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Abstract

What is flagellar swimming? Cilia and flagella are whip-like cell appendages that

can exhibit regular bending waves. This active process emerges from the non-equilibrium

dynamics of molecular motors distributed along the length of cilia and flagella. Eukary-

otic cells can possess many cilia and flagella that beat in a coordinated fashion, thus

transporting fluids, as in mammalian airways or the ventricular system inside the brain.

Many unicellular organisms posses just one or two flagella, rendering them microswim-

mers that are propelled through fluids by the flagellar beat including sperm cells and

the biflagellate green alga Chlamydomonas.

Objectives. In this thesis in theoretical biological physics, we seek to understand the

nonlinear dynamics of flagellar swimming and synchronization. We investigate the flow

fields induced by beating flagella and how in turn external hydrodynamic flows change

speed and shape of the flagellar beat. This flagellar load-response is a prerequisite for

flagellar synchronization. We want to find the physical principals underlying stable

synchronization of the two flagella of Chlamydomonas cells.

Results. First, we employed realistic hydrodynamic simulations of flagellar swimming

based on experimentally measured beat patterns. For this, we developed analysis tools

to extract flagellar shapes from high-speed videoscopy data. Flow-signatures of flagel-

lated swimmers are analysed and their effect on a neighboring swimmer is compared

to the effect of active noise of the flagellar beat. We were able to estimate a chemo-

mechanical energy efficiency of the flagellar beat and determine its waveform compliance

by comparing findings from experiments, in which a clamped Chlamydomonas is exposed

to external flow, to predictions from an effective theory that we designed. These me-

chanical properties have interesting consequences for the synchronization dynamics of

Chlamydomonas, which are revealed by computer simulations. We propose that direct

elastic coupling between the two flagella of Chlamydomonas, as suggested by recent

experiments, in combination with waveform compliance is crucial to facilitate in-phase

synchronization of the two flagella of Chlamydomonas.
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Introduction

Motile cilia and flagella are hair-like cell organelles that perform a whip-like mo-

tion and are grown outward by many eukaryotic cells. Those hair-like structures

are ubiquitous and evolutionary conserved structures. The continuum theory of

fluids can be applied to understand the physics of cellular swimming in liquids,

emergent synchronization of several cilia and flagella, as well as mechanical

properties of the flagellar beat. The unicellular green alga Chlamydomonas al-

lows us to study these phenomena in a single cell. Chlamydomonas lives in

fresh water and has exactly two flagella that beat synchronously, which leads to

straight swimming paths, despite of active fluctuations of the flagella. Since the

size of Chlamydomonas and other microswimmers is at the scale of just tens of

micrometers, inertia can be neglected, rendering hydrodynamic interactions to

be virtually instantaneous. We review flagellar self-propulsion by viscous forces

and its dependence on broken time-reversal symmetry.

Chapter overview. First some systems that possess cilia and flagella are presented,

specifically sperm cells and the green alga Chlamydomonas because they are the main

actors of this thesis. The biological structure and function of flagella are discussed.

Second, elements of fluid mechanics are presented. Third, some properties of swimming

at the micro scale are exemplified. Last, the main questions that are addressed in this

thesis are shown and the structure of the thesis is outlined.



Chapter 1. Introduction

1.1 Physics of cell motility: flagellated swimmers as

model system

The flagellum is an active system whose motion emerges from the collective

dynamics of thousands of microscopic constituents. Several cilia and flagella

can synchronize, i.e. beat at a common frequency with fixed phase lag.

Section overview. First, biological systems that possess cilia and flagella and their

functions are presented. Then, the molecular structure of flagella is presented and the

onset of flagellar oscillations is explained. Last, biological examples with synchronizing

cilia and flagella are shown and the theoretical basis for discussing synchronization of

two oscillators is described.

1.1.1 Tissue cells and unicellular eukaryotic organisms have cilia

and flagella

Figure 1.1: Ciliated microswimmers. (a) Sperm cell, image with modifications from [85]

with permission. (b) Chlamydomonas cell, image recorded by Christian Ruloff. (c) The

posterior part of a Paramecium cell, with modifications from [93], with permission. (d)

Volvox organism, with modifications from [20].

Cells that possess cilia and flagella usually perform one of two features: self-propulsion

and fluid pumping. Fluid pumping commonly happens due to cilia carpets on epithelial

tissues that consist of many cells. Common examples of cilia carpets with about 50

cilia per cell in biological organisms are the cerebral ventricles inside the brain [102, 27,

115] and the airway found in many mammals [123]. A striking example is the ventral

node of mouse embryos [19, 122] that contains primary whirling cilia whose beat break

the left-right symmetry during vertebrate development. Another prevalent function of

collections of cilia through fluid pumping is the increase in speed and sensitivity of

sensing as at the olfactory sensory receptors in the nose of a Zebrafish embryo [106].

Biological model organisms for studying cilia carpets are the paramecium cell [93] and

Volvox organism [20]. Paramecium is a single cell with hundreds of cilia and Volvox is

2



1.1. Physics of cell motility: flagellated swimmers as model system

a green alga that consists of two types of cells, one of which form a shell structure and

contain flagella on the outside, the other ones are germ cells, sitting in the interior. In

the case of Paramecium and Volvox the cilia carpets function is not pumping fluid, but

propelling the miscroswimmers through the fluid.

Usually, systems containing just a few cilia of flagella are self-propelling systems.

Well-studied representatives include sperm cells and the unicellular green alga Chlamy-

domonas, the two main actors in this thesis. Those two as well as Paramecium and

Volvox are shown in figure 1.1.

Sperm cells. Most sperm cells have a single flagellum with a typical length of about

50µm and an ellipsoidal cell body with semi axis lengths of about 5µm. The flagellum

performs a whip-like motion, which is similar to a traveling wave that propagates from

the cell body to the tail. Although the beating happens to be approximately in a plane,

a small out of plane component leads to helical swimming paths [30, 31]. This form

of the trajectory supports the mechanism to perform chemotaxis [64], that means that

the mean swimming path follows a chemical gradient of signaling molecules, which is

established by diffusion from the egg.

Chlamydomonas. Chlamydomonas is a unicellular alga with two flagella that beat

in synchrony in a breast stroke like manner. Each flagellum bends in a similar way as

flagella of sperm cells, but the mean curvature is larger. This results in a motion that

can be characterized in two phases: The power stroke, in which the flagella are rather

straight and move from the front to the back, where front means the cell part in the

direction of swimming motion, leads to forward motion of the cell body center. During

the recovery stroke, the flagella move from back to front and slide very near to the cell

body. This results in backward motion, which is about half the distance of the forward

motion. As in the sperm cell, the flagellar beat has a small out of plane component,

which leads to a screw like swimming path [111]. This allows Chlamydomonas to per-

form phototaxis, which means that it swims towards or away from light in a helical

swimming path [8], which is possible due to a single eyespot on the cell body that acts

as a light sensor. This eyespot is positioned is asymmetrically thus the two flagella can

be differentiated into a cis-flagellum, which is anchored at the same side as the eyespot,

and the trans-flagellum, which is anchored at the other side.

1.1.2 The conserved architecture of flagella

Flagella and cilia are an evolutionary highly conserved structure that is present in cells

of major eukaryotes groups, including plants, protists and animals. [26]. Eukaryotic

flagella and cilia are basically the same structure. They are different mainly in size and

function. Flagella are longer and are typically used for the propulsion of microswimmers,

whereas many cilia grow out of a single cell, and fluid is pumped by so called cilia carpets.

In the rest of this work, I will use both terms interchangeably. The eukaryotic flagellum

used in this work is not to be confused with the bacterial flagellum, which is a passive

protein structure, and is driven by a rotary motor at its basal end [129, 77].

Flagella are actively bending slender cell appendages that are found in many different

3



Chapter 1. Introduction

Figure 1.2: The architecture of the axoneme. (a) α-tubulin ( ) and β-tubulin ( ) form

dipolar protein complexes, from which protofilaments (b) are built by successive bonding.

(c) Thirteen protofilaments, circularly arranged form a microtubule. (d) Cross section of

a microtubule. (e) Cross section of a microtubule doublet, consisting of ten more protofil-

aments than a microtubule. (f) The cross section of the axoneme shows a cylindrical

arrangement of nine surrounding doublets ( ) which are coupled to a commonly occurring

central pair ( ) by radial spokes ( ). Neighboring microtubuli doublets are coupled by

nexin linkers ( ), inner dynein arms ( ) and outer dynein arms ( )

eukaryotic cells [49]. Besides the function of motility, they are able to perform signaling

and sensory function [87]. We are interested in flagella that are used for self-propulsion

of microswimmers, specifically in the two flagella of the green alga Chlamydomonas and

the one of sperm cells. Chlamydomonas flagellar length is about 10µm in length, the

sperm flagellum has about 50µm. The processes involved in regulating the flagellar

length are subject to current research [10, 11].

Now, the internal structure of flagella is presented and the origin of its oscillatory

motion is discussed. Then the potential function of its central pair as well as Chlamy-

domonas’s basal bodies are discussed.

Internal structure. The membrane enclosed axoneme consists of a central pair of

microtubules, that is surrounded by nine microtubule doublets [2]. In between the

doublets, large proteins, called dynein motors, are present [94, 45]. These renders

the flagellum an active, ATP-consuming organelle [86]. Each dynein motor changes

its conformation upon hydrolysis, which generates bending forces inside the axoneme.

Nexin linkers provide resistance against those torques. Along the axoneme, thousands

of molecular motors and nexin linker are found [94]. The flagellum is a chiral structure

with a definite handedness. Figure 1.2 shows the structure of the axoneme.

Oscillatory motion. The regular bending waves of cilia and flagella represent a self-

organized phenomenon, that can prevail even in the absence of the cell body. This was

shown by immersing a demembranated flagellum in a solution with enough ATP and

observing that it reveals a beating pattern, comparable to what is found in the living

4



1.1. Physics of cell motility: flagellated swimmers as model system

cell [42, 3, 14]. Spontaneous oscillations of a system with molecular motors and elastic

filaments occur due to a dynamic instability [16, 24, 65], which arise in many different

biological systems, such as mitotic spindle oscillations [51], sarcomere oscillations in

insect flight muscle [63], spontaneous hair bundle oscillations in the ear [88], and the

flagella, e.g. of sperm cell and Chlamydomonas. The oscillations occur due to the

following process. Say a certain distribution of molecular motors inside the flagellum

is attached to microtubules at both ends, all others are detached. The induced stresses

due to the activity of attached motors lead to sliding of doublets with respect to each

other [18, 125, 17, 2], which in turn leads to a bent shape due the boundary condition

for sliding at the basal body as well as sliding resistance due to the nexin linkers. The

resulting bent shape leads in turn to changes of the distribution of attached and detached

motors. Again stresses are induced that change the shape. Figure 1.3 illustrates this

process. The microscopic origin of the exact mechanism of motor control is still a matter

of debate [117, 6, 82, 56]. Nevertheless it is possible to characterize the flagellar beat

by a small number of waveform parameters.

For the systems of interest in this thesis, the periodic shape deformations happen

to be approximately in a plane, which might be explained by an anisotropic bending

rigidity [22]. The anisotropy could be due to the orientation of the central microtubules,

that lie in the plane perpendicular to the beating plane [44]. Isolated flagella without the

central pair may still beat, but only with special conditions fulfilled [137]. In comparison,

the ciliary beat of Paramecium does not lie in a plane and it is found that the central

fibers rotate during the beat [96].

In Chlamydomonas, the basal bodies are organelles, being the anchoring spots of flag-

ella that are connected to them by so called stellate fibers [126]. They are connected

by a distal fiber [109], which also seems to set the orientation of the plane in which

deformations of the flagellum happen [61, 89]. Additional stability is given by a connec-

tion of basal bodies with the nucleus [126]. The basal bodies of Chlamydomonas can

be reoriented by a photoshock [89], which changes the beating plane, as well.

It was reported that calcium has an effect on the mean curvature of the axoneme [15].

More recent studies highlight the role of the change of calcium concentration [64]. The

phototactic reaction of Chlamydomonas is due to different reaction of its two flagella to

calcium, which is triggered by its asymmetrically positioned light-sensitive eyespot [67].

1.1.3 Synchronization in collections of flagella

In this section, examples of flagellar synchronization and its functional implications are

discussed. Then, the theoretical basis from a physical point of view is presented, in

which flagella are treated as oscillators.

Synchronization of beating flagella

Several cilia and flagella can synchronize, i.e. adapt their beats with a fixed phase

difference. This striking phenomenon has inspired a continuous interest of experimental

and theoretical physicists alike.
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Chapter 1. Introduction

Figure 1.3: Schematic of how the microscopic structure of the flagellar axoneme leads to

bending oscillations. (a) Two gray filaments are shown to the left which are connected by

a cross linker ( ) and a molecular motor ( ). The motor exerts forces onto the filaments,

resulting in an effective torque which finally leads to bending of the whole structure (right).

(b) Two connected filaments are shown in gray along which several cross linkers and motors

are distributed. The blue motors ( ) are detached from at least one of the gray filaments.

Force balance leads to a bent shape, which again leads to attachment and detachment of

motors, which leads to a different shape, and repeats the cycle.

Many cilia that are arranged on a surface and can interact hydrodynamically are

called cilia carpets. They exist on epithelial tissues (lung), single cells (Paramecium)

or simple multi-cellular organisms (Volvox). Synchronization of cilia carpets leads to

metachronal waves, which is useful because fluid is pumped efficiently [97]. Spontaneous

creation of metachronal waves through hydrodynamic interactions in model systems is

observed [54]. A famous organism to study synchronization of cilia carpets is the green

algal colony Volvox. Isolated ciliated cells from Volvox have been shown to synchronize

by direct hydrodynamic interactions [21]. It has been proposed that likewise the cilia

carpet on the surface of Volvox synchronizes [20].

As another example, the beat of multiple sperm cells can synchronize with each other

through hydrodynamic interactions [110, 107] when swimming close to each other. High

density sperm suspensions form self-organized vortices and in turn form a hexagonal

lattice, which is due to hydrodynamic and steric interactions [138].

Chlamydomonas swims with a breast-stroke movement of its two flagella. Its flagella

beat synchronously, which allows the cell to swim straight and fast [12]. Would its

two flagella beat out of phase, rotational movement would be dominant and its net

swimming speed would be tremendously reduced.

Putative mechanism for flagellar synchronization in Chlamydomonas. It has

been suggested already by Gray in 1955 that direct hydrodynamic interactions could

be the cause of flagellar synchronization [50]. The first direct demonstration of flagellar

synchronization by hydrodynamic interactions was given by Brumley et al. [21], using

two flagellated cells held by separate micro-needles at a distance. The synchronization

strength decreased as a function of increasing separation distance. In these experiments,

synchronization could only be mediated through the surrounding fluid. Later, a joint

experimental and theoretical study suggested an alternative synchronization mechanism

that is independent of direct hydrodynamic interaction and is operative in at least one
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important model organism, the biflagellate green alga Chlamydomonas [41].

An additional question concerns whether a putative synchronization mechanism sta-

bilizes in-phase or anti-phase synchronization in pairs of flagella. It was observed, that

an isolated flagellar apparatus still leads to in-phase synchronization [61]. In contrast,

the flagellar dominance mutant ptx-1 of Chlamydomonas is non-phototactic and shows

perfect anti-phase synchronization [80]. Interestingly, Chlamydomonas cells swimming

in the dark were observed to switch between the in-phase synchronized state, in which

the swimming path is straight, and the anti-phase synchronized state [99].

A recent experiment, in which the Chlamydomonas cell is exposed to oscillating exter-

nal flow, suggests basal body coupling as the primary synchronization mechanism [104].

Figure 1.4: Distal striated fiber in the basal apparatus of green alga is contractile. (a)

The distal striated fiber of Chlamydomonas connects its two basal bodies. Image with

modifications from [109], with permission. (b) Electron micrographs of the rizhoplast of

Platymonas Subcordiformis, a quadri-flagellate green alga for different concentrations of

Calcium. With modifications from [113], with permission.

The basal body as explicit synchronization coupling. The basal bodies are the

anchoring points of the flagellar axonemes. The same structures form the cores of the

centrioles, which also serve as organizing centers of the mitotic spindle during cell divi-

sion. In Chlamydomonas the basal bodies are connected by an ashlar-formed structure,

known as distal striated fiber. Electron-micrographs of the basal apparatus with the

distal striated fiber is shown in figure 1.4 (a). The distal striated fiber is approxi-

mately 0.3µm long, 0.075µm thick, and the out-of beating plane extension is about

0.25µm [109]. The contractility of those fibers can be controlled by the intracellular

Calcium concentration [58, 136, 113]. The contraction occurs in milliseconds, and is

due to the Ca2+-modulated contractile protein centrin [119]. Continuous cycles of con-

traction and reextension are observed with only in the presence of ATP, highlighting

7



Chapter 1. Introduction

the active nature of these contractions [114], see also figure 1.4. The vfl-1 mutant is

centrin defective [135].

Recent experimental findings suggest, that the basal body apparatus may be a key

prerequisite responsible for flagellar in-phase synchronization in Chlamydomonas[132].

Dynamics of coupled phase oscillators

We consider two generic oscillators that are coupled weakly. A single oscillator immersed

in a medium is exposed to friction forces due to motion and is driven by a constant

force. Thus, its phase ϕ propagates constantly in time with the frequency ω0 = ϕ̇. Two

coupled oscillators labeled L and R, with frequencies ωi and phases ϕi for i ∈ {L,R} are

effectively described by the Adler equation [1], considering their phase lag δ = ϕL−ϕR
and frequency mismatch ∆ω = ωL − ωR. The phase lag dependent coupling between

the oscillator must be 2π-periodic, and is approximated by its first mode. Also, it is

assumed that the coupling is weak, which means that the dynamics of the phases ϕi is

much faster than the dynamics of the phase lag δ. The Adler equation writes as

δ̇ = ∆ω − λ sin(δ). (1.1)

For details, see the derivation in appendix E.

For the case of two identical oscillators with equal intrinsic frequencies, ∆ω = 0,

we observe one stable fixed point at δ∗ = 0 and one unstable fixed point at δ∗ = π

for positive synchronization strength λ. If the two oscillators have different intrinsic

frequencies, ∆ω 6= 0, phase locking still occurs if the synchronization strength λ is large

enough, |λ| > |∆ω|.

Synchronization in minimal models need broken symmetries. Any system of

coupled oscillators must break the symmetry under parity- and time-reversal to achieve

net synchronization. For seeing this, consider a system of two coupled oscillators, that

is symmetric under parity- and time-reversal and has a fixed point with a Lyapunov

exponent −λ > 0 for the phase difference. For the case of synchronizing systems, λ is

called synchronization strength. A parity transformation does not change the physics

and λ is unchanged. The time-reversion leads to a change of sign of λ→ −λ. So, if the

system is symmetric under combined parity transformation and time-reversal, we have

λ = −λ, which is only true for λ = 0, which is interpreted as a system that does not

phase lock.

There is a multitude of possibilities to break that symmetry. Obviously, considering

the time dependent Navier-Stokes equation breaks that symmetry and leads to synchro-

nization [128]. But also physical constraints like a wall at one side in combination with

hydrodynamic interactions [35, 131], front-back asymmetric beat patterns [34], phase

dependent flagellar driving forces or energy dissipation rates [130] or elastic degrees of

freedom with non-isochrone limit cycles [95] break that symmetry. The latter synchro-

nization mechanism is presented in figure 1.5. Most portrayed mechanisms are embodied

for Chlamydomonas which makes it a very interesting model organism. It prompts the

question which synchronization mechanism dominates in this biological system.
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1.2. Hydrodynamics at the microscale

Figure 1.5: Minimal model of hydrodynamic synchronization in the presence of amplitude

compliance. A sphere moves along a circular orbit. Its position in polar coordinates can

be expressed by a phase ϕ and a radial component that we call amplitude A. Be the non-

isochrony in this example in a way such that a larger distance from the center (amplitude)

leads to a higher friction in the tangential direction (phase). The interactions of the rotating

spheres are in a way, such that their amplitudes change due to the tangential speed of

the coupled oscillator. (a) A small phase difference leads to a change in the distance to

the center, which due to non-isochrony changes the velocities of the spheres such that

phases adjust. In-phase synchronization is stable. (b) As (a) but one oscillator is mirrored

horizontally, which effectively flips the rotational motion. This system does not show stable

in-phase synchronization, because both oscillator change the phase speed in the same way.

(c) The Chlamydomonas can be described similarly to (b), but the sign and the strength of

the non-isochrony generally is a function of the phase, and the hydrodynamic interactions

between the two ’flagellar oscillators’ are much richer.

Active fluctuations blur the synchronization behavior. The bending of flagella

is due to stochastic stepping of molecular motors with a preferred direction [59]. This

is reflected by a characteristic level of active noise of the flagellar beat, which one can

measure as the finite width of power spectra [107, 132]. We effectively describe active

fluctuations by adding a noise term ξ in the Adler equation (1.1)

δ̇ = ∆ω − λ sin(δ) + ξ. (1.2)

In pairs of synchronized flagella active noise induced phase slips occur for a higher

level of noise as well as for lower synchronization strength [47]. More generally, the

probability for finding a system of coupled oscillators in a state with δ ≈ π increases

with noise [133]. The probability density p for finding a system at a particular phase

difference δ is given by

p(δ) ∝ e(∆ω+λ cos δ)/D, (1.3)

with phase diffusion D.

1.2 Hydrodynamics at the microscale

Section overview. The Navier-Stokes equation is derived from a balance of forces

and mass conservation. Then the Stokes equation is presented, which is valid when the

Reynolds number Re is small, applicable in the realm of microswimmers. Next, higher-

order fundamental solutions are discussed based on the Green’s function approach for

solving the Stokes equation.
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1.2.1 Navier-Stokes equation

This section follows closely the exposition in [55]. The continuum theory of fluids is given

by two conditions, the conservation of mass and a force balance per volume element of

the fluid. The volume element for the hydrodynamic theory to be applied must be much

smaller than the system of interest, such that infinitesimal calculus can be applied, and

it must be much larger than a single structural unit of the microscopic scale, which,

in the case of water, would be a single water molecule. Throughout this thesis, we are

interested in the hydrodynamics of water in three space dimensions.

