1, represents the partition
assignment for module i. The objective function is the total
number of nets between modules that cross two partitions
(this number is cut-size). Equations 1 and 2 show how to
calculate the cut-size netsij between two modules i and j
which are connected by nij wires. Intuitively, netsij = nij

when mi �= mj .

netsij = nij ∗ (1−mi) ∗mj + nij ∗mi ∗ (1−mj) (1)

= nij ∗ (mi +mj − 2 ∗mi ∗mj) (2)

The objective function of the NLP program is the sum-
mation of all netsij . This function (derived from Equation
2) is presented in Equation 3 followed by the constraints on
the resources occupation in Equations 4, 5, 6 and 7.
Objective:

∑

i

mi ∗
∑

j �=i

nij − 2 ∗
∑

i

mi ∗
∑

j �=i

(nij ∗mj) (3)

Subject to:

Total0CLB =
∑

i

((1−mi) ∗ CLB0i) <= MAX0CLB (4)

Total1CLB =
∑

i

(mi ∗ CLB1i) <= MAX1CLB (5)

ublower ∗ Total0CLB <= ubupper ∗ Total1CLB (6)

ublower ∗ Total1CLB <= ubupper ∗ Total0CLB (7)

The objective is to minimize Equation 3 while satisfy-
ing the maximum resource constraints. That is the total
resources of the modules assigned to one partition should
not exceed the available resources of that partition. The
constraints on the total number of CLBs occupied by the
modules assigned to partition 0, Total0CLB , and partition
1, Total1CLB , are shown in Equations 4 and 5. In the equa-
tions, MAX0CLB and MAX1CLB represent the numbers
of CLBs available in partition 0 and 1 respectively. The
possible numbers of CLBs occupied by a module i in either
partition are CLB0i and CLB1i.

Another constraint is to balance the resources in two par-
titions by the unbalance factor, ub, similar to [11]. This
factor controls the ratio of the resources occupied by the
modules in two partitions. This ratio must be within the
range (0.5 − ub, 0.5 + ub). Let ublower = 0.5 − ub and
ubupper = 0.5 + ub. The unbalance constraints for the CLB
resource are illustrated in Equations 6 and 7.
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Figure 5: The new design flow with PRFloor.

Similar constructs of the above constraints are done for
the remaining resources such as DSP and BRAM. The NLP
program is then solved by the Gurobi Optimization tool [9].
The experiment results of the proposed bipartitioner is pro-
vided in Section 4.1.

3.2 The PRFloor

3.2.1 The Design Flow
Fig. 5 shows the flow of designing a PR system as sug-

gested by [25]. However, the manual floorplanning step is
replaced by the separate execution of the PRFloor outside
of PlanAhead. The PRFloor reads the top level netlist of
the design to get the information of all modules in the sys-
tem and the connections between them. Thereafter, the
resources of each module are parsed from its netlist. The
total resources required for one PRR is the union of the re-
sources of the PRMs that are mapped to that PRR. In this
work, it is assumed that the mappings of PRMs to PRRs
are already carried out. In addition, the PRMs which are
mapped to one particular PRR are also implemented with a
common interface wrapper [25]. Finally, PRFloor executes
the recursive pseudo-bipartitioning heuristic to floorplan all
modules in the design. The placement constraints for PRRs
is written in the ucf format. Hereafter, the PRR is consid-
ered as generic module with implied PR constraints.

3.2.2 Overview of the PRFloor
All the steps executed inside the PRFloor are summarized

in Algorithm 1. It starts by building the model of the FPGA
device used in the design. The empty ROOT partition which
is an entire FPGA is created. A list of static and PR mod-
ules is parsed from the netlist. All possible placements for
each module are computed. After that, the recursive pseudo-
bipartitioning process is executed to determine the preferred
position for each module. The placements are then heuristi-
cally filtered and sorted. Finally, the feasible combination of
them is found using the recursive trial-and-error algorithm.
The details of the aforementioned major steps are discussed
in the subsequent sections.

3.2.3 The FPGA Model
In this section, the architecture of the FPGA is analyzed

and the representations of the FPGA resources are simplified
to ease the search process in the algorithm. The FPGA



Algorithm 1 PRFloor

1: Build the FPGA model {Section 3.2.3}
2: Create ROOT partition containing all the modules and the

current bounding box is the entire FPGA
3: Find all possible placements {Section 3.2.4}
4: while NOT SUCCESS do
5: Do recursive vertical cut for ROOT {Section 3.2.5}
6: Do recursive horizontal cut for ROOT {Section 3.2.5}
7: Calculate the normalized wastage and distances to anchor

points for all placements
8: Select the placement candidates {Section 3.2.6}
9: Sort the placements of each module in the increasing order

of their OBJplacement values {Section 3.2.6}
10: Sort the modules in the decreasing order of the resource
11: Find the feasible floorplan {Section 3.2.7}
12: if NOT SUCCESS then
13: Shift the first vertical cut line to the right
14: end if
15: end while
16: return final placements

considered in this paper is Xilinx Virtex-6 XC6VLX240T
(hereafter, called Virtex-6). However, the method is general
enough that it can be extended to support other devices such
as Virtex-4, Virtex-5 and Virtex-7.

The Virtex-6 is divided into 6-by-2 clock regions. The
clock region is further divided into roughly 50 columns (de-
pending on the region on the left or the right side of the
FPGA), each of them can be CLB, BRAM, DSP or spe-
cial resources such as IOB, PCIe, GTX or even empty. The
resources in each clock region do not need to be the same
across the entire FPGA. Also noted that there is a blank
space in the middle of the clock region, as can be seen in
Fig. 1. It is reserved for the regional clock spine, separating
the columns into two halves. Each half of CLB, BRAM and
DSP column consists of 20 CLBs, 4 BRAMs (if configured
as 18-bit-width RAM, there are 8 blocks) and 8 DSP blocks
respectively. The smallest addressable configuration frame
spans the entire column, which is equivalent to the 40-CLB
height. This is the reason why PRR-2 and PRR-3 violate
the overlapping constraint since one frame cannot contain
configuration bits for more than one PRR.

In our approach, instead of looking at the fine-grain gran-
ularity of resources, the half-column resource is preferred.
This half-column granularity balances the trade-off between
the number of configuration frames and the occupied re-
sources. For instance, the PRR-1 in Fig. 1 requires 8 DSP
blocks. If the full-column granularity is used as suggested
by [20, 24], we have to assign the entire DSP column con-
taining 16 DSP blocks to it. The costs saved and the con-
figuration time overhead by using half-column granularity
are discussed in Section 4.2. Our method uses an accurate
half-column model of the Virtex-6, including the PCIe, GTX
and other resources. The wastage cost of each placement is
also calculated similar to the related works [20, 24]. Each
resource is given a weight based on its scarcity in the FPGA
and the cost is the weighted sum of those resources. The
connections of the modules to the external IO pins are not
considered in this paper. However, it does not affect the
general idea of the algorithm because the IO pins can be
handled as generic fixed-location modules.

3.2.4 Find the possible placements
Since the actual occupied resources as well as the posi-

tion of the placements of the module cannot be predicted as
discussed in Fig. 3, all possible rectangle-shape placements

A

B

C

E

F

G

D

a)

y (row)

x 
(col.)

    A

    B

C

E

F

G

D

b)

y (row)

x1 x2 x3 x 
(col.)