First, we state that mass is conserved by stating the following continuity equation

with mass density ρ, time t, and fluid flow u

∂ρ

∂t
= −∇ · (ρu). (1.4)

The density ρ changes according to the gradient of density flux ρu.

Next, we state that all the forces arising from fluid movement are balanced by external

forces

∂(ρu)

∂t
+∇ · (ρuu) = ∇ ·Π + ρf . (1.5)

Here, f denotes possible external body forces such as gravitational forces and Π denotes

the stress tensor. We use the constitutive relation for Newtonian fluids for the stress

tensor Π that consists of a diagonal term related to the pressure p and a symmetric

term that couples to the strain rate via the viscosity µ,

Π = −p1 + µ
(
∇u + (∇u)T

)
. (1.6)

Here, we neglect a bulk compressibility which would have to be included for compressible

fluids. Throughout this thesis, we assume ∇ρ = 0 and ∂ρ
∂t = 0. With this, equations

(1.4) and (1.5) simplifies to

∇ · u = 0

ρ

(
∂u

∂t
+ (u · ∇) u

)
= −∇p+ µ∆u + ρf .

(1.7)

This is the well known Navier Stokes equation. The left hand side consists of inertial

forces and the right hand side contains viscous and external forces.

1.2.2 The limit of low Reynolds number

This section follows closely the exposition in [55]. In microswimming, inertial effects can

be usually neglected. This is because the relevant objects are small and slow, implying

that viscous forces (∝ µlU) dominate over inertial forces (∝ ρU2l2). The value of the

Reynolds number

Re =
ρUl

µ
(1.8)
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1.2. Hydrodynamics at the microscale

with length scale l and velocity scale U , is a measure for the importance of inertial

effects to explain physical effects. We can see this by representing the incompressible

Navier Stokes equation (1.7) in terms of rescaled dimensionless quantities
∼
u = uU−1,

∼
r = rl−1, other quantities are expressed analogously. The Navier-Stokes equation reads

in rescaled variables

Re

(
∂
∼
u

∂
∼
t

+
∼
u ·
∼
∇∼u

)
= −

∼
∇∼p +

∼
∆
∼
u +

∼
f . (1.9)

Thus, the Reynolds number Re is the ratio between viscous forces (−∇p + µ∆u) and

inertial forces, consisting of a dynamic acceleration term ∂u/∂t and a convective accel-

eration term u · ∇u.

Typical values for a Chlamydomonas cell are U ≈ 0.1 mm s−1 and l ≈ 0.01 mm, which

leads to Re ≈ 0.001 in water. For a sperm cell, we find Re ≈ 0.01.

We take the limit Re = 0 and obtain the Stokes Equations

µ∇2u = ∇p− f ,

∇ · u = 0.
(1.10)

Note that the Stokes equation (1.10) does not possess any explicit time dependence and

is linear. It can be solved by the following Greens function

Tij =
1

8πµ r

(
δij +

rirj
r2

)
(1.11)

which is a rank 2 tensor with r = |r| and is called Oseen tensor. Note that the com-

ponents of T decay with distance as ∝ r−1. The fundamental solution of the Stokes

equation characterizes the flow field in response to a point force located at the origin.

It can be used to compute flow fields from arbitrary force densities f by superposition

u(r) =

∫
d3r′T(r− r′)f(r′). (1.12)

The flow field u(1) = T ·F0 that is due to a point force F0 is called Stokeslet and is the

fundamental solution of the Stokes equation (1.10). An example of a Stokeslet is shown

in Figure 1.6.

In the next section, I present a way to represent the flow field as a superposition of

singularities, which requires a number of singularities for accurate representation of flow

fields that is much smaller than the typical number of discretization points of a surface of

a microswimmer used in hydrodynamic computations. These higher order singularities

are called multipoles. Higher multipoles allow for a descriptive classification of flow

fields.

1.2.3 Multipole expansion of flow fields

In electrostatics, the method of multipole decomposition is used to characterize electric

potential fields in a compact way and approximate these efficiently. The electric charges
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Chapter 1. Introduction

Figure 1.6: Stokeslet: the fundamental solution of the Stokes equation. The flow field that

is induced by a point force (red arrow) is called Stokeslet. The black arrows depict the

direction of flow. The color represents the flow strength |u|, which diverges at the point

force’s origin, and declines with the distance as 1/r.

are the source of the potential and are decomposed into so called multipoles, which can

readily be superimposed. The same decomposition can be applied to the force density

f inside the fluid, with the difference, that it is a vector field, whereas the charges are

a scalar field. We present a more thorough discussion on force multipoles in appendix

A.1. For completeness, the definition of the force multipoles as they are used in this

thesis are presented as in [118]

f (n+1)
γ1...γn,α =

1

n!

∫
S

dS rγ1 · · · rγnfα(r), (1.13)

defining rank (n + 1) tensors with components f
(n+1)
γ1...γn,α. The flow field arising from a

set of force multipoles is

uα(r) =

∞∑
n=0

u(n+1)
α (r) =

∞∑
n=0

(−1)n∂γ1...γnTαβ(r)f
(n+1)
γ1...γn,β

. (1.14)

Consider the following example for seeing the descriptive nature of force multipoles.

An object with a moving shape immersed in a viscous fluid induces a force density on

its surface that generates flows. At a distance to that object the flow field has a simple

structure, with just one direction of in-flow or out-flow. We call this flow field at a

distance far-field and represent it by the second-order singularity u
(2)
α = −∂γTαβf

(2)
γ,α,

which is the second term of the flow field u in equation (1.14). Note that if no external

forces are applied, the first mode vanishes, since it just represents the net force acting

on the object. With decreasing distance to the shape-changing object higher modes

must be considered to faithfully represent the flow field it creates. The flow field at

the immediate vicinity of the object is called near-field. Figure 1.7 shows the intricate

near-field of three moving spheres and its generic far-field.
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1.3. Self-propulsion by viscous forces

Figure 1.7: Example of how the leading-order multipole dominates the far-field. (a) Three

equally sized spheres and their translational speeds are shown by the black arrows inside

yellow circles. Note that the sum of forces is zero. The resulting flow field has an intricate

structure. The net speed of a sphere is u0. (b) The same flow field as shown to the right,

but at a much larger scale, see white scale bars. (c) The overall structure of the flow field

has a very generic structure, which can be well approximated by the flow induced by a pair

of forces (red arrows).

1.3 Self-propulsion by viscous forces

Microswimmers swim at low Reynolds number, thus friction forces due to vis-

cosity are much larger than inertial forces. If a particle that changes its shape

stops its motion in a sudden, the flow of the surrounding fluid would stop at

an instant. Also, if a microswimmer swims with a certain swimming speed and

then stops its shape changes, the swimming speed will be zero, instantly. To

compare this situation to experiences that we are used to in our daily lives, one

can imagine the situation of swimming in honey, and we are allowed to perform

one breaststroke in days [101].

Section overview. The required non-reciprocal shape movements that are necessary

for swimming are discussed for two toy-model swimmers, first. Then, the effect of

swimming on the surrounding fluid is discussed.

1.3.1 Self propulsion requires broken symmetries

Swimming at low Reynolds number is very different from swimming at the human

length scale. For single cells that swims in a fluid, inertia is negligible [76, 37]. Thus,

propulsion is achieved through viscous forces only [127]. Non-reciprocal shape changes

can overcome the time-reversibility of the Stokes equation, thus facilitating net propul-

sion [9, 120]. Flagellated cells achieve this in the form of a periodic flagellar bending

waves [50, 111, 12]. Any swimmer that performs a cyclic motion or shape change must

break the time-reversal symmetry [101]. This context is known as the Scallop theorem.

Non-reciprocal shape changes can only be achieved by possessing more than one degree

of freedom.

Another way to allow a reciprocal swimmer to propel, is to expose it to a non-
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Newtonian fluid, because its elastic components provide memory to the system that

breaks time-reversal symmetry [103].

Theoretical minimal models are developed to highlight the theoretical basis of swim-

ming at the microscale and to suggest simple architectures for constructing nano-

machines. A particularly simple example is the three-sphere swimmer first proposed

by Najafi [92, 48], which has also been realized experimentally [52]. Another even sim-

pler model is Vic’s swimmer [33]. It is a system with two spheres of variable radius and

variable mutual distance. Figure 1.8 shows the non-reciprocal shape changes of Vic’s

swimmer and the resulting trajectory.

Figure 1.8: Breaking time reversal symmetry with two degrees of freedom: The pushmepul-

lyou stroke. A schematics of Vic’s swimmer [33] performing a pushmepullyou stroke [4] is

shown. (a) The swimmer has one degree of freedom that increases the size of one of the two

spheres while shrinking the other and one degree of freedom that sets the distance between

the spheres. The shape changes time irreversible. (b) Changing the shape as depicted in

panel (a), the swimmer can achieve net propulsion.

Net-propulsion by periodic shape changes is a second-order effect, implying that net

displacement after one cyclic swimming stroke is proportional to the square of the ampli-

tude of the swimming stroke [121, 100]. Thus, the propulsion speed of a microswimmer

is quadratic in the amplitude of the shape changes. In particular, this is true for the

Najafi’s model swimmer [92] and Vic’s model [33] that performs the so called push-

mepullyou stroke [4].

Note that Vic’s swimmer represents an exception to the general rule that hydrody-

namic interactions are necessary for propulsion. Vic’s swimmer does not necessarily

need hydrodynamic interactions for propulsion, while Najafi’s three sphere swimmer

does. Swimming with flagella implement hydrodynamic interactions locally in terms of

anisotropic friction coefficients for movement perpendicular or parallel to its surface, as

well as globally, due to interactions of flagella with the cell body.

The role of anisotropic friction is highlighted in resistive-force theory [50]. Non-

local hydrodynamic interactions are not considered there, but self-propulsion of shape

changing object can occur due to local hydrodynamic interactions. These are encoded

in the friction anisotropy, which means that the friction for motion parallel to the long

axis of a slender object ζ‖ is different to the friction for motion perpendicular to the

long axis ζ⊥ [38]. For a more complete description of resistive-force theory, see also

14



1.3. Self-propulsion by viscous forces

appendix A.2.

1.3.2 Signatures of flowfields: pusher & puller

Figure 1.9: Flow-signatures of puller- and pusher-type swimmers. The microswimmer is

shown in gray, and the surrounding mean flowfield is sketched as blue streamlines. (a)

Chlamydomonas is a typical representative of puller-type swimming during the effective

stroke of its flagellar beat. Its mean swimming direction (green arrow) is perpendicular to

the mean outflow direction. (b) The sperm cell is a typical pusher type swimmer with its

outflow direction in the same direction as its swimming direction.

While swimming, microswimmers generate flow fields whose far-field has a dipolar

structure [62]. Microswimmers are commonly classified as either pusher- of puller-type

swimmers, based on the sign of the hydrodynamic force dipole [76]. The character of the

swimmer becomes important when considering hydrodynamic interactions with other

objects like boundaries, passive particles or other swimmers. A pusher, for example,

will experience inward fluid flow from the side, which leads to attraction by walls [76].

Figure 1.9 illustrates the simplified notion that the Chlamydomonas cell is a puller and

the sperm cell is a pusher. We will present a refined notion in chapter 2.

The near field of swimmers cannot be described by the dipole field alone. At least

third-rank tensors are necessary to describe features such as swirling flows around

Volvox [32] or stagnation points near Chlamydomonas [53, 43]. Despite these limi-

tations, in recent theoretical studies with many interacting microswimmers, the simple

picture with constant force dipole is implemented [140], complying with the dilute limit.

Dense suspensions of microswimmers show active rheological responses, such as shear

thinning, which can be attributed to the swimmer character [105, 46]. Qualitative

differences in the swimmer density dynamics are observed, depending on whether the

swimmers represent pushers, pullers or neutral swimmers [84]. Theoretic studies show

that in viscoelastic fluids, the fluid elasticity has a small effect on a suspension of

pullers, while it significantly affects the pushers [81]. Swimmers accumulate at bound-

aries [124, 36, 75], that means that simple, passive devices may be developed to catch
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or transport active particles [66]. Since most of these effects depend on the flow signa-

ture of swimmers, a detailed understanding of its geometric and physical properties is

crucial. We will explore those properties in chapter 2.

1.4 Overview of the thesis

In this thesis, we study the hydrodynamics of flagellar swimming and synchronization.

We address the following questions.

• What are the dynamic features of the flow fields generated by beating cilia and

flagella?

• In turn, how do external flows feed back on speed and shape of the flagellar beat?

• What are the physical mechanisms giving rise to hydrodynamic synchronization

of beating flagella?

Thesis overview.

• In chapter 2, we present the computed swimming paths and flow fields of biological

microswimmers. We find that the flow field oscillates with the period of the

flagellar beat and describe the far-field as an oscillating dipole field. The distance

at which inertial effects become important is determined.

• In chapter 3, we determine the load-response of the flagellar beat. This load-

response describes how mechanical forces change the speed and shape of the flag-

ellar beat. For this, we develop a theoretical description of Chlamydomonas that

includes waveform compliance and intra-flagellar friction and compare its predic-

tions to experimental data for the situation of a clamped cell that is exposed to

external flows.

• In chapter 4, we address flagellar synchronization, utilizing the load-response de-

termined in the previous chapter. We find that an elastic coupling between bases of

the two flagella is needed in our theory to explain in-phase synchronized beating.

Further, we suggest non-invasive ways to change the synchronization dynamics

and to test that hypothesis.

• In chapter 5 we quantify the active fluctuations of the flagellar beat. Those flagel-

lar fluctuations lead to noisy swimming paths. We compare these active motility

fluctuations to the effect of hydrodynamic interactions and thermal noise.

Methods. We analyze experimental data of high-speed videomicroscopy to extract

dynamic flagellar shapes. We reconstruct a limit cycle with a dimensionality reduction

algorithm, describing the flagellar beat as a limit-cycle oscillator. Numerical calculations

allow us to compute fluid motion and hydrodynamic friction forces of shape changing

flagella and microswimmers. We develop a theoretical description of active microswim-

mers using a Lagrange formalism of dissipative systems. We employ tools of nonlinear

dynamics to characterize flagellar swimming and synchronization.
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Experimental data that is used in this thesis. Veikko Geyer measured flagellar

shapes of Chlamydomonas [41] in the Howard Lab at MPI CBG, which are used in

the discussions on the far-field in chapter 2 and section 5.3.2 on the comparison of the

effect of flagellar noise and hydrodynamic interactions. High precision tracking data

of swimming bull sperm [108] was recorded by Ingmar Riedel Kruse. This is used for

obtaining results in chapter 2, and the measurement of active flagellar fluctuations and

swimming paths, chapter 5. Further measurements on Chlamydomonas provided by

Christian Ruloff in the Wagner lab at the Saarland University are used in chapter 3 and

4.

17



Chapter 1. Introduction

18



2
Flow signatures of flagellar swimming

Swimming of shape changing microswimmers in viscous fluids is an active pro-

cess in which energy provided by internal processes is converted into shape

changes of active structures such as cilia and flagella and ultimately converted

into heat inside those structures and in the fluid. This leads to characteristic

flow-fields of self-propelled microswimmers. Periodic shape changes generate

oscillatory flow fields, which dominate the near field in the vicinity of the swim-

mer. Inertial effects subdue oscillatory flows beyond a characteristic length, the

inertial screening radius.

Chapter overview. First, the physics of freely swimming cells that propagate by pe-

riodic shape changes is presented. Second, the dynamic nature of the hydrodynamic far

field is characterized in terms of pusher- and puller-type swimming and its implications

for multiple swimmers are discussed. Third, the effect of unsteady acceleration is inves-

tigated and the screening length at which inertial effects start dominating is computed.

Lastly, the energetics of flagellar swimming is discussed.

Note that the formalism that is used in this chapter does not account for feedback of

viscous forces on the speed and shape of the flagellar beat, which will be the topic of

chapter 3.

This chapter is based on a publication, of which the author of this thesis is first

author [70]. The flagellar shape dynamics of freely swimming Chlamydomonas cells

were previously recorded by Veikko Geyer in the laboratory of Jonathan Howard at

MPI CBG and Benjamin Friedrich at MPI PKS did image analysis for obtaining the

positions of flagellar tracking points [41]. High precision tracking data of swimming bull

sperm [108] was recorded by Ingmar Riedel Kruse.



Chapter 2. Flow signatures of flagellar swimming

2.1 Self-propulsion of flagellated swimmers

Section overview. First, the tangent angle representation of flagellar shapes is in-

troduced. Then it is described, how the tangent angles of flagellar shapes used in this

chapter are obtained from experiments and how hydrodynamic calculations are per-

formed. Next, the notion of the material frame is introduced, that is comoving with a

microswimmer. After the introduction of the grand friction matrix, that relates forces

with swimming velocities, and the discussion of its realization for Chlamydomonas, the

integration scheme for obtaining swimming trajectories is discussed.

2.1.1 Representation of flagellar shapes

A flagellar shape at a certain time t can be described by its time dependent tangent angle

ψ(s, t) along the arc length s for planar flagellar shapes, which is a valid approximation

for the system we are focusing at [108].

The real space coordinates r(s, t) along the flagellar arc length s with the starting

point r0 = r(0, t) can be reproduced from the tangent angle ψ

r(s, t) = r0 +

s∫
0

ds′
(

cos(ψ(s′, t))

sin(ψ(s′, t))

)
. (2.1)

Figure 2.1 (a) graphically shows a schematic of a flagellum depicting the tangent angle

representation. Panels 2.1 (b) and (c) show our convention for the starting point r0 for

the sperm cell and the Chlamydomonas cell, respectively. Panel (d) shows a typical

kymograph of the tangent angle ψ(s, t).

Figure 2.1: Tangent angle representation of flagellar shapes. (a) Tangent angle representa-

tion ψ of a schematic flagellum along its arc length s with starting point r0. (b) For a sperm

cell, the flagellar starting point is chosen at the long axis tip of the cell head r0 = rh + rt.

(c) The Chlamydomonas has two flagella, thus r0,I = rb + rI for I ∈ {L,R}. (d) Exem-

plary kymograph of processed experimental data of the tangent angle ψ(s, t) measured by

Christian Ruloff.
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2.1.2 Computation of hydrodynamic friction forces

Underlying shape data. A Fourier analysis of the tangent angle ψ(s, t) of Chlamy-

domonas shapes suggests, that only Fourier modes are sufficient to faithfully describe

the flagellar shape changes [116], with arc length dependent Fourier coefficient ψi(s)

ψ(s, t) ≈ ψ0(s) +

3∑
n=1

ψi(s) e
i2πnft. (2.2)

Here, ψ0 is constant in time and can be interpreted as the time averaged mean shape of

the beat, which is approximately circular in real space. For simulations whose results

are shown in this thesis, we use f = 30 Hz and a flagellar length L = 10µm. The cell

body is approximated as a prolate ellipsoid with semi axis lengths blong = 4.5µm and

bshort = 3.5µm.

Similarly, a singular value decomposition of the tangent angle dynamics of sperm cells

lets us conclude that two shape modes ψi are enough to retain about 95% of the flagellar

shape variance. Thus, a good approximation for the tangent angle is

ψ(s, t) = ψ0(s) + β1(t)ψ1(s) + β2(t)ψ2(s) (2.3)

with the time dependent score functions βi. For simulations we use f = 50 Hz, a flagellar

length of L = 50µm and a cell body size of blong = 5µm and bshort = 2.5µm. We can

define a phase by ϕ(t) = arctan2(β2(t), β1(t)), implicitly making the tangent angle ψ,

equation (2.3) phase dependent.

In both representations, shape changes are characterized by phase changes ∂tϕ.

Numerical calculation of friction forces. The computation of hydrodynamic fric-

tion forces is done by a fast multipole boundary element method [83], which is described

in the appendix A.3. Within this approach the Stokes equation is solved, correspond-

ing to a full treatment of hydrodynamic interactions. This is especially important for

calculations with Chlamydomonas, since the mean curvature of flagella is rather large

and they come very close to the cell body during the recovery stroke.

For using the fast multipole boundary element method for performing numeric, hy-

drodynamic calculations, the boundary conditions on the surface of the swimmer have

to be provided in terms of a velocity profile on the surface. The surface itself is rep-

resented by a triangulated surface mesh. All swimmers used can be represented as a

composition of an ellipsoid, such as the sperm cell head or the Chlamydomonas cell

body, and curved cylinders, which represent the flagella. The former are generated by

choosing coordinates in three dimensional space that lie on the surface of an ellipsoid,

and then perform a Delaunay tesselation on it. A ready-made algorithm exists in the

scipy library of the open source programming language python [5]. The triangulation

of curved cylinders is generated by a custom procedure. See Figure 2.2 for example

representations.

Note that the meshes of flagella and cell body are separated by a small gap. The

relative position of the flagellar anchoring points and cell body centers are fixed realizing

a physical connection with each other. The reason for meshes not to touch each other is
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Chapter 2. Flow signatures of flagellar swimming

Figure 2.2: Triangulated surface of microswimmers studied in this thesis. Three dimen-

sional meshes that are generated from the tangent angle description (2.1). Shown are the

Chlamydomonasand a sperm cell from different views. (a) From the side view the shape

changes can be observed. (b) From the top view we see the e1e2 mirror symmetry of the

swimmer.

due to numerical issues. The results of the hydrodynamic calculations are not expected

to change much if small surface parts are omitted, since the boundary conditions lead

to flow velocities in the surrounding that match the omitted surface triangle’s boundary

conditions faithfully.