0 x4
0

y1

y2

y3

y4
     H First 

cut

Second 
cut

Third 
cut

H anchor1

x1 x2 x3 x4

Figure 6: The pseudo vertical cuts (a) and hori-
zontal cuts (b) used to estimate the preferred an-
chor points of the modules. The vertical cuts are
performed first to scatter the modules horizontally
across the FPGA. In a, the first cut separates the
entire FPGA into two halves, the second cut is ap-
plied to the partition on the left (from 0 to x2), and
so on. Likewise, in b, the horizontal cuts are done
to spread the modules vertically.

of each module (subjected to PR constraints described in
Section 1 if it is PRR) across the aforementioned simpli-
fied FPGA model are generated. It is possible to gener-
ate L-shape placements. However, these shapes may hinder
the place and route process from satisfying the timing con-
straints of the whole system. Therefore, rectangle-shape is
preferred. All placements that overlap with user-defined or
hard-macro regions are not entertained.

3.2.5 The Recursive Pseudo-bipartitioning Heuristic
The difficulty in using the cut-size driven recursive bipar-

titioning for FPGA is that the resources are limited and
their locations are predefined. It is not possible to strictly
determine a region for a module before having knowledge of
the resources under that region. Therefore, we propose the
recursive pseudo-bipartitioning heuristic as the solution for
this problem. That is, except the first vertical cut which is
actually used to partition the circuit, the subsequent cuts are
pseudo. These vertical and horizontal pseudo cuts are done
independently without back-tracing. The objective is to (1)
scatter the modules across the FPGA device as evenly as
possible. (2) The cut-size at every cut is minimized. (3)
The newly created partitions must have sufficient resources
to accommodate the modules. These cuts are performed to
have the global view of the preferred positions, or anchors,
of all modules with respect to the FPGA fabric. The cuts
are illustrated in Fig. 6. The anchor point is represented by
the (x, y) pair corresponding to (column, row) axes of the
FPGA. It is calculated based on the final partition where
the corresponding module is assigned to as shown in Fig.
6. Equations 8 is used to compute the (x, y) coordinate
of the anchor anchor1 of Module A. The recursive pseudo-
bipartitioning heuristic is presented in the Algorithm 2.

anchorAx = (x1 + x2)/2; anchorAy = (y3 + y4)/2 (8)

The modules may not fit entirely in the assigned partition
(Module C in Fig. 6a). In FPGA floorplanning, the shape of
a placement cannot be freely adjusted by changing the ratio
of its edges to fit in the partition because it depends on
the locations of the FPGA resources. Therefore, the pseudo
cuts are relaxed in such a way that a placement only belongs
to one partition if at least 90% of its area is inside that



Algorithm 2 Recursive Pseudo-bipartitioning Heuristic

Require: parent partition �= ∅ and valid cut line and cut type

1: create partition0 ← ∅ from cut line and parent partition
2: create partition1 ← ∅ from cut line and parent partition
3: list mod ← ∅ {list of modules used for bipartition process}
4: area constraint ← 90%
5: if cut type = vertical cut and first cut then
6: area constraint ← 100%
7: end if
8: for all module ∈ parent partition do
9: list placement0 ← ∅; list placement1 ← ∅
10: for all placement of module ∈ parent partition do
11: area ratio0 ← area of placement ∩ partition0
12: area ratio1 ← area of placement ∩ partition1
13: if area ratio0 ≥ area constraint then
14: add placement to list placement0
15: else if area ratio1 ≥ area constraint then
16: add placement to list placement1
17: end if
18: end for
19: if list placement0 = ∅ and list placement1 = ∅ then
20: deduct the resource of module from the total resource

of partition0 and partition1
21: else
22: resource0 ← estimate resources(list placement0)
23: resource1 ← estimate resources(list placement1)
24: add module → list mod
25: end if
26: end for
27: run NLP Bipartitioner(list mod, partition0, partition1)
28: if SUCCESS then
29: update anchor points of modules
30: execute Recursive Pseudo-bipartitioning for partition0
31: execute Recursive Pseudo-bipartitioning for partition1
32: end if

partition (this requirement is drawn empirically from our
experiments). If all possible placements of a module do not
belong to any partition due to that area constraint, that
module will not be considered for the subsequent cuts as the
case of Module H in Fig. 6a. Its resources will be deducted
from the corresponding partitions. This process is described
between lines 8 and 20 in Algorithm 2. The anchor point is
still determined based on the partition that it is previously
assigned to as shown in Equation 9.