2.1.3 Material frame and rigid-body transformations

The flagellated swimmers that are treated in this chapter are Chlamydomonas cells

and sperm cells. Both cells consist of an ellipsoidal cell body (or head, in the case

of sperm), and one or two flagella. We can then introduce a coordinate system that

is slowly comoving with the microswimmer, called material frame, with orthonormal

basis vectors e1, e2, e3 that are defined as follows. The direction of the swimmer e1

is determined by the long axis direction of the ellipsoidally shaped cell body. The
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2.1. Self-propulsion of flagellated swimmers

swimming plane, which is the same plane in which the planar flagellar beat occurs, is

spanned by e1 and e2. We call e3 the binormal direction.

The material frame is embedded in the so called laboratory frame for which the

fluid is at rest at infinity, u(r → ∞) = 0. The swimming path or trajectory of the

microswimmer is described as the dynamics of the material frame (e1(t), e2(t), e3(t))

within the laboratory frame. In the laboratory frame the freely swimming cell is free

from forces and torques. Note that in a system with many swimmers there is one

material frame for each swimmer.

2.1.4 The grand friction matrix

Due to the linearity of the Stokes equation (1.10) the hydrodynamic friction can be

represented as a linear relation between velocities v (and angular velocities ω) and

forces F (and torques τ ), which leads to the definition of the grand friction matrix ζ(
F

τ

)
=

(
ζtt ζtr

ζrt ζrr

)(
v

ω

)
. (2.4)

Block-matrix notation is used with sub-matrices ζij being 3× 3-matrices. ζtt describes

how translational velocities lead to translational forces, ζrr describes the coupling of

angular velocities to torques, ζtr determines the effect of angular speeds on translational

forces and ζrt state the torques that arise from translational velocities.

Generally, for different shapes of a microswimmer the friction matrix is different

resulting. Since the shape underlies a periodic motion, the components of the friction

matrix are functions of the flagellar phase ϕ. For given phase ϕ, the friction matrix

ζ(ϕ) is calculated by the procedure described in appendices C.1 with the help of the

fast multipole boundary element method (A.3).

The friction matrix ζ for the Chlamydomonas cell with synchronously beating flagella

oriented along the e2-axis is shown in Figure 2.3. Note that most non-diagonal entries

are zero, reflecting the symmetry of the swimmer. Specifically, there is no force velocity

coupling between different frame axes in the material frame, for the translational (ζtt,ij =

0 for i 6= j), as well as the rotational movements (ζrr,ij = 0 for i 6= j). But there is a

non-vanishing coupling ζtr,31 which implies that a torque in e1 is imposed on the cell

when it is translated in e3. Note also the general property of the friction matrix ζ to

be symmetric. To see this, see equation (C.7) in the appendix.

From Figure 2.3 we observe that translational coupling ζtt is nearly constant and

positive as we would expect from a passive particle that does not change its shape.

Rotational coupling ζrr does not change its sign, but varies significantly with phase

ϕ. The coupling between translation and rotation ζtr and ζrt becomes minimal in its

absolute value during the recovery stroke, when the shape distance between the cell

body center and the center of reaction are closest to each other.

2.1.5 Dynamics of swimming

Computation of hydrodynamic friction forces allows us to numerically determine the

trajectory of a shape changing microswimmer. We assume the swimmer to deform its
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Chapter 2. Flow signatures of flagellar swimming

Figure 2.3: Grand friction matrix of Chlamydomonas. For a certain shape that is given by

the phase ϕ, friction forces for translation and rotation in all three spatial dimensions are

calculated, see panel (a). With this we capture the necessary information for constructing

the grand friction matrix ζ, see equation (2.4). A schematic representation of ζ is shown

in panel b. Symmetries of the swimmer dictate zero entries as shown. Non-zero entries are

shown in panel (c) with color code as shown.

shape S(ϕ) periodically with a phase ϕ. When the swimmer is restrained from moving,

such that its translational and rotational speed are zero, constraining forces Fclamped

and torques τ clamped have to be applied

Fclamped =

∫
S(ϕ)

dS(r′) f(r′),

τ clamped =

∫
S(ϕ)

dS(r′) (r′ − r)× f(r′),

(2.5)

with the force surface density f and the position r of a reference point of the mi-

croswimmer. We use the composite force vector Pclamped = (Fclamped, τ clamped)T as a

shorthand.

Rigid body motions Umat = (vmat,ωmat)T of the shape S(ϕ) lead to forces Prigid =

ζUmat, which are to be balanced by the active forces Pclamped, in the case of force- and

torque-free swimming.

Prigid = −Pclamped

⇒ Umat(ϕ) = −ζ−1Pclamped
(2.6)

Figure 2.4 shows the phase-dependent constraining force relative to the material frame

of the swimmer.

The self-consistently determined translational and angular velocities Umat are given

in the material frame and have to be integrated together with position r and orientation

Ω of the microswimmer. The orientation of the swimmer is represented as a rotation
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2.1. Self-propulsion of flagellated swimmers

Figure 2.4: Constraining forces and swimming velocity of Chlamydomonas. The swimming

speed vlab during one beat cycle is shown as blue curve. During the power stroke, the

cell translates forward, whereas during the recovery stroke it moves backward. For phase

ϕ = 0, the velocity profile of the flagellar shape change (blue arrows) as well as its force

surface density (red arrows) that is exerted onto the fluid are shown. Analogously, the

constraining force that is needed for clamping a beating cell is shown as red curve, and

the same shapes of Chlamydomonas in the clamped state are shown. Note, that the freely

swimming cell experiences smaller forces on its flagella while the force density on the cell

body is increased.

matrix, and is interpreted as the rotation that is necessary for bringing an object into the

current orientation with respect to the initial orientation Ω(ϕ=0) = 1. We furthermore

require vlab(ϕ=0) = vmat(ϕ=0) and ωlab(ϕ=0) = ωmat(ϕ=0). Thus, the directions are

for all phases are known if the orientations are known.

ωlab(ϕ) = Ω(ϕ) · ωmat(ϕ=0)

vlab(ϕ) = Ω(ϕ) · vmat(ϕ=0)
(2.7)

The swimmer positions and orientations are updated according to the following Euler

scheme

Ω(ϕ+ dϕ) = R(Ω(ϕ) · dω(ϕ)) ·R−1(Ω(ϕ) · dω(ϕ))

dω(ϕ) = ωlab(ϕ) · dϕ
r(ϕ+ dϕ) = r(ϕ) + vlab(ϕ) · dϕ.

(2.8)

R(a) is the rotation matrix that performs the rotation of a three dimensional vector

around the axis a. Figure 2.4 shows the computed phase-dependent velocity of the

material frame of a swimming Chlamydomonas cell relative to the laboratory frame.
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Chapter 2. Flow signatures of flagellar swimming

2.2 The hydrodynamic far field: pusher and puller

A shape-changing microswimmer exerts a distribution of forces at its surface onto the

surrounding fluid, which generates flow and stress. Far away from the swimmer, the

resultant flow field has a characteristic structure that can directly be mapped to a

force dipole, the leading order singularity of the multipole expansion of the force field

exerted by a self-propelled swimmer. We reveal a three dimensional fine structure of the

character based on symmetries by introducing the concepts of symmetry and planarity,

which capture time dynamics and reveals alternation between pusher and puller. The

description is applicable to swimmers with a mirror symmetry, showing a planar beat.

2.2.1 The flow generated by a swimmer

In this section, the flow field that a microswimmer generates is shown and the relation

to the force dipole is presented. This can be done for any shape changing swimmer and

the swimming of Chlamydomonas is shown explicitely.

Given the force surface density f that is obtained by numerical calculations of a

shape changing swimmer, the flow-field u of the surrounding fluid can be obtained by

propagating f with the Oseen tensor T, see equation (1.11). Figure 2.5 shows the flow

field for two different scales, the near field and the far field.

Figure 2.5: Computed flow field exerted by a freely swimming Chlamydomonas cell. The

computed flow field that is exerted by shape changes of Chlamydomonas for four different

values of the phase ϕ ∈ {0, π/2, π, 3π/2} are shown. (top) The near field has an intricate

structure with vortices. (bottom) The far field is very regular with two outflow zones and

two inflow zones that are emphasized by red (out-flow) and blue (in-flow) arrows and can

be well approximated by leading order singularities.

In the direct neighborhood of the Chlamydomonas cell, the flow field has an intricate

structure and changes during the beat cycle. For larger distances, the structure becomes

much more regular, but is still very different during the beat. Interestingly, the direction
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2.2. The hydrodynamic far field: pusher and puller

of flow changes sign at least twice during the beat. A more subtle observation is, that at

some phases (e.g. ϕ = 0) the amount of flow in the plane and flow out of the plane are

different, which is explained by fluid flow in the binormal direction e3, perpendicular to

the plane of beating.

An approximation to the far field is the Stokes doublet, which is the flow field resulting

from a force dipole exerted on the fluid. Schematics of those are shown in figure 2.5

as red (out flow direction) and blue (in flow direction) arrows. The doublet has no

tangential contribution and is fully characterized by its radial part. The magnitude of

flow vectors decreases as ∝ r−2 with distance r from the doublet source. Therefore, we

use radial flow plots depicted in figure 2.6 to represent the dipole flow without losing

information about the character of the flow. Since there is a bijective mapping between

a force dipole and its Stokes doublet it also fully describes the character of the force

dipole.

Figure 2.6: Radial projection of the far field of a freely swimming Chlamydomonas cell.

The length of radially projected flow vectors of the far field around Chlamydomonas at a

distance of 100µm for different phases of the flagellar beat is shown. Red means outflow,

away from its source, blue means inflow, towards its source, and white indicates zero radial

flow. The tangential contributions are neglected but the three dimensional character of the

flow is emphasized.

2.2.2 Force dipole characterization

Microswimmers do not exert forces and torques on the surrounding fluid when no ex-

ternal force or torque is applied. Thus, the leading order singularity of the multipole

expansion of the force field exerted by the swimmer is a force dipole. The far field at

distances of about 100µm is faithfully reproduced by the second order singularity u(2),

called Stokes doublet, see the second term of equation (1.14).

u
(2)
k (r, t) = ∂iTjk(r)f

(2)
ij (t), (2.9)

with the Oseen tensor T and the force dipole f (2) from equation 1.13

f (2)
γα (t) =

∫
S

dS(r) rγfα (r). (2.10)
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Chapter 2. Flow signatures of flagellar swimming

Here, S is the surface of the swimmer and f (r) is the corresponding force surface density.

We write the force dipole as a tensor f (2) with nine components f
(2)
γα for γ, α ∈ {1, 2, 3}.

Symmetries in the force dipole f (2) due to physical and geometric constraints reduce

the number of degrees of freedom from nine to three.

Physical conditions. No external torque is applied and the microswimmer itself does

not exert a torque on the fluid, implying that the antisymmetric part of the dipole matrix

has to vanish (fij = fji). Because of the incompressibility of Stokes flow, the trace of

f (2) does not result in any fluid flow. Without loss of generality, we can demand that

f (2) is a traceless symmetric tensor.

Geometric symmetry. Since the flagellar dynamics is restricted to planar beating

in the e1e2-plane, the surface of the swimmer is mirror symmetric to the e1e2-plane,

and r3 as well as f3 are antisymmetric in e3 and r1 and r2 are symmetric in e3. Thus,

(2.10) gives f
(2)
xz = f

(2)
yz = 0.

Since we are left with three degrees of freedom for describing the force dipole, we use

a representation with the dipole strength fs, planarity ε and the orientation α within

the swimming plane

f (2) = fsR
−1(α)

2 0 0

0 −1 0

0 0 −1

+

0 0 0

0 ε 0

0 0 −ε

R(α), (2.11)

where R denotes a rotation around e3 by an angle α.

The dipole strength fs is a direct measure for the speed of the velocity field in the

direction enclosing an angle α with the swimming direction. The planarity parameter

ε tells how in- and outflow from the e1e2-plane are distributed. The planarity ε is

confined between −3 to 3. The higher its absolute value, the more planar the dipole

flow is. For ε = 1, the dipole plane is perpendicular to the swimming plane, for ε = −1

the swimming plane and the dipole plane are the same. Consider now the case of fs > 0

and α = 0. Then the swimmer is pusher and there is out flow in swimming direction.

For |ε| > 1 there is outflow in an additional direction to the swimming direction. For

ε = 3 there is disk-like out flow in the swimming plane and for ε = −3 there is ring-like

outflow perpendicular to the swimming plane. Higher values of |ε| means that there is

stronger outflow to a dimension other than the swimming direction, in which situation

it is debatable, if the swimmer should still be treated as pusher, determined by the

sign of fs. Analogous interpretations are done for pullers (fs < 0) swapping inflow for

outflow. See figure 2.7 for a complete overview of flow signatures.

A useful quantity to define is the force dipole symmetry

σ =
1− |ε|
1 + |ε|

. (2.12)

We have σ < 0⇔ |ε| > 1, σ < −1/2⇔ |ε| > 3, which is used in figure 2.9 and 2.10.
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2.2. The hydrodynamic far field: pusher and puller

Figure 2.7: Characterization of 3D Stokes doublet flow signatures. The microswimmer is

a pusher for fs > 0 and a puller for fs < 0 provided |ε| < 3. For ε = 0, the flow field

is symmetric with respect to rotations around e1. We then say that the swimmer has a

cone-like flow signature. Larger values break that symmetry. For 1 < |ε| < 3 the signature

is disc-like, which means either the swimming plane (normal) direction, or the direction

perpendicular to it (binormal) has the same radial flow direction as the flow speed in

swimming direction.

2.2.3 Flagellated swimmers alternate between pusher and puller

We discuss the force dipole dynamics for three different types of swimmers in the order

of increasing complexity: Bacteria, Chlamydomonas and sperm cell. For all swimmers,

the swimming path was determined as described in section 2.1.4 and 2.1.5 and the dipole

dynamics computed with equation (2.10) and (2.11).

Figure 2.8: Constant swimmer signature of a bacterium. The bacterium exerts a constant

force dipole in swimming direction, representing a symmetric pusher.

Bacterium. A particularly simple hydrodynamic force dipole signature characterizes

the far field flow generated by a bacterium that propels by a single rotating bacterial

flagellum. It is almost constant and consists of only small planar deformations from a

symmetric pusher and does not change orientation, see figure 2.8. A bacterium with

multiple flagella that are attached asymmetrically is also expected to represent a cone-

like pusher with slightly larger planarity ε, because the main axis of the cell body
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Chapter 2. Flow signatures of flagellar swimming

Figure 2.9: Phase-dependent swimmer signature of a Chlamydomonas cell. Chlamydomonas

alternates between pusher- and puller-like swimming. The force dipole strength fs oscillates

and changes sign, similarly to the swimming speed, see figure 2.4. This determines if

Chlamydomonas is in a pusher or puller state. The symmetry σ, equation (2.12), oscillates

and passes two times extreme disc-like state, one of which binormal the other normal, see

also figure 2.7.

generally rotates around the swimming direction and is not parallel to it [60].

Chlamydomonas. During the synchronous beat of Chlamydomonas, the force dipole

orientation α, defined in equation (2.11), stays constant, but the dipole strength fs varies

similarly to the swimming speed. It even changes sign, which renders Chlamydomonas

a pusher during the recovery beat, while being a typical representative of puller-type

swimming during the power stroke. The time average of the force dipole is of puller-type

character and is an order of magnitude lower as instantaneous values. The planarity is

very dynamic and shows the importance of the orientation of cells when hydrodynam-

ically interacting with each other or with boundaries. Comparing the flows, shown in

figure 2.6 with the graphical representation of the terminology depicted in figure 2.7, we

have, from left to right, a cone-like puller (ϕ = 0), a disc-like pusher (ϕ = π
2 ), a cone-

like pusher (ϕ = π) and a disc-like puller (ϕ = 3π
2 ). Thus, Chlamydomonas oscillates

between pusher- and puller-type swimming during its beat cycle and is disc-like puller

with low dipole strength in the time-average.

Sperm cell. While being similarly dynamic in dipole strength and planarity, addi-

tional complexity arises because the swimming direction of the sperm cell is already

very complicated. Depending on our aim, we may choose among three different length

scales for defining the mutual orientation of force dipole and swimming path. Consid-

ering the smallest scale is to express the orientation of the force dipole relative to the

current orientation on the swimmers material frame Ω. For this analysis we choose the

mean swimming path of the cell, which we approximate as a circular arc, connecting the
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2.2. The hydrodynamic far field: pusher and puller

Figure 2.10: Phase-dependent swimmer signature of a sperm cell. (a) The sperm cell has

a curved mean swimming path due to non-zero mean flagellar curvature. (b) The same

quantities are shown as in figure 2.9. We dictate the relative orientation of the force dipole

with respect to the swimmer orientation to be smooth. It follows that the dipole strength

is always greater than zero. Thus, the swimmer signature is determined by the relative

orientation. We observe that the sperm cell alternates between pusher- and puller-like

swimming. The mean dipole is a cone-like pusher.

swimming directions from the beat at different points that are temporarily separated

by multiples of the period T = 2π
ω of the beat. For swimming of a sperm cell with a

binormal component at larger time scales, we might have chosen an even larger length

scale, which is the mean direction of the helical swimming path typically performed by

sperm cells [38].

For a constant force dipole orientation (∂tα = 0) the alternation between pusher and

puller can only happen if either the strength is zero, fs(tt) = 0, at the transition time

tt, or by passing through the disc-like state with σ < 0.

2.2.4 Implications for two interacting Chlamydomonas cells

Results of computations of two Chlamydomonas cells that swim nearby are presented,

briefly, for highlighting the profound consequences of the flow field oscillations on tra-

jectories of hydrodynamically interacting microswimmers. Therefore an analogous ap-

proach was used, as described in the sections 2.1.4 and 2.1.5, but a friction matrix

for multiple swimmers instead of a single swimmer was constructed, as described in

appendix C.2.
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Phase-dependent interactions. Hydrodynamic interactions between active elastic

structures are mediated through fluid flow that is induced locally and exerts hydro-

dynamic friction forces at a distance. As we saw in section 2.2.1, the flow fields that

is exerted by a swimming Chlamydomonas is dynamic and depends on the phase of

its flagellar beat. Thus, hydrodynamic interactions between two Chlamydomonas cells

depend on the respective phases, which is reflected by changing mutual velocities of the

cells.

Figure 2.11 shows the time dynamics of the separation vector for three relative ar-

rangement of two Chlamydomonas cells swimming in the same direction: next to each

other, initially separated by de2 with d being the net distance, behind each other (initial

separation de1) and above each other (initial separation de3). A single Chlamydomonas

would swim in e1-direction, but generally, we observe a drag also in the mutual di-

rection of the two swimmers. The drag position is varies within the flagellar beat,

but has a much smaller net effect after full beat cycles. The relative phase difference

ϕL − ϕR affects the intra-beat dynamics, but coarse grained effects over a beat cycle

are comparably small.

It is not shown in the figure that the mean speed of two Chlamydomonas cells swim-

ming with each other in the same direction changes significantly. While two cells swim-

ming next to each other (see configuration in figure 2.11 (a) ) propel with a smaller

speed than a single cell, in the other two situations (see configurations in figure 2.11 (b,

c)), the mean swimming speed is increased, independent on the mutual phase difference.

Stability of relative arrangements. For two relative orientations of two Chlamy-

domonas cells, swimming against each other and swimming above each other, a pertur-

bation analysis with respect to the mutual angle is performed, see figure 2.12. Simula-

tions were performed with setting different initial orientations α1,2 and phases ϕ1 = 0

and ϕ2 = ∆ϕ. We observe, that the stability of the mutual orientation changes with

the phase difference ∆ϕ.

For example, two Chlamydomonas cells swimming against each other with a phase

difference of ∆ϕ = π is a stable configuration, while for all other phase differences ∆ϕ

it is unstable. For ∆ϕ = π
2 and ∆ϕ = 3π

2 , the cells cross by swimming underneath each

other and for ∆ϕ = 0 they tend to change the configuration to the case in which the

cells swim above each other. In this configuration, there is no stable orientation but a

rich set of possible trajectories, depending on their mutual phase difference. For ∆ϕ = 0

the cells reorientate such that they can swim away from each other. For ∆ϕ = 3π
2 both

cells tend to swim a circular curve together on a circle with the radial direction being

the mutual connection direction.

2.3 Inertial screening of oscillatory flows

While the Stokes equation for viscous flow well approximates fluid flow in the vicinity of

a microswimmer, inertial effects become important at a distance for time-varying flows.

In this section, the use of the Navier Stokes equation (1.7) is motivated and the
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Figure 2.11: Time dynamics of inter-swimmer distance for a pair of hydrodynamically

interacting Chlamydomonas cells. Two Chlamydomonas cells swimming together vary their

distance due to hydrodynamic interactions. Three different configurations are shown: Two

cells swimming next to each other (a), behind each other (b) and above each other (c). The

interactions changes between being attractive and repulsive during the beat. For different

phase differences ∆ϕ of the flagellar beat of one cell with respect to the other interactions

change accordingly. The mean change in distance is low compared to instantaneous values.

properties of its fundamental solution are described. Then this solution is applied to

the dynamics of the Chlamydomonas cell and an interpretation of the screening length

is given.

2.3.1 Convection and oscillatory acceleration

We discuss now the linearized Navier-Stokes equation for flow induced by a local, os-

cillating force dipole. We expect the dynamic acceleration ρu̇ to play an important

part, because it scales in the same way as the force dipole solution, ∝ r−2, whereas the

convective acceleration u · ∇u scales as r−5 and becomes negligible at a distance. With

this we arrive at the linearized Navier Stokes equation, see also appendix B.

ρu̇ = −∇p+ ∆u. (2.13)
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Figure 2.12: Stability diagram for the relative orientation of two Chlamydomonas cells

in two different spatial arrangements. The swimming direction is perturbed by rotation

around e2. (a) Chlamydomonas are swimming in the same swimming plane with opposite

swimming direction. This configuration is unstable with respect to rotation except for the

case of ∆ϕ = π. For ∆ϕ = 0, the cells both change its direction in a way to end up in the

configuration depicted in (b). For ∆ϕ = π
2 and ∆ϕ = 3π

2 , they pass one below the other.