anchorHx = (0 + x2)/2; anchorHy = (0 + y1)/2 (9)

During the recursive bipartitioning process, all possible
placements of each module in each interim partition are fil-
tered based on the 90%-area constraint. The resources oc-
cupied by each module in two partitions are then estimated
(lines 22− 23 in Algorithm 2). For each of two sets of these
placements, the arithmetic mean x̄, median x̃ and standard
deviation σx of each type of the occupied resources (CLB,
DSP, BRAM) are calculated. Algorithm 3 shows how the re-
source is estimated. The minimum occupied is the smallest
possible number of resources occupied by the module. This
calculation makes sure that the estimated resources will not
be skewed by the unusually large placements.

However, this 90% area constraint is not applicable for the
first vertical cut as mentioned before (lines 4 − 7 in Algo-
rithm 2). The placements must be completely inside either
of the partitions. This is to reduce the problem size without
compromising the quality of the floorplan. The reason is
that the initial ROOT partition, which is the entire FPGA,
is bigger than most modules; dividing it by half should not
cause any difficulty in finding good placements for modules.

Algorithm 3 Estimate Occupied Resources

1: a = x̄
2: if a > x̃ then
3: a = x̃
4: end if
5: result = a− 1.5 ∗ σx

6: if result < minimum occupied then
7: result = minimum occupied
8: end if
9: return result
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Figure 7: The Pareto-ranking selection technique
for the placement candidates of one module. This is
the real data obtained from the experiments. The
ones in green circle are the first-rank points. The
other points in red diamond are the second-rank.

Besides, our algorithm will shift the first vertical cut line
along the x-axis to enlarge one of the partitions if some of
the modules are too big to fit in neither half of the FPGA.

3.2.6 Select the placement candidates
At this stage, the anchor points of all modules are identi-

fied. The geometric distances from them to the center points
of the placements of the corresponding modules are calcu-
lated. These distances are then normalized to the largest
distance from the placements of the module. Similarly, the
wastage cost of these placements are normalized. Then for
each module, the Pareto-ranking selection technique [18] is
performed for all placements. Only the first and second-rank
points are selected for the next steps as presented in Fig. 7.

In PRFloor, the objective of the recursive bipartitioning
process is to minimize the cut-size and the connected mod-
ules tend to stay closer to each other. The wirelength be-
tween connected modules is optimized indirectly via the dis-
tance to the anchor point metric. Therefore, when the de-
signer specifies the preferences between the total wirelength
and the resource wastage using the 2-tuple weight (α, β), it
can be applied directly to the distance to the anchor point
and the resource wastage. Then, the selected placements of
each module are sorted in the increasing order of the objec-
tive values calculated using the Equation 10.

OBJplacement = α ∗ wastage+ β ∗ dist to anchor (10)

3.2.7 Find the feasible floorplan
At this step, the number of possible placements for each

module is reduced significantly thanks to the selections done
in Section 3.2.6. The modules are then sorted in the de-
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Figure 8: Comparison between the proposed NLP
bipartitioner, Metis [11] and SHMetis [10]. The
Gurobi solver [9] used for the NLP bipartitioner is
configured to stop after 2, 10, 30 and 180 seconds
to compare how good the result is for a certain time
constraint. The line NLP-1Thrd-2s represents the
results obtained from Gurobi solver when it is exe-
cuted with one thread. All the results are normal-
ized to the ones provided by Metis.

creasing order of the resources requirement and the number
of wires in its input/output interface. The recursive trial-
and-error algorithm is executed to obtain the final floor-
plan. The possible combinations of the placement candi-
dates (with separate constraints for PRRs) are considered.
Nevertheless, the algorithm is optimized such that it does
not back-trace all the possible combinations of small mod-
ules. These modules usually have large number of possible
placements to choose from. Therefore it is easier to find suit-
able placements for them. The algorithm stops immediately
when the first feasible floorplan is found. If the algorithm
cannot find any, it shifts the first vertical cut gradually closer
to the right edge to enlarge one of two partitions to facilitate
the placement of big modules (lines 12−14 in Algorithm 1).
The heuristic is restarted with the new cut line.