(b) Swimming planes are parallel and swimming is in the same direction. This configuration

is very unstable. The cells might change direction into opposite directions away from each

other, or both cell reorientate in the same direction, so to speak, make a turn in the same

direction.

We expect that inertial effects become important at a distance δs from an oscillating

force dipole with oscillation frequency ω0 where

δs =

√
2µ

ρω0
. (2.14)

Next, we present the fundamental solution of (2.13).
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2.3.2 The oscilet: fundamental solution of unsteady flow

The Greens function G for linearized Navier Stokes flow is time dependent, or, for

oscillatory motions, frequency dependent, as is the fundamental solution

u(r, t) =

∫
dS G(r− r′, ω0) · f(r′, t),

Gij =
E

8πηr

[
(1− iD)δij + (1 + 3iD)

rirj
r2

]
,

E = e(i−1) r
δs ,

D =

(
δs
r

)2
[

1

E
− 1− (1− i) r

δs
− (1− i)2

(
r

δs

)2
]
.

(2.15)

For a derivation of G, see appendix B. For large distances from the swimmer, we observe

that the flow field propagated from the oscillating force in radial direction. For small dis-

tances much smaller than the screening length r � δs, the Stokeslet is recovered, G ≈ T .

Figure 2.13: Oscilet and doscilet dynamics. The oscilet and doscilet are fundamental

solutions of the Navier Stokes equation (2.13) and are shown for different times during half

a period of the oscillating force dipole. The second half of the period looks identical with

the exception that the sign of all direction of all vectors is flipped. The screening length δs
is shown as the radius of the white circle.

2.3.3 Screening length of oscillatory flows

From equation (2.15), we can derive higher order multipole solutions for the linearized

Navier Stokes equation. Note that the Green’s function G depends only on the difference

r − r′, allowing us to exchange ∇r for −∇r′, see also the derivation of equation (A.5)
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in the appendix. In particular, we have for an oscillating force dipole

f (2)(t) = f (2)
0e
−iωt

ufar
i (r, t) = ∂kGij(r, ω)f

(2)
jk (t).

(2.16)

The dipole dynamics of the Chlamydomonas cell can be decomposed into Fourier

modes f
(2)
n , the zeroth mode is constant and corresponds to the time average f

(2)
0 of the

force dipole

f (2)(t) ≈ f
(2)
0 +

nmax∑
n=1

f (2)
n e−inωt. (2.17)

The time dependent Fourier modes are propagated into the fluid with G, while for

the mean dipole f
(2)
0 it is sufficient to propagate with the Oseen tensor, since T(r) ≡

G(r, ω = 0). We thus find

ufar
i (r, t) = ∂kTij(r)f

(2)
0,jk +

nmax∑
n=1

∂kGij(r, nω)f
(2)
n,jk e

−inωt. (2.18)

Figure 2.14: Computed hydrodynamic mid- and far-field of Chlamydomonas. We computed

flow fields, taking into account inertial screening according to equation (2.18). We find

that the flow field at a distance larger than 3δs (white circles) is approximately static,

with screening length δs. In contrast, inside a sphere with the same radius the flow fields

oscillate.

Note that at distances r � δs, the flow field is approximately static and dominated

by the contribution due to the time-averaged force dipole. This static contribution

corresponds to a weak puller. In the vicinity of the swimmer, however, the dynamic

contribution that was shown in detail in section 2.2.3 and figures 2.9 and 2.10 dominates

the static one. We find for the screening length of Chlamydomonas δs ≈ 80µm. The

distance at which the static and the dynamic component are similar in strength is at

about 3δs, varying slightly with flagellar phase ϕ.

2.4 Energetics of flagellar self-propulsion

The flagellar beat is an active, energy consuming process, powered by the collective

dynamics of molecular motors inside the flagellar axoneme. We can calculate how much
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work a shape changing microswimmer exerts on the surrounding viscous fluid, thereby

converting chemical energy into heat. If the shape changes are expressed as a velocity

profile v(r) on a surface S, the energy dissipation rate can be written as

R =

∫
S

dS(r) f(r) · v(r). (2.19)

Every surface element dS(r) has a power output of f(r) · v(r) with hydrodynamic

friction force surface density f and velocity v of the surface element at position r.

While equation (2.19) is useful for numeric calculations, we can express the dissipation

rate as a volume integral as follows.

R =

∫
V

dV Φ =

∫
V

dV 2µ∆ : ∆ (2.20)

Here, µ is the viscosity of the fluid and ∆ij = 1
2(∂iuj + ∂jui) is the strain rate tensor

and u is the flow field induced by the shape changes.

For an incompressible fluid fulfilling Stokes equation, we can exploit the mechanical

energy balance Φ = ∇ · (u ·Π), with the stress tensor Π and write the dissipation rate

as the following surface integral

R =

∫
V

dV ∇ · (u ·Π) =

∫
S

dS v · (2µ∆ + p1). (2.21)

We used Gauss divergence theorem to arrive at the surface integral (2.21).

2.4.1 Impact of inertial screening on hydrodynamic dissipation

Inertial screening causes a correction to the dissipation rate (2.20) compared to the case

of low Reynolds number, equation (2.21). In this section, we show that the dissipation

rates that we obtain from the latter approach is a good estimate for the dissipation

rate for fluids with higher oscillatory Reynolds number. Specifically, we compare the

dissipation rate of the Stokeslet (1.12) with the dissipation rate of the Oscilet (2.15).

We insert the Stokeslet flow u = T ·f0 induced by a point force with magnitude f0 and

Oseen tensor T (1.11) into equation (2.21) for evaluating the strain ∆ and insert the

fundamental solution for the pressure p. Integrating the integral from an inner radius

R0 to infinity results in a singular dissipation rate

R =
|f0|2

4πµR0
. (2.22)

We can use equation (2.20) to compute the hydrodynamic dissipation induced by an

oscillating force monopole if the linearized Navier Stokes equation is used. Inserting an

Oscilet of strength f0 cos(ωt), we find an oscillating rate of hydrodynamic dissipation

outside a spherical cut-off region of radius R0 centered around the oscilet

R =
f2

0 cos2(ωt)

4πµ

(
1

R0
− 1

R1

)
+O(R0/R1)2, (2.23)

37



Chapter 2. Flow signatures of flagellar swimming

where R1 = 6
5δ. For the limit R1 → ∞ the integral (2.22) is reproduced, meaning

that it is the same as the viscous dissipation rate for a Stokeslet f0 cos(ωt) between

R0 ≤ r ≤ R1. We conclude that we can use Stokes flow for calculating hydrodynamic

dissipation rates provided δs � L where L denotes a typical site of the swimmer.

2.4.2 Case study: the green alga Chlamydomonas

Using equation (2.15) we compute the dissipation rate of a swimming Chlamydomonas

cell. We also compute the dissipation rate of the leading order singularity. Both rates

are function of the flagellar phase as depicted in figure 2.15.

Figure 2.15: Phase dependent dissipation rate. The rate at which energy is dissipated into

the fluid is phase-dependent with a minimum during the power stroke and a maximum

during the recovery stroke. The rate at which the respective force dipole dissipates energy

into the medium has a different characteristics. We ascribe this to the high local stresses

occuring due to the shear flows between cell body and flagellum, which is not captured by

the far field that is characterized by the force dipole. The insets show the surface density

of the dissipation rate in color code.

The total dissipation rate has its maximum during the recovery stroke of the flagellar

beat, where flagella are closest to the cell body and cause very large strain rates. Those

large gradients of the flow field are not present in the flows that are generated by the

force dipole. The maximal dissipation rate due to the force dipole dynamics happens

during the transition from the recovery stroke to the power stroke, in which flagella

move away from each other into a stretched out state.

2.4.3 Discussion: evolutionary optimization and the number of

molecular motors

At low Reynolds number, the shape of the swimming trajectory r(t) is independent of

the time parameterization of the swimming stroke. Thus, a re-parameterization changes

the total hydrodynamic dissipation, but does not change the net displacement after one
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swimming stroke. In particular, we can re-parameterize the flagellar phase as ϕ → ϕ′

with ∂ϕ′/∂t = ω such as to minimize
∮
R. Constant dissipation rates are generally not

observed biological microswimmers [70], see also figure 2.15. We conclude that energy

minimization is not the only evolutionary optimization criterion. Of course, a general

cost function that is optimized may depend on many criteria, such as swimming speed,

biomixing, phototactic success or synchronization of flagella.

The total amount of energy that is dissipated into the fluid corresponds to the chemical

energy that is provided by ≈ 3.000 ATP molecules, which is much less than the number

of molecular motors inside the axoneme (≈ 30.000 [94]). This means that, either not all

molecular motors consume an ATP molecule during one beat cycle, or the efficiency of

energy conversion from chemical energy into mechanical work performed by the beating

flagellum is on the order of 10 %.

A more direct treatment and estimation of the energy efficiency is given in section

3.2.3 and 3.3.2.

2.5 Summary

We investigated the flow field that is exerted by a shape-changing microswimmer that

swims free from external forces or torques. A dynamic flow field is induced with an

intricate structure in the vicinity of the swimmer. The far-field oscillates but has a

much simpler, dipolar structure. Specifically, the flow signature of a Chlamydomonas

cell and a sperm cell alternates between pusher and puller. The strength of the time

average of the force dipole of Chlamydomonas is an order of magnitude smaller than

instantaneous values, which makes Chlamydomonas an approximately neutral swimmer.

The fast alternations of the dipolar far field can not happen instantaneously. Thus,

inertial effects have to be attributed by retaining the unsteady flow term of the Navier

Stokes equation. Inertial effects attenuate oscillating flows at a distance, given by an

inertial screening length δs =
√

2µ/ρω.

Interestingly, we found that measured flagellar beat patterns do not minimize total

hydrodynamic dissipation for a fixed net displacement during one swimming stroke.

The work performed by the beating flagella on the fluid is one order of magnitude lower

than the chemical energy release by hydrolysis of ATP, assuming that every molecular

motor makes one step per beat.
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3
The load-response of the flagellar beat

Synchronization in collections of cilia and flagella by hydrodynamic coupling

requires that the speed of the flagellar beat changes in response to forces, such

as hydrodynamic friction forces. We combine analysis of experimental data and

theory to precisely quantify how external fluid flow changes shape and speed of

the flagellar beat, using Chlamydomonas as model system.

Chapter overview. First, the experiment, that is performed by our collaborators

and how we extracted data from it, is described. Second, I present an effective theory

of the flagellar beat that is independent from microscopic details and is calibrated by

macroscopic, experimental quantities. Lastly, the findings of experimental results for

imposed external flows are compared to theoretical predictions.

The content of this chapter is mostly covered by a publication [71]. Experiments

were conducted by Christian Ruloff, while the author contributed to the design and the

implementation of the flagellar tracking algorithm. The author performed data analysis,

developed and implemented the theoretical description.

3.1 Experimental collaboration: flagellated swimmers

exposed to flows

In this section, the experiment for inspecting hydrodynamic load-response is described.

There, a Chlamydomonas cell is clamped and exposed to external homogeneous flow.

First, the experimental setup is described and the flow profile within the micro-fluidic

chamber is presented. The experiment was designed and realized by Christian Ruloff and

is briefly described for the sake of completeness. Then, we demonstrate how the video-

microscopy data of flagellar beating was pre-processed and flagellar shapes tracked. The
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tracking algorithm was designed and implemented collaboratively by Christian Ruloff

and the author. Last, the limit cycle reconstruction is presented. It leads to the relevant

quantities that are used in our theory, which is illustrated in the next section 3.2.

3.1.1 Description of the experimental setup

Figure 3.1: Experimental setup. (a) Experimental setup with pressure device and micro-

fluidic device, consisting of chamber and resistor. The Chlamydomonas cell is held within

the flow-chamber with a micro-pipette, which is illuminated and recorded. (b) Picture of

flow-chamber with micro-pipette used to hold a single Chlamydomonas cell. External flows

are Poisseuille flows and can be approximated by homogeneous flows in the vicinity of the

cell. (c) Movie still of high-speed video-micrographs of flagellar beating. The flagella of

a clamped Chlamydomonas cell are clearly visible. Micrographs (b), (c) were taken by

Christian Ruloff.

The experimental setup mainly consists of a microscope and a camera, a pressure

device and a micro-fluidic device, which itself consists of a resistor pipeline and a micro-

fluidic chamber. When a pressure difference is applied between the resistor gate and

the chamber gate, a flow rate is induced, which depends on the geometry of the resistor
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and the cross sectional area of the flow chamber. It is particularly sensitive to changes

to the resistor’s smaller dimensions. The chamber has a rectangular cross-section with

dimensions (55±5)µm× (50±2)µm. Since the resistor chamber is very long (≈ 70cm),

inertial effects cannot be neglected while tuning the pressure, and waiting times have

to be included during the measurements for letting the induced flows equilibrate.

A micro-pipette made of glass with radius ≈ 1µm at the tip is used to clamp the

Chlamydomonas cell inside the micro-fluidic chamber. The size of the chambers that

were used have the size (210 ± 5)µm × (50 ± 2)µm × (≈ 3500)µm. Poisseuille flow is

induced inside the chamber, but in the vicinity of the Chlamydomonas, homogeneous

flow can be assumed, because the cell is much smaller than the channel height, see figure

3.2. This is important for being able to apply the theoretic description developed in

section 3.2.

Chlamydomonas cells are positioned right in the center of the micro-fluidic chamber.

Its orientation is set such that one of the two flagella is in the focal plane of the high

speed camera. This can only be done approximately, since the flagellar beat itself is not

entirely planar, with small contributions in the third dimension. Also, it is problematic

to obtain images of good quality for both flagella, because their beating planes are not

perfectly coplanar. The Chlamydomonas is illuminated with light with a luminance of

8, 000 W/m2, which means that a light power of 0.2nW reaches the cell.

Experimental protocols. Videos are taken from measurements, in which a Chlamy-

domonas cell is first exposed to zero external flow, which is then stepwise increased until

a maximum fluid flow speed is reached (this is called up-sweep) and then again stepwise

decreased until zero flow speed (down-sweep). After a change of the external flow rate,

the flow is equilibrated until steady flow is achieved. The, the sequences during con-

stant flow rates are recorded. The maximum flow speed for the stalling measurement,

see section 3.3.3, is about 10 mm s−1 and about 140 sequences with about 1000 frames

each are recorded. For the other analysis, the maximum flow is about 2 mm s−1 with 16

sequences of about 10, 000 frames each.

3.1.2 Computed flow profile in the micro-fluidic device

The analysis of the experimental data relies on the assumption that the flow in the vicin-

ity of the cell is homogeneous. The test this assumption we performed hydrodynamic

simulations, in which a rectangular box is placed in a fluid with constant fluid flow in y-

direction at two surfaces at z0 = 0 and z1 = 260µm. A sphere with a radius comparable

to the size of Chlamydomonas is placed inside, see figure 3.2 (a). Figure 3.2 (b) shows

the flow profile for cross sections at different yi. We conclude that in the surrounding

of flagella, the flow field is indeed homogeneous to very good approximation.

3.1.3 Image processing and flagellar tracking

It is presented first, how the recorded images are processed to enhance the visibility of

flagella and reduce the visibility of the cell body. Then the flagellar tracking algorithm

is explained. Last, we present an objective criterion to select high-quality data sets for
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Figure 3.2: Flow through the micro-fluidic chamber. (a) In the experiments, the Chlamy-

domonasis held inside a box with size 210µm × 50µm × 3500µm. External flow can be

imposed in y-direction, which is the swimming direction. This is virtualized. The bottom

images also show a sphere of similar size as Chlamydomonas inside the virtualized cham-

ber. (b) The computed flow-field in the surrounding of Chlamydomonasis shown during the

recovery stroke, while an external flow with flow speed 0.2 mm s−1 is imposed. The speed

of the flagellar tip is about 1 mm s−1. (c) The computed flow profile along the shortest

dimension has the form of Poisseuille flow if the Chlamydomonas is not inside the chamber

and for values of y at a distance from the cell. Along the z axis, there is a plateau in

the profile without the cell, which is approximately homogeneous. The dips in the colored

curves are due to the cell body in the interior of the flow-chamber.

further analysis.

Image pre-processing. With the experimental setup, described above our experi-

mental partners provided videos from the experiments. A typical frame for a cell during

power and recovery stroke is shown in figure 3.3 (a). For removing the static parts of

the images, like the cell body and dirt on the camera lenses or on the surface of the

channel, a background subtraction was performed, which means that the time average

of the intensity of the micro-graph is subtracted from the original images.

A nematic filter is used, which is explained in the appendix D.1. It can be understood
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Figure 3.3: The main steps of the flagellar tracking algorithm. For a typical cell two

phases are shown, one of which during the power stroke (left) and the other one during the

recovery stroke (right). (a) The recorded image as is. (b) The background image, which

is the mean over multiple frames, was subtracted and the nematic filter is applied. The

nematic strength is shown as intensity (white: low intensity, black: high intensity). Note

that the cell body was cut out. The nematic orientation is shown as blue nemats, which

are nicely oriented along the flagella. (c) The arc-scans are shown as black half-circles and

intensity maxima are marked with turquoise cross. Note that if no tracking point could be

established, another scan with doubled radius was performed. Micrographs (a) were taken

by Christian Ruloff.

as an edge detection algorithm, pronouncing line segments by returning an intensity field

I(x, y) with increased intensity at edges. It also returns a direction field d(x, y), which

can be used for initial guesses on the direction of the flagellar tracking. Figure 3.3 (b)

shows the direction field as blue lines and the intensity field in the background.

Flagellar tracking. The aim of the flagellar tracking algorithm is to obtain two

dimensional coordinates along the flagellum, sorted by their arc-length position.

The starting point r0 of the flagellum to be tracked is chosen manually for all frames
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in a video sequence, since it stays at a fixed position and can be reused for each frame

of the video. Then an arc-scan is performed with a radius rs = 2 px around the origin

r0 with an opening angle of δ = π
2 in the direction, that is determined by the nematic

direction field d(x0, y0). The arc-scan results in an intensity profile Ic(α) along the

circular arc. We determine the angle α0 at which the intensity has its maximum.

We detect a flagellum if the maximum intensity exceeds a certain threshold value It,

such that Ic(α0) > It. While this is a necessary criterion, it is not sufficient. Consider a

highly reflective dirt particle in a dark environment, the arc scan would indeed show a

large value for I, but the integrated intensity over the arc, would be very low compared

to a detected flagellum. We demand the additional acceptance criterion to be that the

prominence of the maximum must be large enough. If both criteria are fulfilled, the

tracking point is accepted and it will be used as the origin of the next arc-scan if the

total length lf that is tracked so far does not exceed a certain length, which corresponds

to a maximal flagellar length. If the maximum length lmax is reached, flagellar tracking

is done. If the tracking point is rejected, the arc-scan radius rs is increased and the

arc-scan is repeated, if the arc-scan radius does not exceed a certain arc-scan radius

threshold.

The whole procedure is applied recursively, until it is stopped by one of the threshold

criteria. In Figure 3.4 a flow chart shows the tracking process described and figure 3.3

(c) shows all tracking points and arc-scan contours for a specific flagellar shape at one

instance of time.

true

false

true

true
false

false

Figure 3.4: Flow-diagram of flagellar tracking algorithm. Starting at the flagellar anchoring

at the cell body, arc-scans are performed until one of two threshold criteria are fulfilled,

that decide if a flagellum is at the current position. Rectangular boxes represent data,

elliptic boxes represent processes, the rhombs are branching points. For details see main

text in section 3.1.3

Selection of data sets. Before we actually decompose the tracked flagellar shapes

into shape modes as described in the next section, we apply two more criteria onto our

high-quality data sets for selecting data sets objectively. We define the length of a cell

as the median of the tracking lengths of all frames during the reference sequence. If

the number of frames of a sequence that exhibit a flagellum shorter than 80% of the

flagellar length must be less than 20% of all frames. If more than ten valid sequences

are left, the cell is used for all later analysis. With that procedure, we obtained data of
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six different flagella of corresponding cells.

3.1.4 Mode decomposition and limit-cycle reconstruction

In this section, the flagellar beat is decomposed into shape modes. Thus, the flagellar

beat can be represented as a trajectory in an abstract phase space with shape modes as

basis vectors. The trajectories form closed loops, representing stable limit cycles.

Figure 3.5: Limit cycle construction. (a) Flagellar shapes are represented by their tangent

angle profiles ψ, see figure 3.1. A typical kymograph of ψ(s, t) is shown. (b) The mean

tangent angle ψ0 = 〈ψ〉t is shown and the shape modes ψ0 and ψ1 that are obtained from

principal component analysis. The gray insets show the respective flagellar shapes. (c)

Fitting the measured shapes ψ onto shape modes ψi results in shape scores βi. The first

two scores are plotted against each other. A periodic average flagellar beat is obtained by

fitting the scores onto periodic functions. (d) All data points as well as the periodic fit are

rescaled to the unit circle. (e) Reconstructed shapes are shown for points on the limit cycle

as well as for perturbed amplitudes. The color corresponds to the respective color in (d).

Video-microscopy data was provided by Christian Ruloff.

The tracking algorithm, described in section 3.1.3, delivers Cartesian coordinates
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that can be used to obtain the tangent angle representation from equation (2.1). This

periodic signal is shown in figure 3.5 (a). For the reference case of a clamped cell with

zero external flow, the mean bending ψ0 = 〈ψ(si, tj)〉t is calculated. The principal

component analysis, which is described in appendix D.2, is applied to ψ(si, tj) − ψ0

resulting in arc length s dependent shape modes ψi(si) and time t dependent scores

βi(tj). Thus, the flagellar shape at a specific time can be represented as a Ns dimensional

vector β = {β1, β2, . . . , βNs} of an abstract phase space, where Ns is the number of

tracking points along the flagellar length. The vectors {β(tj)}j=1...Nt (Nt is the number

of frame of the video) are distributed as a point cloud with largest extension along the

first axis ψ1, and decreasing extensions with higher modes ψj . Considering just the

first two shape modes is enough to faithfully reproduce the measured tangent angle

description of flagellar shapes

ψ(s, t) ≈ ψ0(s) + β1(t)ψ1(s) + β2(t)ψ2(s). (3.1)

Also, deformations that occur due to external perturbations are well represented, see

appendix D.3 for a quantification. Figure 3.5 (c) shows the two dimensional projections

P (β) = {β1, β2, 0, . . . , 0} of β (blue dots are projections of measured shapes).