At first sight, our algorithm (generating all placements
then finding the feasible combination of them) may look
similar to [6,24]. However, the PRFloor is better than those
because it has the sophisticated bipartitioning process to
estimate the possible locations of modules and the selection
of the placement candidates to filter out bad placements.
These processes play an important role in making the recur-
sive algorithm finish very fast as reported in Section 4.3.

4. EXPERIMENTS

4.1 The NLP-based Bipartitioner
Fig. 8 shows the quality of the results obtained from the

proposed NLP bipartitioner in comparison with Metis [11]
and SHMetis [10]. SHMetis is the single-resource hyper-
graph partitioning tool created by the same group which de-
velops Metis. In the experiments, the resources requirement
for each module in two partitions are set to be the same; the
available resources in two partitions are also equal. We only
perform one cut to separate the modules into two halves.
Since SHMetis does not support multi-resource bipartition-
ing, the multiple resources are converted into one weighted
sum function. We use SHMetis in the experiments for refer-
ence purposes only because it cannot be directly compared
with the multi-resource bipartitioners. The NLP program
is solved by the Gurobi Optimization tool [9] with default
configurations and various run time constraints.
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Figure 9: The ratio of the wastage and configuration
time between the FPGA modeled in half-column
and full-column granularity. The x-axis represents
the maximum sizes of the randomly generated mod-
ules compared to the size of Virtex-6.

As can be seen in Fig. 8, the NLP bipartitioner provides
better cut-size than Metis in all configurations of number
of modules. The cut-size given by our method is up to 38%
smaller than Metis [11]. The average cut-size is 15% smaller.
The results are becoming better when the run time con-
straint for the solver is increased. This is the advantage of
using NLP bipartitioner compared to the heuristic one. We
can increase the run time constraint to cope with the situa-
tions in which it is difficult to solve the NLP program. These
situations happen when the number of modules is high or
the sizes of the modules are too large.

Given that the number of modules is not expected to be
very large because we only floorplan the top-level modules
in the system, the features supported by the NLP biparti-
tioner and the quality of the results, our method is the viable
solution for the problem mentioned in Section 1.

4.2 The costs saved by using the half-column
model compared to the full-column model

In this section, the resource cost saved by using the half-
column granularity model compared to the full-column model
is examined. The half-column model is used in our proposed
approach, while the full-column model is used by [20,24].

In the experiments, the resource requirements of the mod-
ules are randomly generated. They do not exceed a pre-
defined maximum proportion of the total resources of the
Virtex-6. The modules can have any of the CLB, BRAM and
DSP resources. For each range up to the maximum propor-
tion, 500 modules are uniformly randomly generated. The
smallest possible placements for each module in half-column
and full-column model are recorded. The final results are
the average of those placements of 500 modules. The aver-
age configuration times of the modules are also reported.

The experiments are carried out with various maximum
size proportions. The resource wastage and configuration
time ratios between the half-column and full-column models
are reported in Fig. 9. As shown, the resource wastages
of the placements of modules found by using half-column
model are always smaller than the ones found in full-column
model. The saving ranges from 2% to 32%.

The average configuration time of the modules in half-
column model is 6% higher than the full-column model. In
half-column model, the placements for modules tend to be
wider to cover the required resources. They require more
configuration frames because the minimum addressable Xil-
inx configuration frame spans the entire column [25]. Never-
theless, the controller for the Internal Configuration Access



Table 1: The set of experimental systems with the
actual utilization values. For each resource type, the
first number is the utilization of PRRs, the second
one is of the whole system.

No. No. %CLB %BRAM %DSP
PRRs Mod. PRR All PRR All PRR All

3 (65%) 99 40.8 66.2 8.9 42.3 3.8 6.4
3 (70%) 99 45.8 71.2 27.2 60.6 13.5 16.1
3 (75%) 99 50.1 75.5 21.9 55.3 10.0 12.6
3 (80%) 99 55.5 80.9 24.5 57.9 10.7 13.3
3 (85%) 99 60.1 85.5 26.2 59.6 10.7 13.3
8 (65%) 116 35.6 65.3 16.1 27.9 11.1 14.5
8 (70%) 116 40.7 70.4 17.3 29.1 11.2 14.6
8 (75%) 116 45.8 75.6 18.3 30.0 11.7 15.1
8 (80%) 116 50.7 80.5 15.9 27.6 11.2 14.5
8 (85%) 116 56.3 86.1 19.2 31.0 11.7 15.1
15 (65%) 130 34.4 65.1 28.1 46.6 22.1 25.5
15 (70%) 130 39.8 70.5 29.6 48.1 23.2 26.6
15 (75%) 130 44.9 75.6 34.6 53.1 23.4 26.8
15 (80%) 130 49.8 80.5 31.3 49.8 24.7 28.1
15 (85%) 130 57.1 87.8 27.4 45.9 25.1 28.5
24 (65%) 126 33.0 66.0 31.7 55.5 31.3 31.9
24 (70%) 126 37.5 70.5 33.2 57.0 26.6 27.2
24 (75%) 126 42.3 75.3 21.6 45.4 23.4 24.1
24 (80%) 126 47.1 80.1 31.7 55.5 28.1 28.8
24 (85%) 126 52.3 85.3 36.1 59.9 22.7 23.3

Port proposed in [23] can reach the maximum theoretical
speed of 3.2 Gbps which is fast enough to handle the in-
creased configuration time. Besides, our approach can easily
discard the placements for modules with high reconfigura-
tion time overhead if the designer wants to do so with the
expense of possible higher wastage.

4.3 The PRFloor

4.3.1 Experiment with synthetic systems
To evaluate the PRFloor, the PR heterogeneous multipro-

cessor system-on-chip (PR-HMPSoC) [19] is used with dif-
ferent number of PRRs (or Tiles as described in that work).
In the original systems, there is no direct connection between
PRRs because they are connected indirectly by the Network-
on-Chip (NoC). In this experiment, the systems are modified
such that the PRRs are also connected with each other via
PLB buses to observe the wirelength between them in the
final floorplan. For each system configuration, the different
sets of PRMs mapped to PRRs are semi-randomly chosen
such that the overall CLB utilization ranges from 65% to
85%. Additionally, each PRRs are required to have at least
1 BRAM block and 1 DSP block to make it harder for the
floorplanner to find a feasible floorplan. The details of the
experimental systems are shown in Table 1. The data in
the rows is used to show how big the PRRs are compared
to the whole system, the average size of each PRR and the
heterogeneity of the PRRs (CLB, BRAM, DSP). For exam-
ple, the first row indicates that there are 99 modules in the
system including 3 PRRs. The whole system utilizes 66.2%
CLB of the FPGA while three PRRs utilize 40.8% CLB of
the FPGA. The similar interpretation can be drawn for the
BRAM and DSP columns.