The scores are typically periodic signals, which we can approximate by periodic score

functions β̄i(θ), see figure 3.5 (d), black circle. We call θ a protophase, which generally is

different from phase ϕ, which is uniquely defined by the property of increasing constantly

with time, ∂tϕ = ω with the frequency ω0 of the flagellar beat. We use a procedure for

reconstructing the phase ϕ from the protophase θ [72]

ϕ = θ +
∑
n 6=0

Sn
in

(
einθ − 1

)
. (3.2)

Sn are the Fourier coefficients of the probability density g(θ) of the protophase θ

Sn =
1

2π

2π∫
0

dθg(θ)e−inθ,

g(θ) =
∑
n

Sne
inθ = 2π 〈(δ(Θ(t)− θ)〉 .

(3.3)

Additionally, we are able to express the shapes by the previously defined phase ϕ

and the norm of a shape vector, which we call raw amplitude A′ = |β|. Figure 3.5 (d)

shows the limit cycle that is normalized by the amplitude, thus we define a normalized

instantaneous amplitude of the flagellar beat

Aj = β(tj)/A
′(ϕ). (3.4)

With this, we arrived at a description of the flagellar shape that depends on just

two parameters. Additionally to the phase that represents the oscillatory nature of the

reconstructed limit cycle of the flagellar beat, the amplitude highlights deformations of

flagella.
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3.1.5 Changes of limit-cycle dynamics: deformation, translation,

acceleration

The flagellar beat is described as a limit cycle that changes due to changes of the

environment. We call the effect of changes to the limit-cycle dynamics due to external

forces load response. Specifically we investigate the situation of constant external load

in the form of homogeneous external flow u. The time average of the flagellar shape

is mapped to the state space point inside the limit cycle. In the case of the reference

cell, with constant amplitude A and phase speed ω, the mean shape corresponds to the

geometric center. We distinguish three distinct shape change contributions, which are

depicted in figure 3.6. Deformations of the limit cycle due to changes in the amplitude

can be separated into a mean shape change and deformations that do not affect the

average shape. Phase speed changes also lead to changes in the time averaged shape.

Figure 3.6: Three contributions to limit cycle changes. A limit cycle is depicted as a circle,

its geometric center is represented by a cross and the time averaged state is shown as

a small circle. The gray objects represent a reference limit cycle, whose geometric center

coincides with its time average. The limit cycle changes can be separated into three distinct

contributions. There are phase dependent amplitude deformations ( ) that sum up to zero.

the mean shape can change ( ). The phase speed can change differently at different phases

of the limit cycle ( ), which also changes the time average.

Generally, we can describe the load response due to external flow u as a flow depen-

dent shape ψ(s, ϕ;u). We choose to represent the change due to load-dependent score

functions βi(ϕ;u), which allows us to recover all three limit-cycle changes depicted in

figure 3.6. We hold the modes ψi, i ∈ {0, 1, 2} independent of the load u, for being able

to compare the analysis of the cells for different external loads u.

If we chose to subtract the mean shape for each external flow condition individually,

information about changes of the instantaneous phase speed would get lost, since it

contributes essentially to the mean shape. To retain the phase speed changes one

could use the phase mean tangent angle 〈ψ(s, t(ϕ)〉ϕ. The artefacts that remain on the

amplitude changes are negligible compared to its load-response, when using fixed ψ0.

As we choose to fit data of sequences onto a fixed set of modes, we assure that there

is no phase ambiguity, since it is defined in terms of the two major principle modes ψ1

and ψ2, see equation (3.1).

We estimate that about 90% of the variance of the flagellar beat is preserved for all

the flagellar reference datasets that we use for our analysis. About 80% of the changes

due to external flow perturbations can be captured. See, appendix, section D.3 for the

estimation.
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3.2 An effective theory of flagellar oscillations

In this section, we will describe the theoretical description of flagellar swimming in

terms of generalized coordinates in the framework of Lagrange mechanics of dissipative

systems. First, a force balance between active and passive forces is shown, which is the

basis for the dynamical equations. Then the passive dissipative forces are presented,

which are due to realistic hydrodynamic calculations and internal friction. The experi-

mental data of the reference sequence, which is the sequence at which no external flow

was imposed, is used for calculating active driving forces. Next, the stability of the

limit cycle description is illustrated and an elastic amplitude spring force is derived. In

the last section, we present the complete set of equations that allows us to numerically

determine the dynamics of flagellar beating.

This description is a generalization of a previous theory of flagellar beating [41], by

introducing a second degree of freedom for describing the limit cycle dynamics, namely,

the amplitude, and considering internal friction.

Numerical results are shown for flagellar shape data from one specific cell. In section

3.3.2, we show that the results are robust under change of the flagellar waveform dataset,

though, see figure 3.10.

3.2.1 A balance of generalized forces

The perfectly symmetrically beating Chlamydomonas with a planar flagellar beat can

be described by three degrees of freedom. We assume that its flagella are identical,

such that there is one phase ϕ and one amplitude A as they are defined in section

3.1.4. This description is analogous to a Hopf oscillator, which is presented in section

5.1. The cell’s position is described by the cell body center position y along the long

axis of the ellipsoidal cell body, which is the swimming direction. The entire state is

described by the generalized coordinate q = (ϕ,A, y) and its velocity is q̇ = (ϕ̇, Ȧ, ẏ).

Conjugate forces P are defined as Pi = ∂iR with the energy dissipation rate R = P ·q̇ =

Pϕϕ̇+ PAȦ+ Pyẏ.

The reference sequence is taken from a clamped cell with zero external flow. By

construction, it has constant amplitude and beats with constant angular frequency ω.

For later reference we write its dynamics as

q̇ref = (ω, 0, 0). (3.5)

The dissipation rate of the reference cell is just R = Pϕω, which implies that the driving

force is proportional to the dissipated energy in this case.

The active as well as passive forces have units of generalized forces. We can obtain

the equations of motion from a generalized force balance, where active forces Q are

balanced by passive forces P

Q = −P. (3.6)

In the following subsections, expressions for Q and P are derived. The passive forces
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3.2. An effective theory of flagellar oscillations

comprise both hydrodynamic friction forces and intra-flagellar friction forces and the

active forces are calibrated with experimental data.

3.2.2 Hydrodynamic friction in generalized coordinates

Due to the linearity of the Stokes equation (1.10) the relation of generalized veloci-

ties q̇ to conjugate hydrodynamic friction forces P(h) is linear and is expressed as the

generalized hydrodynamic friction matrix Γ(h)

P(h) = Γ(h) · q̇. (3.7)

The friction matrix is calculated for 20 equidistant phases ϕi ∈ [0, 2π) and 10 equidis-

tant amplitudes Ai ∈ [0.8, 1.2] and saved for later use as a lookup table in dynamical

simulations. In appendix C.3 a recipe for calculating general friction matrices is given.

For each flagellar waveform dataset, we compute a different lookup table. Physically,

the friction matrix is a 3× 3-matrix with each component being a function of two vari-

ables. It is periodic in the phase ϕ and quadratic in the amplitude A. The quadratic

dependency is not physically constrained but represents a heuristic approximation. This

lookup table is used to fit a function fulfilling the just mentioned properties.

Figure 3.7: Generalized friction matrix and generalized forces. The friction matrix depends

on the state of the flagella of Chlamydomonas which is given by its phase ϕ and its amplitude

A. Some interesting properties of the friction matrix are discussed in the main text in section

3.2.2. Multiplying it with the reference state speed (3.5) gives the generalized forces Qϕ
and QA that drive the beat. Note that Qϕ is always positive and QA can be positive as

well as negative. Numerical values are shown for η = 0.2.

For a specific flagellar waveform dataset, the state dependence of the friction matrix

is shown in figure 3.7. Note that the friction matrix is symmetric, which can be seen

in equation (C.7). Other interesting properties are, e.g. that the component Γyy is ap-

proximately independent of flagellar phases, i.e. the friction coefficient for translational
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motion is dominated by the passive cell body. The component Γϕy changes sign. It is

positive during the power stroke (ϕ ≈ 0), meaning that phase propagation has a positive

effect on the translational force, and negative during the recovery stroke (ϕ ≈ π), mean-

ing a negative translational force for positive phase propagation. Another interesting

property that may have an effect on the synchronization strength of a coupled oscillator,

that can be read directly from the friction matrix is non-isochrony. The phase friction

Γϕϕ is larger for larger values of the amplitude A, see also section 3.3.4.

3.2.3 Intra-flagellar friction

The dissipative processes inside the flagellum are modeled with the help of the chemical

energy conversion efficiency

η =
E(h)

Etot
(3.8)

as the ratio of hydrodynamically dissipated energy E(h) =
∮
R(h) against Etot =

E(h)+E(i) that is provided by ATP hydrolysis by molecular motors against the hydrody-

namically dissipated energy per beat cycle. The energy that is dissipated inside flagella

during a beat is E(i) =
∮
R(i). We assume that the chemical energy rate R = Q · q̇

that is provided by ATP is dissipated either hydrodynamically, R(h) = q̇T · Γ(h) · q̇, or

internally, R(i) = q̇T · Γ(i) · q̇ and that energy that is stored in a reservoir such as an

elastic spring is small compared to dissipation. If η = 1, no energy dissipates internally

(E(i) = 0), whereas if η < 1 the energy is dissipated internally (E(i) 6= 0). For η > 1

the system would overreact to movements.

For simplicity, we consider intra-flagellar friction that is linear in the generalized

velocities, thus adding a contribution to the generalized friction matrix.

Γij = Γ
(h)
ij + Γ

(i)
ij (3.9)

with i, j ∈ {ϕ,A}. For simplicity, we choose Γ
(i)
ij to be proportional to the viscous

friction Γ
(h)
ij .

Γ(i) =
1− η
η

Γ(h) (3.10)

Alternatively, a constant contribution could be assumed. This would give similar results

as in section 3.3.2 (not shown).

3.2.4 Calibration of active flagellar driving forces

In our theoretical description, the flagellar beat is driven by generalized forces of the

phase ϕ and hold on its specific shape by amplitude constraining forces, which we denote

byQϕ andQA, respectively. The active forces are due to the activity of molecular motors

inside the flagella. For this reason we assume that these forces are a property of the

cell and do not change under change of its environment such as external flow. We can

calculate the active forces Q with equation (3.6) and (3.7)

Γ · q̇ = −Q (3.11)

52



3.2. An effective theory of flagellar oscillations

imposing the dynamics of the reference cell q̇ = q̇ref , see equation (3.5), with initial

state q(t = 0) = (0, A0, 0).

Figure 3.7 shows the phase driving forceQϕ and amplitude constraining forceQA. The

phase driving is always positive. Also, the friction component Γϕϕ is always positive,

implying that the phase always propagates forward. Note, that it varies by a factor of

about two. The amplitude constraining changes its sign, which relates to the fact, that

hydrodynamic forces tend to bend the flagellum in opposite directions during the beat

cycle. The forces Q depend on the energy efficiency η. Their absolute values become

larger with smaller efficiency η.

3.2.5 Stability of the limit cycle of the flagellar beat

In this section, we investigate the stability of the dynamical system (3.11) accounting for

intra-flagellar friction, see equation (3.10). Active driving and constraining forces are

taken by calibration, see section 3.2.4. For achieving this, we first reduce the dynamical

system (3.11) to an effective oscillator, that consists only of two variables, the phase ϕ

and the amplitude A.

We are able to add an elastic amplitude restoring force to reproduce the stability

of the limit cycle of the experimental beat pattern, which crucially depends on the

amplitude correlation time τA, which we will define.

Reference dynamics of the effective oscillator. For reproducing the experimental

conditions, we have ẏ = const., which is why we can formulate an equivalent effective

system with just two degrees of freedom, a phase ϕ and an amplitude amplitude.

Explicitely writing all components of equation (3.11) then reads asΓϕϕ ΓϕA Γϕy
ΓAϕ ΓAA ΓAy
Γyϕ ΓyA Γyy

 ϕ̇

Ȧ

ẏ = u

 = −

QϕQA
Fy

 (3.12)

This way, the effective two component oscillator reads as(
Γϕϕ ΓϕA
ΓAϕ ΓAA

)(
ϕ̇

Ȧ

)
= −

(
Q′ϕ
Q′A

)
Q′ϕ = Qϕ − Γyϕu

Q′A = QA − ΓyAu

(3.13)

Stability analysis without amplitude spring. For the reference case, equation

(3.5), we have from equation (3.13)

Γ(A = A0, ϕ)

(
ω

0

)
= −

(
Qϕ
QA

)
(3.14)

There is a periodic orbit, when ϕ̇ = ω and A = A0. In the following, the stability of

that orbit under perturbation of the amplitude A and the phase speed ϕ̇ is investigated.
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Chapter 3. The load-response of the flagellar beat

The perturbation has the following form.

ϕ̇ = ω + δω

A = A0 + δA

Ȧ = ˙δA

(3.15)

We insert the Taylor expansion around A = A0 of the friction matrix, up to linear order

Γ(ϕ,A) ≈ Γ(ϕ,A = A0) + (∂AΓ)(ϕ,A = A0)δA, and the perturbation (3.15) into the

reference system (3.14).

∂AΓϕϕωδA+ Γϕϕδω + ΓϕA ˙δA = 0

∂AΓAϕωδA+ ΓAϕδω + ΓAA ˙δA = 0
(3.16)

Eliminating δω then leads to the decay length or amplitude correlation time τA, by

˙δA = −ω
∂AΓAϕ − ΓAϕΓ−1

ϕϕ∂AΓϕϕ

ΓAA − ΓAϕΓ−1
ϕϕΓϕA

δA = −τAδA. (3.17)

For τA < 0 the periodic is stable with respect to perturbations δA around the equi-

librium amplitude. Note that, τA generally depends on the phase of the oscillator and,

in our case, can even be positive, resulting in an unstable limit cycle dynamics. Since

this is not observed experimentally, we are going to impose the amplitude relaxation

time τA by introducing an additional force term for the amplitude.

Imposing stability by an amplitude spring. From experimental datasets, we can

estimate a value for τA. For simplicity and because of the lack of sufficiently fine-grained

measurements, we assume τA to be constant. In section 5.2.2, a method for determining

τA from experimental shape data is presented. By introducing a generic elastic coupling

term, that is phase dependent, we are able to impose the stability of the dynamical

system (3.13).

We apply the analogous procedure as in the previous stability analysis, but add a

spring force for the amplitude around A0, thus changing the second equation of (3.16)

to

∂AΓAϕωδA+ ΓAϕδω + ΓAA ˙δA = −kAδA (3.18)

again eliminating δω leads to an alternative expression of τA, with which we define the

phase dependent amplitude stiffness kA(ϕ).

δȦ =
kA + ω

[
∂AΓAϕ − ΓaϕΓ−1

ϕϕ∂AΓϕϕ
]

−
[
ΓAA − ΓAϕΓ−1

ϕϕΓϕA
] δA = −τ−1

A δA

kA = τ−1
A

[
ΓAA − ΓAϕΓ−1

ϕϕΓϕA
]

+ ω
[
∂AΓAϕ − ΓaϕΓ−1

ϕϕ∂AΓϕϕ
] (3.19)

Figure 3.8 (a) shows the amplitude speed Ȧ in the (ϕ,A)-domain for the case of

missing amplitude spring as well as with a spring for τA = 1 ms and the experimentally

determined value τA = 5.9 ms, see section 5.2.2. In panel 3.8 (b) τA is shown for kA = 0,
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3.2. An effective theory of flagellar oscillations

Figure 3.8: Amplitude stability of the flagellar oscillator. (a) The rate of change of am-

plitude Ȧ as function of instantaneous phase ϕ and amplitude A is shown for the case

without spring and for two springs with different values of the amplitude correlation time.

Simulations were performed in the following way. For each position in the diagram the

corresponding phase ϕ and amplitude A was chosen as initial condition. The friction ma-

trix and active forces are determined, and the translational speed ẏ is set to zero. With

this, ϕ̇, Ȧ and Fy can be obtained. The plot shows the respective values of Ȧ. (b) τA is

shown for the case without amplitude spring, see equation (3.17). In this case, τA is phase

dependent. (c) For two different values of the correlation time τA, the phase dependent

stiffness is shown, see equation (3.19).

which exposes different stability regimes during a period. Panel (c) shows the phase

dependent stiffness kA(ϕ) for the two values of the correlation time τA = 1 ms and

τA = 5.9 ms.

Here, we restrict ourselves to the case of phase-independent τA. Choosing τA to be a

function of the phase turns out to not having a large effect on the qualitative properties

of the dynamical system, see also appendix F.3.

3.2.6 Equations of motion

The full set of equations, including hydrodynamic friction Γ(h) (3.7) and intra-flagellar

friction Γ(i) (3.10), effective amplitude spring kA (3.19) and driving forces Qϕ and QA,
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(3.11) are shown for completeness.


1
ηΓϕϕ

1
ηΓϕA Γϕy

1
ηΓAϕ

1
ηΓAA ΓAy

Γyϕ ΓyA Γyy


 ϕ̇

Ȧ

ẏ(t)

 =

 Qϕ(ϕ)

QA(ϕ)− kA(ϕ)(A−A0)

Qy

 (3.20)

We know kA(ϕ), Qϕ(ϕ) and QA(ϕ) from the calibration process and ẏ(t) is set as

boundary condition for reproducing the experiment. For each time step t′ the system

of equation is solved in a least square root manner, obtaining the phase speed ϕ̇(t′)

and amplitude speed Ȧ(t′), which can be used to integrate the system. We did not use

a simple Euler scheme, because the introduction of a second timescale by having the

amplitude spring, very small time steps would be necessary to solve the system faith-

fully. Therefore a python package was used that performs a backward differentiation

formula [57], which is useful for handling stiff problems with separate timescales.

With this approach, we describe the dynamics of the flagellar beat by a system of

three equations, whose quantities are coupled by non-linear friction coefficients and

elastic coupling terms. For solving the equations, three conditions are to be set, which

can be any combination of generalized speeds and conjugate forces. For example, for

a freely swimming cell, we have Qy = 0 besides flagellar driving forces Qϕ and QA,

whereas a clamped cell fulfills ẏ = 0. We are able to allow the flagella to deform

elastically and can tune the deformability in terms of the amplitude correlation time

τA, which sets the amplitude stiffness kA and can study its effects on swimming. The

correlation time is known from experiments, but the energy efficiency η is a single free

parameter in this system. We can study its effect in different situations and determine

a value from the measurements, as shown in the next section.

3.3 Comparison of theory and experiment

We consider the situation of a clamped Chlamydomonas cell that is exposed to external

flows with flow speed u. In this chapter, we compare the analysis of the experimen-

tal datasets for different flow speeds u with the dynamics obtained by the theoretical

description of the respective setting. First, we highlight the importance of the investiga-

tion of the sub-cycle dynamics, clarifying the role of phase and amplitude for the mean

curvature of the beat. Then the susceptibilities of the phase speed and the amplitude to

external load is investigated, and theoretical predictions are fitted to it, thus determin-

ing the single fit-parameter energy efficiency η. Third, the external flow rate is increased

up to values, where the flagellar beat stops, because driving forces are not large enough

for overcoming the load. Then non-isochrony is discussed, which is believed to play a

major role in the synchronization properties of coupled oscillators [95].
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3.3. Comparison of theory and experiment

3.3.1 Flagellar mean curvature

We define the flagellar mean bending as a arc length s dependent quantity by averaging

in two ways.

ψ̄t(s) = 〈ψ(s, t)〉t
ψ̄ϕ(s) = 〈ψ(s, ϕ)〉ϕ

(3.21)

ψ̄t(s) is the time average and ψ̄ϕ(s) is the phase average, which, in the case of zero-

external flow, coincide, because then, the instantaneous phase ϕ is equal to ωt. When

perturbing the flagellar beat by external flow, we generally have ϕ 6= ωt, thus ψ̄t(s) 6=
ψ̄ϕ(s). Since the mean bending typically represents a shape that is similar to a circular

arc, see also figure 3.9 (a), we restrict our analysis to average curvatures along the

circular arc.

ψ̄t(s) ≈ Kt · s+ ψ̄t,0

ψ̄ϕ(s) ≈ Kϕ · s+ ψ̄ϕ,0
(3.22)

The curvatures Ki and the offsets ψ̄i,0 for i ∈ {t, ϕ} are determined by linear regression.

The load-dependence of the time averaged curvature Kt(u) is shown in figure 3.9 (b)

and the phase averaged curvature’s load-dependence Kϕ(u) is shown in 3.9 (b).

Figure 3.9: Mean flagellar curvature as a function of flow rate. (a) Different flagellar shapes

are shown in orange. The mean flagellar shape can be approximated by a circular arc with

radius r = K−1, shown in red. (b) Mean time averaged curvature Kt is shown for numerical

simulation (red) and all flagellar data sets. (c) Same as (b) but for mean phase averaged

curvature Kϕ. Video-microscopy data resulting in (b) and (c) was provided by Christian

Ruloff.

Kt captures the effect, that the time that the limit cycle remains at certain scopes

of the beat changes, which is due to phase changes and agrees with the theoretical

prediction. Load dependent phase averaged flagellar bending Kϕ cannot be reproduced

by the theory.

3.3.2 Susceptibilities of phase speed and amplitude

Here, we use measurements, in which the external loads that were applied are small

enough for being able to describe the effect on the instantaneous frequency and the
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amplitude linearly. We define the linear susceptibilities for the phase speed ϕ̇ and the

amplitude A to the flow speed u as

ϕ̇(ϕ;u) = (χϕ(ϕ) · u+ 1)ω(ϕ),

A(ϕ;u) = (χA(ϕ) · u+ 1)A0(ϕ).
(3.23)

Although, by definition, the frequency ω of the flagellar beat and the equilibrium am-

plitude A0 are independent of the phase, for the determination of the phase speed

susceptibility χϕ we recalculate it for every phase. We do this, because the frequency

has a large error due to the small number of cells and because cells may be intrinsically

different from each other. By recalculating those quantities, we obtain a more robust

result for χϕ and χA.

Figure 3.10: Phase dependent phase speed and amplitude susceptibility. (a) Susceptibilities

are determined by linear regression of the respective quantity against the external flow

speed. Examples are shown for a typical cell during power stroke (ϕ = 0) and recovery

stroke (ϕ = π). The estimated error is the standard error of the mean extracted from 5

sub-datasets. (b) The red curve, obtained from simulations with shapes from cell 4, has one

free parameter, the energy efficiency η and was fitted onto the experimental values (blue

curve) leading to η = 0.21 ± 0.06. The light blue error region is the standard error from

the six different cells. General features of the phase speed and amplitude susceptibilities

are reproduced by the model, which is an increase of the instantaneous phase speed during

the power stroke and a slow down during the recovery stroke. The underlying experimental

data was measured by Christian Ruloff.

The susceptibilities are the slopes of the lines defined in equation (3.23) which is why
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we obtain them via linear regression of measurement points (J(ϕ), u) for J ∈ {ϕ̇, A}.
In figure 3.10 (a) examples for the linear regression are shown for two representative

phases, one for the power stroke ϕ = 0 and one for the recovery stroke ϕ = π for a

specific cell. The susceptibilities χϕ(ϕ) and χA(ϕ) are computed for six cells and their

mean and standard error are shown in figure 3.10 (b). We conclude from observing the

experimental and theoretical results, that the phase speed ϕ̇ during the power stroke

increases for increasing values of the flow rate u. This is reasonable, since the direction

of flow and flagellum are the same. During the recovery stroke, the flagellum is slowed

down.

The amplitude susceptibility of the theoretical prediction matches well to the exper-

imental data, except for ϕ ≈ π (recovery stroke), where the flagellum is very near to

the cell body. The disagreement might be due to the fact, that in measurements, a halo

around the cell body is observed, such that we might have overestimated the size of the

cell body, and hence steric interactions prevent the theoretical value for the amplitude

to be increased considerably.

Energy expenditure of the flagellar beat. The theoretic curves scale linearly with

the energy efficiency η, defined in section 3.2.3. Thus, we can fit the theoretical predic-

tions of χϕ curve onto the experimental data. We repeated the fitting procedure for all

successfully tracked cells and obtained η = 0.21± 0.06, where the error is the standard

error. This is in good agreement with previously reported values η in the range 10%

to 40% [13, 28, 25, 68]. Knowing the energy efficiency and the hydrodynamic friction

forces, it is possible to calculate the chemical energy that is provided by ATP hydrol-

ysis as R = Γ · q̇ ≈ 160 fW. That means, that when considering that Chlamydomonas

has two flagella with a frequency f0 ≈ 50 Hz, approximately 60, 000 ATP molecules

are transformed and only 12, 000 of which are converted into mechanical work, which is

finally dissipated into heat.

3.3.3 Higher modes and stalling of the flagellar beat at high external

load

The experimental data was obtained by performing experiments with the protocol to

the one described in section 3.1.1. For each flow speed u, the frequency of the flagellar

beat was obtained from the Fourier spectrum of a protophase of the flagellum. The

frequency peak with the maximum area below a Gaussian fit counts. The execution

of the experiment as well as the analysis of the experimental data was performed by

Christian Ruloff. The frequency dependency has a rich structure, examples of which are

shown in figure 3.11 for four flagella, which are chosen for clarity. By manual inspection,

different beating modes are related to different regions, also shown in figure 3.11.

Experimental observation of excited modes

In the experimental data we find four distinct beating modes. Compare figure 3.11 for

the following descriptions of excited beating modes.
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Normal beating occurs at low external flow speeds u . 5 mm s−1. Its frequency f

increases linearly around u = 0 and seems to flatten towards higher values.

Tremor-like beating has a similar shape to normal beating for phase ϕ ≈ π. It is

still beating in an oscillatory fashion, but it seems to stop the beat at a phase slightly

larger ϕ & π, relaxing back to a phase slightly lower that value ϕ . π, then again

increasing the phase. The frequency of that pattern is similar to the frequency of the

unperturbed beat at u = 0 and does not change much when the flow speed is changed.

Chiral beating has a significant binormal or out-of-plane contribution. It is similar

to tremor like beating, but the flagellum leaves the beating plane of the normal or

tremor-like beat pattern in a regular manner. Its frequency usually is lower than that

of the unperturbed beat at u = 0 and is unaffected by the flow speed.

Stalling means, that the beat stops. Thus, its frequency drops to zero. We observe

a transition state, in which the flagellar shape looks like the maximum phase of the

tremor-like pattern, which does not relax back. For very high flow speeds, the flagellum

folds back and aligns with the cell body. The critical flow-speed at which stalling occurs

is uc ≈ 8 mm s−1, see also the blue inset in figure 3.12 (b) shows a histogram of stalling

events. It also happens that the beat stops, but with negative external flow. Stalling

of this kind happens at surprisingly low values of the absolute value of the external

flow-speed uc ≈ 0.5 mm s−1.

Multistable beating is a beat pattern that switches back and forth between tremor-

like and binormal beating, without varying the external load. Mode transitions between

normal beating and stalling is usually not observed when varying the hydrodynamic

load. The most frequent continuous transitions are from normal mode to the multi-

stable mode and from the multi-stable mode to the chiral mode. The most frequent

discrete mode transition goes from chiral mode to stalling. The transitions occur for

increasing as well as for decreasing flow speeds and usually show hysteresis.

The theoretical description predicts stalling

The normal mode beat pattern is the one we can reproduce with our theoretical de-

scription of the last section 3.2, using phase ϕ and amplitude A for parameterizing the

beat, which we also used for comparing the susceptibilities χϕ and χA, see section 3.3.2.

The theoretical description does no show tremor-like beating, and binormal beating is

impossible, because only planar beat patterns can be reproduced.

The mean frequency. is obtained by running simulations for a time interval ∆t =

30Tu=0 of 30 periods of the unperturbed flagellar beat. The last reciprocal period gives

the frequency f = T−1. Note, that for high flow rates u . uc near the stalling point,

the frequency obtained by this procedure may be f = 0 although the phase dynamics

did not stop, but is just very slow. The theoretical stalling point is at uc ≈ 12 mm s−1.

The red curve in figure 3.12 (b) shows the frequency dependency on external load.
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Figure 3.11: Flagellar stalling at high load and higher modes. The frequency of four different

flagella of different cells are shown for presenting typical effects that occur when the external

flow is increased up to a value when stalling occurs. At the top left corner of each graph

is a cell identifier which contains information of whether the flagellum is a cis or trans

flagellum. If no external flow is imposed, the flagellum beats normally ( ). It is always

possible to stall the flagellar beat ( ) by imposing high load. For moderate flows, regions

exist, in which higher modes arise, like tremoring ( ) and binormal beating ( ), see main

text for more thorough descriptions. The underlying experimental data was measured and

analyzed by Christian Ruloff.

A saddle node bifurcation. occurs at u = u+
c . To see this, we performed sim-

ulations, generating the load dependent phase speed field on the state space of the

flagellum. For a certain amplitude A = 0.9. For zero load u = 0, the phase speed ϕ̇(ϕ)

is positive for all phases ϕ. When increasing u, the phase speed during the recovery

stroke at ϕ = ϕ+
c ≈ 3π

2 decreases, until it reaches zero for u = u+
c ≈ 12 mm s−1. This is
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a fixed point for the phase speed dynamics, which is a saddle node. Further increasing

u leads to a splitting into a stable fixed point at a slightly lower phase ϕ . ϕ+
c and an

unstable fixed point at a slightly larger phase ϕ & ϕ+
c . Stalling for negative flow rates

occurs analogously as saddle node bifurcation, but for a lower value u−c ≈ −7mm s−1 at

a different phase ϕ = ϕ−c ≈ π
5 . Figure 3.12 shows the phase speed field and a schematic

of the corresponding bifurcation diagram.

Figure 3.12: Flagellar stalling in experiment and theory. (a) Flagellar stalling for a typical

cell (a1) when flow comes from the front is similar to the simulated version (a2). The same

is true for external load from the back (a3). The theoretical result is shown in (a4). The

solid flagellar shape forms at u = u−c , the dashed shape forms at external flows below the

bifurcation point. Movie stills are from Christian Ruloff. (b) The red curve is the frequency

of the computed flagellar beat of a clamped cell with different external flow speeds u. The

blue histogram shows the flow speed of measured stalling events (provided by Christian

Ruloff). It’s mean value is approximately 8 mm s−1 and is comparable to the theoretical

value ≈ 12mm s−1. For negative flow speeds, the experimental stalling speed (see green

histogram, provided by Christian Ruloff), reveals a surprisingly low stall speed. (c) Stalling

occurs through a saddle node bifurcation of the phase dynamics, in which a stable and an

unstable fixed point is created from a saddle node, when increasing the external flow speed.

Up to flow speeds at which the frequency of the theoretical description reaches its

maximum, the monotonic increase of the experimental frequency values is well predicted.
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This is in good agreement with the comparison of the phase speed susceptibility χϕ in

section 3.3.2. From figure 3.10 we conclude that
∫ 2π

0 dϕχϕ(ϕ) > 0 for the experimental

cell as well as the theoretical model, which is equivalent to having an increased frequency

for higher loads u. For higher external loads we cannot assume linear response of the

phase speed any more, see equation (3.23). Stalling occurs in the theoretical model

as well as in the experiment, with critical values in the same order of magnitude for

forward stalling. The experimental value for the critical flow-speed at which backward

stalling occurs is much smaller than the predicted value of the theoretical description.

3.3.4 Non-isochrony of flagellar oscillations

The non-isochrony −ω1/ω is a property that was suggested as a synchronization mech-

anism by [95, 78]. It describes the dependency of the phase speed on the amplitude. A

positive value means, that when the amplitude is larger than the equilibrium value, the

phase is slowed down and it speeds up for positive values. The friction matrix, shown

in figure 3.7, already gives a hint for non-isochrony, since the phase friction component

depends monotonically on the amplitude, ∂AΓϕϕ > 0. We write

ϕ̇ = ω − ω1A
2 (3.24)

which is motivated by the fact that the flagellar beat can be described as a Hopf

Figure 3.13: Non-isochrony. The frequency dependence on the squared amplitude is shown

for the two flagellar datasets that were used for the theoretical description in this section.

The slope of the linear regression is a measure for the non-isochrony. Video-microscopy

data was provided by Christian Ruloff.

oscillator, see section 5.1 for details.

Experimental results are shown in figure 3.13. We find ω1/ω = 0.077 ± 0.027. The

theoretical prediction is ω1/ω ≈ 0.78. While the sign of the non-isochrony matches, the

theoretical description predicts a ten-fold higher value.

3.4 Summary

An experimental setup was described, with which it has been possible to clamp a beating

Chlamydomonas cell while imposing a controlled external flow. The experiments were
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performed by Christian Ruloff. With this, we were able to determine, how speed and

shape of the flagellar beat changes in response to hydrodynamic forces. For this aim,

we developed an effective theory of the flagellar beat, that is calibrated by experimental

data.

The crucial theoretical parameter that sets the sensitivity of the flagellar beat to

external load is the energy efficiency η, that sets the ratio of energy that is provided

by chemical processes and the energy that is dissipated into the fluid. The determined

value η ≈ 0.2 agrees with previous estimates.

The developed theory includes a degree of freedom, called flagellar amplitude, that

allows a flagellum to deform additionally to the common phase dependent shape. We

determined the flagellar amplitude stiffness, which was proposed to have significant

impact on the synchronization behavior of the flagellar beat, which is investigated in

the next chapter.

For high external load the flagellar beat stalls in a saddle-node bifurcation. Surpris-

ingly, we found higher modes of the flagellar beat in the experimental data that were

not reported previously in the literature.
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4
Flagellar load-response facilitates

synchronization

The last chapter addressed the question of how sensitive the flagellar beat is with

respect to external, mechanical forces, induced e.g. by hydrodynamic flows. This

sensitivity is a necessary property for flagellar synchronization, either within

collections of flagella or for synchronization to external oscillatory flow.

Chapter overview. In this chapter, two synchronization phenomena are studied

through numerical simulations. First, external driving is applied by an oscillating fluid

flow u(t) with a frequency close to the beat frequency of Chlamydomonas. This numeric

experiment is motivated by an experiment of Quaranta et al. [104]. For this, the theo-

retical framework that was presented in chapter 3 is used. Second, the synchronization

of the two flagella of Chlamydomonas with each other is investigated. For this, the

previously used framework is extended to allow for non-synchronized beating. Further,

an additional elastic coupling between the flagella is introduced, which is biologically

motivated by the so called distal striation fibers in Chlamydomonas [109].

4.1 Synchronization to external driving

We consider the situation of a Chlamydomonas cell that is held by a micro-pipette and

a periodic external flow is imposed with a frequency fu that is close to the frequency f

of the flagellar beat.

In the experiments reported in [132], a time dependent external flow of square form

u(t) = 2UF (Θ(sin(2πfut))− 1
2) is applied, as depicted in figure 4.1 (a). Θ is the Heaviside

function. The phase difference δ = ϕ− 2πfut of the flagellar phase ϕ and the external
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flow phase 2πfut is analyzed. In the experimental system with thermal and active

flagellar noise the fraction of time at which phase locking occurs is a measure for the

synchronization strength.

In the theoretical model system without noise, that fraction can be either zero or one,

after a certain transient. We expect that transient to be relaxed after 50 beat cycles

and determined if phase locking occurs by comparing the total phase lag after that

time. If it is smaller than 2π, then no phase slip happened, and the cell is synchronized

with the external flow. Of course, this is only an upper bound for estimating the region

of synchronization. The Arnold tongue for this system is shown in figure 4.1 (b) for

different values of the energy efficiency η. The experimental finding of Quaranta et

al. [104] is also included.

Figure 4.1: Arnold tongue of flagellar synchronization to periodic driving for different energy

efficiencies. (a) Schematics of the external driving in the experiment of Quaranta [104]

and our simulations. A Chlamydomonas is exposed to periodic external flow rate given

by a square wave. The frequency fu of the flow is close to the intrinsic frequency f of

the flagellar beat. The amplitude of the external driving is UF . (b) Arnold tongues from

numerical simulations showing phase locking as a function of frequency mismatch fu−f and

amplitude UF for different energy efficiencies η. For η = 0, synchronization with external

flow does not occur when fu 6= f . When the energy efficiency is increased, the Arnold

tongue becomes broader. The dashed white line represents the experimental finding, taken

from [104] and fits well to the case η = 0.2.

The effect of energy efficiency on synchronization. When the energy efficiency

η is zero, it means that hydrodynamic forces are negligible compared to internal friction

forces. Thus, any applied external force is small and has no effect on the flagellar beat

due to a vanishing susceptibility. Consequently, the Arnold tongue for such a system

would be just a line at fu− f = 0 as any frequency mismatch between intrinsic beating

frequency and external flow would lead to the accumulation of a phase lag. For larger

values of the energy efficiency, the Arnold tongue becomes broader, since susceptibilities

increase and external forces have a stronger impact on the instantaneous phase speeds.

In the last chapter we determined the energy efficiency η ≈ 0.2 by fitting the theoretical

prediction for the phase speed susceptibility on experimental results. Of course, we

could as well use the Arnold tongue of figure 4.1 (b) to determine the energy efficiency.

We did not do that, since this procedure is computationally very demanding and the
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opening angle of the Arnold tongue of our theoretical description with η = 0.2 and the

experiment result of Quaranta [104] matches quite well.

For an intuitive understanding, why synchronization with external periodic driving

occurs the notion of a power and recovery stroke for the external flow helps. During the

power stroke the flagella of Chlamydomonas move from the front to the back, and from

back to front during the recovery stroke. In the same way, the periodic flow has a time

span in which the direction of flow goes from the front of the cell to the back of the cell.

We call this power stroke. Recovery stroke is defined analogously. If the external flow

is in the power stroke and the cell is in the recovery stroke, the flagellar phase speed

is reduced. The same is true if the flow is in the recovery stroke and the cell is in the

power stroke. If the strokes are the same, the phase speed it increased.

In principal, it is possible to observe higher synchronization modes with f ≈ 2f0 that

reflect in the presence of additional Arnold tongues. Considering the intuitive picture

formed in the previous paragraph, we see, that no systematic phase speed change can

be predicted, since during a certain stroke (e.g. power stroke), the external driving runs

through both kinds of strokes, increasing the flagellar phase speed a certain time, then

decreasing it again. In simulations we did not find more Arnold tongues at fu ≈ 2f and

fu ≈ 1
2f .

4.2 Inter-flagellar synchronization in the green alga

Chlamydomonas

In experiments, it is observed that the two flagella of Chlamydomonas syn-

chronize in-phase, both for clamped cells and for free-swimming cells [133].

The physical origin of this phenomenon is still unclear, while several symme-

try breaking synchronization mechanisms may play a role [40]. Some authors

suggest that an additional basal coupling might be crucial to facilitate in-phase

synchronization [104, 132]

In this section, an extension to the theoretical description of flagellar swimming is

presented that allows the two flagella of the model system to have two different phases,

which in turn describe deviations from synchronized beating. Then, the synchronization

strength λ is defined. It is computed for different situations. First, the parameter

controlling the internal friction of flagella, the energy efficiency η, and the parameter

controlling the stiffness of flagella, the amplitude correlation time τA are set constant

(η = 0.2, τA = 5.9 ms) and the synchronization strength λ for the freely swimming cell

and the clamped cell are calculated. Next, those same parameters are varied for testing

the robustness of the system.

The physical situation, in which the cell is clamped, thus cannot translate and rotate,

deserves special attention, because it has not been possible, yet, to model a system of

Chlamydomonas with a synchronization strength that is in agreement with experimental

findings. Therefore the elastically clamped cell is investigated. A very stiff orientational
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spring might model the rigid cell wall within Chlamydomonas.

Interestingly, we observe anti-phase synchronization in the model, which is the op-

posite behavior of experimental findings [133]. Therefore the model is further extended

by a basal body coupling, with is inspired by the biological model system [109]. With

that, the experimentally measured synchronization strength can be reproduced. At the

end of this section, three experiments are proposed for testing the hypothesis, that the

combination of waveform compliance with elastic basal body coupling is the relevant

synchronization mechanism in Chlamydomonas.

4.2.1 Equations of motion for inter-flagellar synchronization

Each flagellum of the Chlamydomonas cell, denoted L and R is described as phase-

amplitude oscillator with respective phases ϕL and ϕR and amplitudes AL and AR.

Since a planar beat pattern is used for both flagella, the swimming path lies in a plane

and there are only two Cartesian coordinates x and y of the cell body center and one

orientational degree of freedom α of the cell body to consider.

The state vector of generalized coordinates

q(t) = (ϕl(t), ϕr(t), Al(t), Ar(t), x(t), y(t), α(t)) (4.1)

governing seven degrees of freedom fully describes the state of the flagellum at each

given time t. The generalized velocity is defined by the time derivative of the generalized

coordinate q̇. P is the generalized force, that is defined by considering the dissipation

relation R = P · q̇
The velocities and dissipative forces are related by the friction matrix Γ = Γ(h) +Γ(i),

that depends on the current state q and consists of a hydrodynamic contribution Γ(h) as

well as an internal contribution Γ(i). The hydrodynamic part is calculated as detailed

in section 3.2.2. The internal part via equation (3.9) but with (i, j) = (i′k, j
′
k) for

i′, j′ ∈ {ϕ,A} and k ∈ {L,R}.
For a single cell, the friction is independent of its position and the orientational

dependence of the components of the friction matrix is obtained by rotation R(α) in

the xy-plane:

Γ(q) = R−1(α)Γ(α = 0, ϕL, ϕR, AL, AR)R(α) (4.2)

with the generalized rotation matrix

R(α) =
∑

k∈{ϕL,ϕR,AL,AR,α}

ek ⊗ ek

+ cos(α) ex ⊗ ex − sin(α) ex ⊗ ey

+ sin(α) ey ⊗ ex + cos(α) ey ⊗ ey

(4.3)

All oscillator variables ϕk and Ak for k ∈ {L,R} are active and driven by half the

forces obtained from the calibration process in section 3.2.4, see also figure 3.7, because

the respective force drives just one flagellum instead of two as it was the case in the
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descriptions in chapter 3. Also, the stiffness kA is the same as in the previous description,

see section 3.2.5.

The full dynamics can then be obtained by integrating the system, whose time dy-

namics is given by the following balance of generalized forces.