The average execution times of the PRFloor for each sys-
tem configuration in Table 1 are presented in Fig. 10. As
seen, the largest runtime of PRFloor is about 530 seconds for
the system with 24 PRRs and the CLB utilization is 70%.
The execution time is increasing almost linearly with the
number of modules in the system and the number of PRRs.
It can also be noticed that for the same system architecture,
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Figure 10: The execution time of PRFloor in differ-
ent system configurations presented in Table 1.
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Figure 11: The ratios of time taken by the ma-
jor steps in PRFloor. They are: finding all place-
ments for modules, recursive bipartitioning, select-
ing placement candidates and finding final floorplan.

the execution time slightly decreases as the utilization in-
creases. The reason is that when the resources requirement
of the PRRs are larger, the number of placement candidates
becomes smaller because there is lesser freedom to move the
PRRs around. Thus, the trial-and-error process described
in Section 3.2.7 takes lesser time to complete.

Fig. 11 provides the ratio of time taken by the major steps
in PRFloor which are: finding all placements for modules,
recursive bipartitioning, selecting placement candidates and
finding final floorplan. As stated earlier, the recursive pro-
cess used to find the final floorplan finishes very fast. It
takes only at most 1.2% of the total runtime and in most
cases, the percentage is almost 0. The most time-consuming
process is finding all placements for modules. It constitutes
more than 92% of the total runtime. This process can be
further optimized in future work by having a smarter way
to restrict the search space for each module instead of the
whole FPGA as implemented in this work.

The experiment on the effect of varying the 2-tuple weight
(α, β) in Equation 10 is also carried out. Fig. 12 plots the
wirelength (the Manhattan distance) between the centroids
of the PRRs and the total wastage of the PRRs. The α
runs from 0 to 1 and α + β = 1. The data is normalized
to the results when α = β = 0.5. As shown, the resource
wastage decreases gradually with the increment of α. How-
ever, the wirelength does not react the same to the changes
of β. In most cases, the differences are very small. It may
be the cause of the Manhattan distance metric used in our
current measurement. The larger the α, the smaller the
placements, therefore the shorter the distance between the
centroids of the placements. Another possible explanation
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is the computation of the anchor points. They are simply
the center points of the partitions in which they reside. In
future works, we would use another metric such as the half
perimeter wirelength to have a more accurate observation on
the distances between PRRs. The calculation of the anchor
points can also be improved by shifting the anchor point of
a module toward the other modules connected to it.

4.3.2 Experiment with actual systems
The quality of the floorplans produced by PRFloor is fur-

ther verified with the actual synthesizable systems. The
maximum clock frequency achievable for PR systems is com-
pared against the ones without PR capability. In this ex-
periment, the original PR-HMPSoCs described in [19] are
used in which there is no direct connection between Tiles.
All Tiles are Xilinx Microblaze processor configured with de-
fault settings. In the static systems, these Tiles are static.
In PR systems, they are partially reconfigurable. We use
the Xilinx XPS 14.4 with default settings to implement the
static systems. The PR systems are implemented by the
Xilinx PlanAhead 14.4 with similar settings. The place-
ment constrains for PRRs are generated by the PRFloor.
The minimum clock constraint is varied from 50 MHz up to
80 MHz. The achievable clock frequencies for these systems
are shown in Fig. 13. As can be seen from the chart, in
all cases, the minimum clock frequency constraints are sat-
isfied. Moreover, in most cases, the PR systems even have
higher maximum clock frequency than the static systems.
On average, it is 3% higher.

4.3.3 Comparison with the previous work
For comparison with the related work, it is not possible

to compare our work directly with them. The problem that
our method is dealing with is different from all the existing
works discussed in Section 2. Moreover, there is no standard
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Figure 14: The floorplans provided by PRFloor for
the same systems used in the examples in Fig. 2.
The floorplans in a) and b) correspond to Fig. 2a
and Fig. 2b respectively.

Table 2: The resource requirements of the PRRs
used in the experiments in Section 4.3.3.