1
ηΓϕLϕL ΓϕLϕR

1
ηΓϕLAL

ΓϕLAR
ΓϕLx ΓϕLy ΓϕLα

ΓϕRϕL
1
ηΓϕRϕR ΓϕRAL

1
ηΓϕRAR

ΓϕRx ΓϕRy ΓϕRα
1
ηΓALϕL

ΓALϕR
1
ηΓALAL

ΓALAR
ΓALx ΓϕLy ΓALα

ΓARϕL
1
ηΓARϕR

ΓARAL
1
ηΓARAR

ΓARx ΓARy ΓARα

ΓxϕL ΓxϕR ΓxAL
ΓxAR

Γxx Γxy Γxα
ΓyϕL ΓyϕR ΓyAL

ΓyAR
Γyx Γyy Γyα

ΓαϕL ΓαϕR ΓαAL
ΓαAR

Γxx Γαy Γαα





ϕ̇L

ϕ̇R

ȦL

ȦR

ẋ

ẏ

α̇



=



QϕL(ϕL)

QϕR(ϕR)

QAL
(ϕL)− kA(ϕL)(AL −A0)

QAR
(ϕR)− kA(ϕR)(AR −A0)

Qx
Qy
Qα



(4.4)

We have a system of equations with seven degrees of freedom, so we need seven con-

ditions in the form of time or phase dependent functions. Those can be either functions

for conjugate forces of for the trajectory itself. Generally, if amplitude variation is al-

lowed, the conjugate forces QϕL , QϕR for the phases and QAL , QAR for the amplitudes

are set and assumed to be independent from external influences. The case of a clamped

cell that does not translate and does not rotate is described by ẋ = 0, ẏ = 0, α̇ = 0,

whereas a freely swimming cell mandates Qx = Qy = 0 and Qα = 0.

Interpretation of specific components of the friction matrix. The flagellar

self-interaction terms ΓIi,Ji for I, J ∈ {ϕ,A} and i ∈ {L,R} strongly depends on the

respective flagellum i. For example the dependence of ΓϕLϕL on ϕR and AR is very

small compared to the dependence on ϕL and AL. The coefficients ΓIL,JR describe

direct hydrodynamic interactions between the two flagella and are dependent on all state

variables, but are more than a magnitude smaller than the self-interaction terms. This

is partly due the low energy efficiency η = 0.2, that effectively increases the components

ΓIL,JL and ΓIR,JR . All diagonal elements are positive for all states. The translational

friction components Γxx and Γyy are almost constant. Note that the diagonals ϕL = ϕR
of all components Γij for i, j ∈ {x, y, α} can be similarly found in the grand friction

matrix, shown in figure 2.3, with differences that are due to the usage of a different

flagellar waveform.

Note that the rotational coupling fulfills the symmetry ΓIL,α(ϕL, ϕR) = −ΓIR,α(ϕR, ϕL).

That means, that there is no effect on the rotational motion if the two flagella beat in

synchrony ϕL = ϕR. Note also that the flagellar coupling to rotation is significantly

larger than the coupling to translational degrees of freedom, considering physically rel-

evant magnitudes of the respective quantities during flagellar swimming. It follows
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Figure 4.2: Hydrodynamic friction matrix components in generalized coordinates, phases

and amplitudes. Since the friction matrix is symmetric, see equation (C.7), it is sufficient

to show the upper triangular part. Here, the coupling terms of flagellar coordinates are

shown. The remaining components of the 7× 7-matrix are shown in figure 4.3.

that flagellar swimming has a large rotational contribution if the flagellar beat is not

synchronized in-phase, thus swimming is not straight.

4.2.2 Synchronization strength for free-swimming and clamped cells

We compute the dynamics of the freely swimming cell by imposing Qx = Qy = 0 and

Qα = 0 in equation (4.4). As initial condition we choose q = (0, δ0, 1, 1, 0, 0, 0) with

δ0 = 0.01.

For obtaining the synchronization strength λ we map the dynamics onto the Adler

equation (1.1). For our simulations we use small perturbations in the phase difference

δ ≥ 0 such that we can use the linearized Adler equation δ̇ = − λ
TL
δ with dimensionless

synchronization strength λ and period of the left flagellum TL. Note that the dynamics

that is represented by the Adler equation is purely due to the coupling of phase differ-

ences, but the coupling of flagella in Chlamydomonas is periodic in its phases. Therefore

we use a stroboscopic projection of the dynamics on a certain phase ϕL of one flagellum

and compute the synchronization strength λ in this way. We do this for a number of
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Figure 4.3: Hydrodynamic friction matrix components in generalized coordinates: remaining

coordinates. The flagellar variables are coupled indirectly through the translational and

orientational degrees of freedom. For direct interactions, see figure 4.2.
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Figure 4.4: Synchronization of clamped and freely swimming cell. In all three plots, a pro-

jection of the dynamics of flagellar dynamics on the phase difference ϕl−ϕR and amplitude

difference AL−AR is shown. (a) The color code represents the angular speed, which has a

dominant effect on synchronization for the freely swimming cell. The orange points are used

to calculate the synchronization strength with equation (4.5). The orange points represent

the stroboscopic map that is generated at φL = n ·2π+ϕ0 for n = 1, . . . and arbitrary offset

ϕ0. (b) The anti-phase synchronized state of the freely swimming cell is stable. When the

dynamics start with initial conditions as in (a), the limit cycle shown in (b) is reached after

infinite time. (c) The dynamics of a clamped cell is shown. The line color goes from black

(t = 0) to blue (t = 3T ). Arrows depict the arrow of time.

different phases ϕ0 ∈ [0, 2π) and use the average value λ = 〈λ′(ϕ0)〉ϕ0
with

λ′ = −ln
δn+1

δn
(4.5)

with δn = δ(tn) and ϕL(tn) = 2πn + ϕ0. Figure 4.4 (a) shows orange points, pointing

to states with ϕL = 2πn+ ϕ0 for a specific offset ϕ0.

Using equation (4.5), we find for the freely swimming cell λ = −0.165, which indicates

anti-phase synchronization. This is very surprising, since experimental findings are in

the range of λ ≈ 0.3 [133], which could be theoretically verified by a less general theory of

the flagellar beat [41] to the one that we use here. In that other theory no internal friction

is considered and the amplitude degree of freedom is missing entirely, which corresponds

to the case of an infinitely strong amplitude spring in our theory, see section 3.2.5. We

can reproduce the results of the previous theoretical description when we turn off the

mentioned mechanisms. Using that simplified theory, it was reported that cell body

rocking is the dominant synchronization mechanism [41], which seems to be reversed by

the inclusion of the amplitude degree of freedom. Figure 4.4 (a) shows the trajectory of

the projected flagellar phase space onto the flagellar phase lag and amplitude difference.

After a period, the phase lag and the amplitude difference is increased as well as the
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rotational speed, which is shown in color.

Figure 4.4 (a) shows the projection of the trajectory of the freely swimming cell

onto the two-dimensional flagellar phase space consisting of phase lag and amplitude

difference. After one period, the phase lag is slightly increased. A system of two coupled

oscillators with just one degree of freedom each has exactly two fixed points, one of which

is stable, the other one is unstable. If λ < 0 there is an unstable fixed point at δ = 0 and

a stable fixed point at δ = π. The situation becomes more complicated if the oscillators

provide more degrees of freedom, as in out description of Chlamydomonas, equation

(4.4). For the coupled flagella, there is a stable limit cycle, surrounding δ = π and

AL = AR, see also figure 4.4 (b).

For the clamped cell, without any rotational freedom, we have λ ≈ 0.01, which is

purely through hydrodynamic interactions and more than an order of magnitude weaker

than realistic values (λ ≈ 0.3) [133]. See figure 4.4 (c) for the projected dynamics.

4.2.3 The synchronization strength depends on energy efficiency

and waveform compliance

Figure 4.5: Dependence of intra-flagellar synchronization strength on amplitude relaxation

time and energy efficiency. The simulation results of the freely swimming cell is shown as

solid line, the results of the clamped cell is shown as dashed lines. (a) The amplitude stiffness

of the flagellum, set by the amplitude correlation time τA, changes the synchronization

strength λ for the freely swimming cell: inelastic flagella (τA = 0) tend to synchronize

weakly, whereas elastic flagella, as determined by experiment (τA = 5.9 ms) exhibit anti-

phase synchronization. For the clamped cell, flagellar stiffness has a small effect on the

synchronization strength. In both cases η = 0.2. (b) For vanishing energy efficiency η =

0, no synchronization occurs, for increasing values of η, the synchronization strength is

decreased and becomes negative, thus we predict anti-phase synchronization (τA = 5.9).

Dependence on waveform compliance. For the freely swimming cell, in the lim-

iting case of an inelastic flagellum, kA → ∞, which is realized by vanishing amplitude

correlation time τA → 0, we predict an in-phase synchronized state with λ ≈ 0.05. This

value is an order of magnitude smaller than the value of the previous description [41],

λ ≈ 0.56, which is due to intra-flagellar friction.

For elastic flagella, τA > 0, the synchronization strength decreases and becomes

negative for a correlation time τA & 1 ms. In the neighborhood of the experimentally

determined value of τA = 5.9, anti-phase synchronization λ < 0 occurs within a stable
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limit cycle, see figure 4.4 (b).

The clamped cell performs in-phase synchronization with a very low value in the

examined domain τA ∈ [0, 20 ms]. This is mainly due to hydrodynamic interactions

seem to not play a significant role in synchronization and do not couple in an interesting

way to the flagellar amplitude stiffness.

Dependency on energy efficiency. If the energy efficiency is zero, η = 0, there

is no response of the flagellar beat to external load, thus no reaction to fluid flow

can occur. Hydrodynamic interactions and the coupling to translational as well as

rotational degrees of freedom have no effect on the phase speed ϕ̇ and on the amplitude

A. Therefore neither in-phase nor anti-phase synchronization can occur. For higher

values of η, phases and amplitudes may adapt to cell body movements of hydrodynamic

interactions and the synchronization strength decreases linearly, λ < 0 for η > 0.

4.2.4 The case of an elastically clamped cell

We can continuously alter the case of a freely rotating cell to a completely clamped one

by introducing an elastic coupling of the cell body to a reference orientation α = 0 with

orientational stiffness kα.

Qα = −kαα (4.6)

In the limit kα = 0 we mimic the case of a freely rotating cell while translation is

not allowed. While this situation may seem artificial, one can use a laser trap for

realizing this condition experimentally. For the other limiting case kα → ∞ the cell is

not allowed to rotate. The clamped Chlamydomonas with a micro-pipette is expected

to have a large stiffness kα due to the cell wall that is inherent to plant cells. Figure

4.6 shows the dependence of the synchronization strength on the orientational stiffness.

For kα ∈ [103, 105], the synchronization strength is slightly positive, but an order of

magnitude lower than experimentally observed values (λ ≈ 0.3) [133]. For kα → ∞,

Figure 4.6: Synchronization strength for an elastically clamped cell. The case of the com-

pletely clamped cell is reproduced for high orientational spring stiffness (kα → ∞), while

freely rotating but translationally clamped cells (kα → 0) perform anti-phase synchroniza-

tion (λ < 0).

flagella are coupled only hydrodynamically, such that the value of the synchronization
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strength of the completely clamped cell is reproduced λ→ 0.005.

The theoretical description is not able to predict experimentally measured values for

the synchronization strength of the freely swimming cell and the clamped cell. The

elastically clamped cell cannot mimic the case of the clamped cell. This indicates that

important ingredients are missing from the theoretical description, as discussed next.

4.2.5 Basal body coupling facilitates in-phase synchronization

In this section, direct elastic coupling between the two flagella of Chlamydomonas is

introduced. It is biologically motivated, see section 1.1.2, and added to the theoretical

description of Chlamydomonas swimming, because the model so far was not able to re-

produce stable flagellar in-phase synchronization and because basal coupling is a recently

suggested mechanism [104, 132] for that behavior. First, the theoretical description of

basal coupling is introduced. Then, the conditions for stable in-phase synchronization

of flagella are discussed. Finally, the transition from stable to unstable flagellar in-phase

synchronization is pointed out.

We model this direct coupling as a passive elastic fiber with the elastic energy

Ub =
kb
2b21

(dL + dR − 2d0)2 (4.7)

with the basal spring stiffness kb. The typical spatial scale of displacements from the

equilibrium position d0 is b1. The distance functions dl and dr are proportional to in-

stantaneous values of actual distances of the flagellar anchoring points to d0. Those

distance functions are unknown and we make a simple ansatz for the form of the func-

tions dI due to the fact that the flagellar tips positions are periodic functions in ϕI
and proportional to the amplitude AI , dI = AI sin(ϕI − ϕ0) with an unknown phase

offset ϕ0. The resulting elastic forces are CI = ∂IUb for I ∈ {ϕL, ϕR, AL, AR} which are

dependent on the flagellar degrees of freedom ϕi and Ai.

We need to take into account for this spring force already during the calibration

process, see section 3.2.4. Doing so results in an effective form of the elastic force CI
for which the synchronous contribution of CI is subtracted.

Qϕi(ϕL, ϕR, AL, AR) = Q′ϕi(ϕi) + Cϕi(ϕL, ϕR, AL, AR)− Cϕi(ϕi, ϕi, Ai, Ai)
QAi(ϕL, ϕR, AL, AR) = Q′Ai(ϕi)− kA(ϕi)(Ai −A0)

+ CAi(ϕL, ϕR, AL, AR)− CAi(ϕi, ϕi, Ai, Ai)
(4.8)

Two unknown parameters kb and ϕ0 are introduced by the basal spring model extension,

which are scanned by performing simulations for each many combinations of tuples

(kb, ϕ0) for kb ∈ [0, 6] and ϕ0 ∈ [0, 2π) and obtaining the synchronization strength,

which is shown in figure 4.7 for the freely swimming cell, and for the clamped cell.

Conditions for stable in-phase synchronization. We predict regimes in which

the freely swimming cell, as well as the clamped cell synchronize their flagella with a

synchronization strength that is similar to the experimentally measured values [133].

Note that the synchronization strength λ is π-periodic in the phase offset ϕ0. We find

at ϕ0 ≈ π
10 and kb > 3 pNµm that experimental values can be matched.
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Figure 4.7: Parameter scan for the basal coupling on synchronization. Parameter scans are

shown for the freely swimming cell (left) and the clamped cell (right). There are regions in

which in-phase synchronization occurs for large values of kb. The synchronization strength

λ is π-periodic in ϕ0.

Amplitude compliance and basal elastic coupling are both suggested mechanisms for

allowing for stable in-phase synchronization of Chlamydomonas flagella. The basal

coupling stiffness kb in Chlamydomonas is completely unknown and the determination

of the amplitude correlation time τA suffers from large measurement errors and cell-

to-cell variability. We study the dependence of the synchronization strength on both

parameters, τA and kb, while setting the value for the phase offset to ϕ0 = π
10 . The result

is shown in figure 4.8. Without amplitude compliance (τA = 0) the effect of basal body

coupling on the synchronization strength is negative, thus in-phase synchronization

is unstable, for both, freely swimming cells as well as clamped cells. For the freely

swimming cell without basal body coupling (kb = 0) in-phase synchronization is unstable

as well. Remarkably, the combination of amplitude compliance and basal coupling leads

to a positive synchronization strength.

Stable-to-unstable synchronization transition. We investigate the transition from

positive to negative values of the synchronization strength for constant τA = 5.9 ms while

varying the basal stiffness kb. Therefore, simulations were performed with different ini-

tial conditions ϕL(0) = 0 and ϕR(0) = δ0 with 0 ≤ δ0 ≤ 2π. Note that the dynamics

shows transient oscillations and the initial values of the amplitude may ’kick out’ the

phases, and thus the phase difference δ, from the trajectories that a relaxed oscillation

would perform. We thus first perform simulations, in which the phases ϕL and ϕR are

constant, but the amplitudes AL and AR are relaxed to values, that can then be used

as a new set of initial values for the amplitude. With this, we are able to identify stable

fixed points and stable limit cycles in the system. Opposing to how we determined the

synchronization strength λ in section 4.2.2, here we do not know the exact value of δ∗.

Therefore we smoothed the time series δ(t) near the center of the stable limit cycles δ∗

using sliding windows of size T , the period of the flagellar beat. Then we fitted a func-
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Figure 4.8: The combination of waveform compliance and basal coupling leads to in-phase

synchronization. (a) The synchronization strength λ as a function of the basal coupling

stiffness kb and amplitude relaxation time τA is shown in color code for the clamped cell.

(b) Same as (a), but for the freely swimming cell. Only the combination of waveform

compliance (τA > 0) and basal coupling (kb > 0) results in in-phase synchronization. (c)

The black curves show the cycle-averaged values of the phase difference at steady state

for varying basal spring stiffness kb and constant amplitude correlation time τA. The

light-blue envelope depicts the amplitude of the oscillations of δ. An example of such

an oscillation for the anti-phase synchronized state is shown as inset. Specific values of

Lyapunov exponents λ∗ are shown. The bifurcation diagram shows a pitchfork bifurcation

at kb ≈ 2.7 pNµm, but instead of a split into three fixed points, one unstable fixed point

surrounded by two stable limit cycles remain. A similar bifurcation happens in the interval

0.5 pNµm < kb < 0.7 pNµm, but with an intermediate dynamics in which three stable

limit cycles seem to co-exist.
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tion δ∗ + c eλ
∗T−1t for obtaining the limit cycle averages δ∗ together with its Lyapunov

exponents λ∗. The fixed points and stable limit cycle are shown in figure 4.8 (c).

Remarkably, we find a pitchfork bifurcation at kb ≈ 2.7 pNµm, in which a stable fixed

point (kb > 2.7 pNµm) changes into a saddle node, which then splits up into an unstable

fixed point at δ = δIP = 0 and two stable limit cycles at δ = δ+ > 0 and its symmetric

counterpart δ = δ− = −δ+, which is due to the geometric symmetry of the dynamical

system. The values δ− and δ+ are cycle averaged values of the phase difference at

steady state. For smaller values (kb ≈ 1.2 pNµm) another bifurcation occurs. We did

not determine the type of the bifurcation in this region, because unstable limit cycles

cannot be identified numerically, reliably. For kb = 0 there is one stable limit cycle at

δ = δAP = π.

We estimate the Young’s modulus of the distal striated fiber to be approximately

20 kPa, given its geometry (300 nm× 2 · 104 nm2) and assuming elongation of the fiber

of about b1 = 50 nm from the equilibrium position. This value is the range of Young

moduli reported for biological materials [139].

4.2.6 Predictions for experiments

In this section, we propose three experiments that can be used for testing the hypothesis

that basal coupling is a crucial mechanism that leads to synchronization in the biological

model organism. One is motivated by the experiment, that is described in section 3.1,

in which external homogeneous flow is imposed on the surrounding fluid of a clamped

cell. An other experiment is similar in the sense that the hydrodynamic load on the

flagella is changed, namely the viscosity of the surrounding medium may be changed.

Third, we emulate the Calcium concentration within Chlamydomonas.

External flow destabilizes in-phase synchronization. With the findings of sec-

tion 4.2.5, we are able to identify parameter sets, with which we can reproduce values

of the synchronization strength λ that are comparable to experimental results. Specific

values are for example kb = 3.6 pNµm and ϕ0 = π
10 , which we use for the next set of

numerical simulations.

Motivated by the experiment described in section 3.1, whose measurements were used

in the load-response analysis that is, we performed simulations in which a clamped cell

is exposed to constant external flow in y-direction. For each flow condition we obtain

the synchronization strength. It is clear, that both flagella are in synchrony when

the flagellar beat is stalled, see section 3.3.3, but do not synchronize in the sense of the

Adler equation, thus we expect the synchronization strength to decrease with increasing

external flow speed u. Intuitively spoken, the interactions with the external flow become

more important in comparison to other existing couplings, like amplitude deformations

with hydrodynamic interactions.

Figure 4.9 shows that for moderate flow speeds, comparable to the speed of the

flagellar tip, the synchronization strength λ decreases and even executes anti-phase

synchronization λ < 0 for higher flow speeds. For flow speeds in the surrounding of

flagellar stalling, the synchronization strength goes to zero.

While extending this investigation to negative flow speeds would certainly reveal
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Figure 4.9: Dependence of synchronization strength on external flow speed viscosity and

Calcium concentration considering basal coupling. Results are shown for basal stiffness

kb = 3.6 pNµm and offset ϕ0 = π
10 . (a) The synchronization strength is reduced with

increasing external flow rate and even executes anti-phase synchronization. (b) Simulation

results are shown for a freely swimming (white) and a clamped cell (black). (c) The resulting

equilibrium distance d
(2)
0 is different from the one used during the calibration process (d

(1)
0 ).

Adding Calcium to the Chlamydomonas cell changes the equilibrium distance of the basal

spring.

interesting effects, it is not purposeful to do so, since the computational results of

imposing backward flow do not match well with experiments, see section 3.3.3.

Increased viscosity destabilizes in-phase synchronization. External flow from

the swimming direction imposes a time-dependent periodic hydrodynamic load on the

flagella. Constant changes in the overall load can be achieved by increasing the viscosity

of the fluid medium that Chlamydomonas is swimming in. Numerical simulations are

performed for the clamped as well as for the freely swimming cell.

The hydrodynamic friction matrix Γ(h)(µ) is proportional to the viscosity µ. The full

friction matrix including intra-flagellar friction Γ(i), see section 3.2.3, is

Γ(µ, η) = Γ(h)(µ) + Γ(i)(η)

=
µ

µ0
Γ(h)(µ = µ0) +

1− η
η

Γ(h)(µ = µ0).
(4.9)

The driving forces QIj , I ∈ {ϕ,A}, j ∈ {L,R} and the amplitude stiffness kA, see

equation (3.19), are treated as material properties of flagella, thus are unaffected by a

change of viscosity of the surrounding fluid, which means that the calibration of the

system at a specific viscosity µ = µ0 is used for all other simulations, see section 3.2.4

for details on the calibration process.

The simulation results reveal that the clamped cell is hardly affected by the change of

viscosity. The synchronization strength of the freely swimming cell, however, decreases

until it reaches anti-phase synchronization for values of the viscosity of µ & 2 pN ms
µm2 , see

figure 4.9.

A change of Calcium concentration destabilizes in-phase synchronization. If

the concentration of Calcium in the surrounding of the distal striated fiber is increased,

its length decreases [113], see also figure 1.4. In our theoretical description we model the

change of the observed length of the distal striated fiber by changing the equilibrium
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distance of the basal spring, introduced in equation (4.7), compared to the equilibrium

distance during the calibration process. We write the phase and amplitude dependent

distances dL and dR as

dI(ϕ,A) = bI(ϕ,A) + d
(1)
0

(4.10)

In the previous calculations, the equilibrium distance d
(1)
0 had a negligible effect on the

synchronization strengths. Here, we first set 2d
(1)
0 to a value that corresponds to the

equilibrium distance of the basal spring during the calibration process, see section 3.2.4.