PR Fig. 14a Fig. 14b
Regions CLB BRAM DSP CLB BRAM DSP

PRR 1 100 4 0 100 20 0
PRR 2 50 18 0 50 0 14
PRR 3 50 0 10 50 40 20
PRR 4 200 0 0 200 0 0

benchmark for FPGA floorplanning. Intuitively, in terms of
the complexity of the experimental systems, we have much
larger number of modules (including PRRs). The communi-
cation architecture between static modules and PRRs is also
more complicated. However, we do have two use-cases to
compare the PRFloor with [20]. The same systems given in
Fig. 2 are fed into PRFloor with the identical FPGA, Xilinx
Virtex-5 XC5VLX110T. The final floorplans are illustrated
in Fig. 14. In these systems, the PRRs are connected indi-
rectly by NoC and the PRFloor is run with α = β = 0.5.
The weight costs for CLB, BRAM and DSP are 1, 12 and 60
respectively. The resource requirements of the PRRs used
in the experiments are provided in detail in Table 2.

Regarding the system in Fig. 14a, the total wastage cost
given by [20] is 652 while ours is 19% lower, 530, thanks to
the half-column granularity described in Section 3.2.3. The
PRRs in our floorplan are also placed closer to each other.
The total Manhattan distances (with weight 1) between four
PRRs in our floorplan is 35% lower than [20].

For the system in Fig. 14b, one of the static modules
requires 10 DSP blocks; therefore the PRFloor reserves that
resource for it between PRRs 2 and 3. On the other hand,
in Fig. 2b, the floorplanner [20] does not take into account
the static modules. Hence, the remaining number of DSP
blocks after floorplanning is just 8 which is not sufficient to
implement the static module.

5. CONCLUSIONS AND FUTURE WORKS
This paper presents an automatic floorplanner for PR sys-

tems using the proposed NLP-bipartitioner to address the
differences between the FPGA and VLSI floorplanning prob-
lem. Unlike other previous works, PRFloor takes into ac-
count the complex connections between both static modules



and PRRs rather than just between PRRs. The experiments
with various system setups show that PRFloor can provide
results in a couple of minutes. The quality of the floorplan
is demonstrated via the higher maximum clock frequency
achievable than the comparable static systems.

The forthcoming works are to improve the performance
and the quality of the algorithm. It would be extended to
support bitstream relocation at runtime with tighter con-
straints for the placements of the PRRs.

6. ACKNOWLEDGMENTS
This work is supported in part by the German Research

Foundation (DFG) within the Cluster of Excellence “Center
for Advancing Electronics Dresden” (cfaed) at the Technis-
che Universität Dresden.

7. REFERENCES
[1] P. Banerjee, M. Sangtani, and S. Sur-Kolay.

Floorplanning for partially reconfigurable FPGAs.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, pages 8–17, 2011.

[2] C. Beckhoff, D. Koch, and J. Torreson. Automatic
floorplanning and interface synthesis of island style
reconfigurable systems with GOAHEAD. In
Architecture of Computing Systems–ARCS 2013, pages
303–316. Springer, 2013.

[3] C. Bolchini, A. Miele, and C. Sandionigi. Automated
resource-aware floorplanning of reconfigurable areas in
partially-reconfigurable FPGA systems. In Field
Programmable Logic and Applications International
Conference on, pages 532–538. IEEE, 2011.

[4] L. Cheng and M. D. Wong. Floorplan design for
multimillion gate FPGAs. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions
on, 25(12):2795–2805, 2006.

[5] J. Cong, M. Romesis, and J. R. Shinnerl. Fast
floorplanning by look-ahead enabled recursive
bipartitioning. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on,
25(9):1719–1732, 2006.

[6] F. Duhem, F. Muller, W. Aubry, B. Le Gal, D. Négru,
and P. Lorenzini. Design space exploration for
partially reconfigurable architectures in real-time
systems. Journal of Systems Architecture,
59(8):571–581, 2013.

[7] Y. Feng and D. P. Mehta. Heterogeneous
floorplanning for FPGAs. In VLSI Design, 2006. Held
jointly with 5th International Conference on Embedded
Systems and Design., 19th International Conference
on, pages 6–pp. IEEE, 2006.
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