Then, for the computations of the synchronization strength λ, we set dI = bI + d
(2)
0 .

The results are shown in figure 4.9 (c).

Our simulations predict that a contraction of the distal striated fiber stabilizes in-

phase synchronization, while extending the fiber destabilizes it. Critical deviation of

the ratio
(
d

(2)
0 − d

(1)
0

)
/ b1 from zero, leads to an unstable fixed point δ∗ = 0.

4.3 Summary

In this chapter, we addressed two scenarios of flagellar synchronization relevant for the

green alga Chlamydomonas. We studied both phase-locking of the flagellar beat to

external oscillatory flow, as well as synchronization between the left and right flagel-

lum. For both scenarios, we employed the theoretical description of flagellar dynamics

formulated in terms of Lagrangian mechanics developed in the previous chapter 3.

Using the show-case of flagellar synchronization in Chlamydomonas, we demonstrated

that the load-response of the flagellar beat is a key prerequisite for synchronization of

beating flagella by hydro-mechanical coupling. This was shown for a periodic external

flow to which the flagellar beat synchronizes if load response is not zero. Our findings

are in good agreement with an analogous experiment that was recently performed [104].

We then addressed the case of mutual synchronization of the left and right flagellum

in Chlamydomonas. Our theory points at a previously missing element for synchroniza-

tion: We found that our theory accounting for flagellar waveform compliance predicts

anti-phase synchronization. Thus, waveform compliance indeed has a profound effect

on synchronization as proposed previously on the basis of minimal models, yet our

quantitative predictions are opposite to what is observed in experiments.

Recent experiments indicate an important role of an additional structural element,

the distal striated fiber that connects the bases of both flagella for synchronization.

Incorporating such an elastic link in our theory results in a non-trivial interplay between

waveform compliance and basal coupling, resulting in positive synchronization strengths

as measured in experiments [133]. Tuning the basal stiffness reveals a rich behavior of

flagellar dynamics, such as a pitchfork bifurcation with spontaneous symmetry breaking.

Additionally, we proposed three experiments to test our theory experimentally. First,

we considered the case of a clamped cell that is exposed to external flow. In simulations,

we observe that the synchronization strength decreases and even becomes negative.

Second, the viscosity is varied. Simulation results show a decrease of synchronization
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strength up to negative values. Third, our theory predicts that an increase of Calcium

concentration inside Chlamydomonas can also destabilize the in-phase synchronized

state.

In this chapter, we mapped the complex dynamics of flagellar synchronization onto the

Adler equation with an effective synchronization strength. The Adler equation makes

specific predictions on synchronization in pairs of coupled oscillators in the presence of

noise, if the strength of noise is known. In the next chapter, we determine the effective

flagellar fluctuations of the flagellar beat, in particular the effective phase noise and

amplitude noise.
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5
Active flagellar fluctuations

The collective dynamics of molecular motors inside the flagellar axoneme gen-

erates regular bending waves, yet also measurable active fluctuations. These

fluctuations can be described in terms of a noisy Hopf oscillator with phase and

amplitude fluctuations. We discuss implications of flagellar fluctuations on the

swimming paths of microswimmers.

Chapter summary. First, the effective description of the flagellar beat as a Hopf os-

cillator is introduced. Then, the determination of effective noise strengths for the phase

and for the amplitude from experimental data is presented. Third, the implications of

active flagellar fluctuations on the swimming path of a sperm cell and Chlamydomonas

is discussed and its effect is compared to the effect of hydrodynamic interactions and

thermal noise on a passive particle of the same geometry.

The contribution of the author mainly amounts to section 5.3. For sake of com-

pleteness, also the analysis of flagellar fluctuation performed by Benjamin Friedrich is

presented in sections 5.1 and 5.2. Most of the chapter’s content complies to publica-

tion [85] to which the author contributed. High-precision tracking data of swimming

bull sperm [108] was recorded by Ingmar Riedel Kruse. Principal Component Analysis

has been applied to extract the basic features of the flagellar beat. By the shape mode

projection, 95% percent of the variability of the flagellar beat are conserved. The flagel-

lar shape dynamics of freely swimming Chlamydomonas cells were previously recorded

by Veikko Geyer in the laboratory of Jonathan Howard at MPI CBG and Benjamin

Friedrich at MPI PKS developed image analysis algorithms for obtaining the positions

of flagellar tracking points [41].



Chapter 5. Active flagellar fluctuations

5.1 Effective description of flagellar oscillations

In this chapter we compare the effect of active flagellar noise with hydrodynamic inter-

actions. The shapes of flagella of both microswimmers, sperm cell and Chlamydomonas,

can be uniquely specified by their time dependent phase ϕ and amplitude A using the

method detailed in section 3.1.4. With this, we map this two dimensional oscillator onto

the unit circle, which can be described by a complex oscillator variable

Z(t) = A(t) expiϕ(t) (5.1)

Previous work described the onset of the flagellar beat as a supercritical Hopf bifurca-

tion [23], whose normal form is written as

Ż = i(ωc − ω1|Z|2)Z + µ(Λ− |Z|2)Z + Ξ (5.2)

with amplitude A =
√

Λ and frequency ω0 = ωc − ω1Λ. The non-isochrony ω1 de-

scribes how the flagellar phase speed changes due to changes in the amplitude, see

also section 3.3.4, which is a suggested synchronization mechanism of coupled oscilla-

tors [95]. Additionally, we include a complex noise term Ξ for describing active fluc-

tuations. It is multiplicative, i.e. Ξ = Z(ξA + iξϕ) and consists of uncorrelated noise

〈ξi(t)ξj(t′)〉 = 2Djδjkδ(t− t′) for i, j ∈ {ϕ,A}. Equation (5.2) should be interpreted as

a Stratonovich stochastic differential equation.

5.2 Measuring flagellar noise

We now present a method to determine the noise strength Dϕ and DA in equation 5.2

from experimental data. Note, that due to the projection of the flagellar beat onto

two shape modes, the estimation of the flagellar noise in this section is a lower bound,

because noise from neglected shape modes is not considered.

5.2.1 Active phase fluctuations are much larger than thermal noise

Using the limit cycle reconstruction technique that is described in section 3.1.4, a time

series of instantaneous flagellar phase ϕ(t) is obtained, well approximated by

ϕ̇ = ω + ξϕ. (5.3)

We use the phase correlation function H to determine the phase diffusion Dϕ, because

the phase fluctuations are approximately normally distributed, see figure 5.1 (a).

H(t) =
〈
ei[ϕ(t0−1)−ϕ(t0)]

〉
t0

|H(t)| ∝ e−Dϕ|t|
(5.4)

Figure 5.1 (b) shows the correlation function and its absolute value and an exponential

fit, from which we determine the phase diffusion Dϕ ≈ 2.8 s−1.
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Figure 5.1: Phase correlation function of flagellar oscillations. (a) Histogram of phase

increments are approximately normally distributed. (b) The correlation function (5.4)

represents a damped oscillation with the frequency of the flagellar beat. Its envelope decays

roughly as exponential function with a timescale D−1
ϕ ≈ 0.36 s.

We can compare the measured phase diffusion coefficient to the prediction of the

fluctuation-dissipation theorem for a passive system as a result of thermal fluctuations.

Dϕ = ΓϕϕkBT ≈ 0.0015 s−1

Pϕ ≈ Γ−1
ϕϕϕ̇

(5.5)

In fact, the conjugate force Pϕ is the sum over all relevant friction terms, for each degree

of freedom that sets the state of the microswimmer, but the self-friction Γϕϕ is much

larger than the cross terms, so other terms can be neglected for a rough estimate. Note

that the active fluctuations are thousand fold larger than thermal noise.

5.2.2 Amplitude fluctuations are correlated

From the Hopf normal form given in equation (5.2), we obtain in the limit of weak noise

Dϕ, DA � µΛ.

〈A(t0), A(t0 + t)〉t0 − Λ ≈ σ2
A exp(−τ−1

A |t|) (5.6)

The variance σA = DAτAΛ is proportional to the amplitude diffusion coefficient DA

and the amplitude correlation time τA = (2µΛ)−1. This correlation time is the same

that we used to define the amplitude spring stiffness in section 3.2.5. From a fit of the

autocorrelation function of amplitude fluctuations, we obtain τA = (5.8 ± 1.8) ms and

σA =
〈
A(t)2

〉
= 0.0070± 0.0023.

The amplitude noise is described as an Ornstein Uhlenbeck process, which can be

understood as a model of a particle that performs Brownian motion within a harmonic

potential.
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5.3 Active flagellar fluctuations result in noisy swim-

ming paths

We now discuss functional implications of active flagellar fluctuations. Therefore, a

noisy dynamics for amplitude and phase fluctuations is prescribed, first for the sperm

cell whose effective translational diffusion is determined, then for the Chlamydomonas

cell, whose diffusion is compared to hydrodynamic interactions and thermal diffusion.

5.3.1 Effective diffusion of swimming circles of sperm cell

We performed hydrodynamic simulations of a swimming sperm cell, prescribing noisy

amplitude and phase dynamics. The hydrodynamic simulations are performed via

resistive-force theory [50]. Resistive-force theory calculations do not include long range

hydrodynamic calculations, which is a good approximation for a sperm cell [38], because

the curvature of the flagella is low enough, such that different parts of the cell never

come too close to each other.

Note that the amplitude degree of freedom is not affected by external forces. The

phase speed is constant besides Gaussian noise and is not influenced by external forces.

Figure 5.2: Noisy swimming paths from active fluctuations. (a) The swimming path of a

sperm cell with a flagellum with finite mean curvature and without active fluctuations of

the flagellar beat is shown as a black path. The red line represents the circular mean path,

whose center is constant. (b) Adding active flagellar fluctuations changes the swimming

path and the mean path. The dynamics of the center R(t) is described by effective Brownian

motion.

We calculate trajectories rh(t) of a freely swimming sperm cell. Its path wiggles peri-

odically from left to right and back while, on average, producing a forward movement.

The forward motion is constantly tilted leading to circular swimming paths. In the

absence of noise, the mean trajectory lies on a perfect circle with a fixed origin R(t) =

const. With amplitude and phase noise, the centerlines of helical sperm swimming paths

become persistent random walks with a persistent length determined by the fluctuation

86



5.3. Active flagellar fluctuations result in noisy swimming paths

strength [39]. We determine the effective diffusion coefficient DR = (3.30±0.01)µm2s−1,

see also figure 5.2.

If we consider phase noise and do not include amplitude fluctuations, the same tra-

jectory is performed as in the noise-free case. This observation is closely related to

the scallop theorem, which states that at least two degrees of freedom are necessary to

induce net propulsion. In this case, the phase propagates and fluctuations around the

phase cannot lead to a changed trajectory because fluctuations in phase only cause a

stochastic re-parameterization in time. This argument would not hold, if the amplitude

of the flagellar beat would be a dynamic quantity that reacts to external stimulus, in

which case phase fluctuations would induce a diffusive trajectory. This time-reversal

symmetry is also broken by including amplitude noise, which causes stochastic swim-

ming paths.

5.3.2 Comparison of the effect of noise and hydrodynamic interac-

tions

We performed hydrodynamic simulations of a swimming Chlamydomonas cell, prescrib-

ing noisy amplitude and phase dynamics. The Chlamydomonas swimming is calculated

by the fast boundary element method, which is described in appendix A.3. By this,

hydrodynamic interactions are considered, which is important for the description of

Chlamydomonas swimming cell, since the mean curvature of flagella is rather large and

flagella can come very close to the cell body.

Figure 5.3: Comparison of drags due to active fluctuations and hydrodynamic interactions.

Two Chlamydomonas cells that swim next to each other in the same direction, starting with

a distance d = 30µm and interact hydrodynamically with each other. This is compared to

thermal diffusive motion of the cell (orange shading) and effective diffusion, resulting from

active amplitude fluctuations (gray shading).

Chlamydomonas has two flagella, that in principle can go out of a synchronized state,

when they are treated independently. The noise strength or phase diffusion Dϕ relates

directly to the number of phase slips, that occur while swimming.
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In the simulations presented here, a Chlamydomonas cell has two independent flagella

with prescribed phase speeds ϕ̇ = ω with additional independent noise on the left and the

right flagellum. When the two flagella have different phase speeds due to independent

phase fluctuations, the cell body changes orientation and translational speeds change,

thus leading to different net translations perpendicular to the swimming direction after

a period of the flagellar beat. We performed 300 simulations with different seeds for

the random number generator. Figure 5.3 shows sidewards motion of a single cell due

to active flagellar fluctuations as gray shade.

Additionally, figure 5.3 shows sideward motion due to hydrodynamic interactions

of two Chlamydomonas cells that swim next to each other at an initial distance of

d = 30µm in the swimming plane and the effect of thermal diffusion of a passive

particle with the same friction as the Chlamydomonas cell. See section 2.2.4 for how

simulations of two interacting Chlamydomonas’s are performed. The thermal diffusion

coefficient is obtained by the Einstein relation Dd ≈ ΓyykBT .

We conclude that active fluctuation have a strong impact on the swimming path of

Chlamydomonas. The net translation perpendicular to the swimming path due to active

fluctuations is similar to the one caused by direct hydrodynamic interactions. The effect

of thermal diffusion is also at the same range.

5.4 Summary

In this chapter, we presented a description of the flagellar beat as noisy Hopf oscillator.

We identified two independent effective noise contributions, one for the phase, the other

for the amplitude degree of freedom of the flagellar beat. We found that active flagellar

phase fluctuations are much larger than thermal noise and that amplitude fluctuations

are correlated.

Using the determined noise strengths, computer simulations were performed to in-

vestigate the effect of noise on flagellar swimming paths of a sperm cells and Chlamy-

domonas, which results in noisy swimming with effective diffusion, resulting in displace-

ments that are comparable to the effect of hydrodynamic interactions.
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6
Summary and outlook

In this thesis in theoretical biological physics we addressed swimming and synchroniza-

tion of flagellated swimmers by investigating three questions:

• What are the flow fields generated beating cilia and flagella?

• In turn, how do external flows feed back on shape and speed of the flagellar beat?

• How does the feedback loop of flagella-generated flow and flow-induced load re-

sponse of the flagellar beat orchestrate flagellar synchronization in the model or-

ganism Chlamydomonas?

6.1 Summary of our results

Dynamic flow signatures of flagellated swimmers. In chapter 2 we investigated

flagellar swimming of microswimmers with a prescribed flagellar beat. We characterized

the highly dynamic fluid motion that surrounds the microswimmer by projecting it

onto the leading order singularity, which allows for understanding its three dimensional

structure. Chlamydomonas is commonly considered a typical representative of a puller-

like swimmer and the sperm cell as a typical pusher-like swimmer. However, we showed

that both microswimmers alternate between pusher-like and puller-like swimming. We

estimated at which distance the oscillatory component of the flow will be attenuated

due to inertial effects.

External forces change shape and dynamics of the flagellar beat. In a close

collaboration with the experimentalists Christian Ruloff and Christian Wagner of the

Saarland University, we were able to directly measure the response of the flagellar beat

to external fluid flow. Specifically, we quantified the shape of the flagellar beat of
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Chlamydomonas cells that were held with a micropipette within a micro-fluidic cham-

ber. The cells were exposed to controlled external flows. These flows feed back onto

the shape and speed of the flagellar beat. In chapter 3, we described this load response

of the flagellar beat. For completeness, the experimental setup, designed and set up by

Christian Ruloff, was described. We then used a dimensionality reduction algorithm

to project the flagellar shapes on a two dimensional representation, allowing us to de-

fine an effective oscillator phase and amplitude. With this, an effective theory of the

flagellar beat was developed, which is calibrated by experimental shape data. Intra-

flagellar friction is included in the theoretical description. Furthermore, an amplitude

spring provides waveform compliance. By comparing the theoretical prediction with

experimental results, we explicitely revealed the load response of the flagellar beat to

external load. In section 4.1, we compared experimental results of synchronization with

an oscillating external flow with our theoretical predictions of analogous simulations,

providing quantitative agreement.

Flagellar synchronization through coupling at the flagellar base. In chapter

4 we investigated the mutual synchronization of the two flagella of Chlamydomonas.

The theoretical description developed in 3.2 was extended to allow for different phase

dynamics of the two flagella. We used this theoretical framework to explore different

synchronization mechanisms, some of which had been previously proposed in minimal

models [128, 130]. A prominent, putative synchronization mechanism is amplitude com-

pliance of oscillators [95]. Surprisingly, including an effective waveform compliance in

our theory, we found that in-phase synchronization is not stable, opposite to what is ob-

served in experiments. It is known that the proximal bases of both flagella are connected

by an elastic link and recent experiments emphasized a role of this basal coupling for

synchronization [104, 132]. To test the role of this basal coupling, we extended our the-

ory accordingly. We found that basal coupling without amplitude compliance leads to

unstable in-phase synchronization. The combination of amplitude compliance with elas-

tic basal body coupling, however, leads to robust in-phase synchronization as observed

in experiments. We suggest three non-invasive experiments for testing the theoretically

motivated hypothesis that flagellar synchronization is mediated by a combination of

waveform compliance and basal coupling.

6.2 Outlook on future work

Functional consequences of oscillating fluid signature. The flow signature of

a single microswimmer has profound consequences on the dynamics of the density dis-

tribution of many interacting mircroswimmers in a suspension [140, 112, 91]. As we

showed, the flow signature varies with the cyclic swimming stroke of the microswim-

mer. It would be interesting to see the consequence of this property on a suspension of

interacting agents.

The flows generated by microswimmers also affect the active mixing of tracer particles.

Experimental results of displacement probability distributions of tracer particles in a
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Chlamydomonas suspension have a Gaussian core and a robust exponential tails [79].

This is explained by the interplay of Brownian motion and advection of motile particles.

The oscillatory flow field that we found in chapter 2 indicates that tracer particles near

microswimmers do not propagate in simple loops as presented in reference [33], but

show also motion on a smaller scale, as observed in reference [79].

Of course, the Stokes doublet has major importance for interactions of a microswim-

mer with boundaries. From an evolutionary point of view, it might be favorable for

some swimmers, being it prey or predators, to swim “quite”, meaning that nearby flows

are as small as possible [69].

Generalization of our theoretical description of flagellar swimming and syn-

chronization. The theoretical description that is presented in 3.2 and used in 3.3 and

4 is kept as simple as possible. In fact, it is a linear theory that allows us to make pre-

dictions for small perturbations from a reference condition used for model calibration.

Within this framework, it is possible to use different parameters for describing the shape

of a microswimmer. It does not have to be necessarily flagellated, also ameboidal swim-

ming can be described. Non-planar beats can easily be implemented. Better knowledge

of the load-response of the flagellar beat can be used to include a more fine-grained

description of the internal processes inside the flagellum and data from experiments

with strong perturbations of the flagellar beat may be used to obtain knowledge for

constructing a non-linear waveform compliance.

Predictions for experiments of flagellar synchronization. From out theory, we

make specific suggestions that can be tested in future experiments, see section 4.2.6: a

clamped Chlamydomonas with external flow from the front, a cell in a medium with

different viscosity than Chlamydomonas’s normal condition or a cell swimming in a

suspension with added Calcium. One may also investigate for higher order synchro-

nization by placing two Chlamydomonas cells next to each other and investigate the

synchronization properties of the two pairs individually or with respect to each other.

Another mechanism that may play a role for synchronization is a intra-cellular chemical

signaling system that interacts with flagella. Different chemical concentrations may lead

to different stiffnesses of flagella or the distal striated fiber. The theoretical description

used in this thesis could very well be enhanced to consider such properties. Also, in

this thesis there were two identical flagella in Chlamydomonas. Further studies may be

conducted to allow for different mechanical properties of the cis and trans flagellum.

Role of noise. While hydrodynamic interactions have been theoretically predicted to

give rise to intriguing dynamical effects in collections of microswimmers, active flagel-

lar fluctuations may mask its effects. Large noise levels also inhibit the capability of

flagella to synchronize. The number of phase slips increases with the noise strength.

Furthermore, swimming paths are affected by noise and can be attributed to effective

noise, which opens up the possibility to perform stochastic search strategies such as

run-and-tumble motion [7, 99, 39].

Theories of motor control. The flagellar beat emerges from the complex interplay of

thousands of molecular motors and cross linker molecules that couple axonemal micro-

91



Chapter 6. Summary and outlook

tubules. Theories of motor control [117, 6, 82, 56] make predictions on how the flagellar

shape dynamics look like, and in principal, can make predictions on how the flagellar

shapes are changed due to external forces. Our directly determined susceptibilities of

shape deformations and phase speed changes can be used to compare those predictions,

thus testing the theories of motor control. For this aim, it could also be interesting to

resolve the load response of the flagellar beat in a more fine-grained manner, i.e. by

exposing clamped flagellated cells by uniform flows of different directions, or even shear

flow profiles.

Metachronal waves in cilia carpets. The insights that we got from this work can

further be used to shed light on the emerging dynamics in cilia carpets, which are

basically grids of many flagella on epithelial surfaces. They form metachronal waves,

i.e. spatio-temporal synchronization patterns with specific phase relations [115]. By

the inclusion of elastic or rotational degrees of freedom, one may predict patterns or

perturbation responses thereof in biological systems as well as artificial cilia carpets [29].
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AppendixA

Solving the Stokes equation

Stokes equation (1.10) describes the physics of fluids in which inertia is neglected against

viscous forces. First the multipole expansion is presented and how the flow field can

be represented by multipoles. Then resistive-force theory is presented, which describes

swimming of slender bodies approximately. Last, the fast multipole boundary element

method is briefly sketched.

A.1 Multipole expansion

Force multipole moments can be defined as in reference [118] and [73] via the surface

integral

f (n+1) =
1

n!

∫
S

dS rnf(r), (A.1)

where the integration goes over some surface S, f is a force surface density and rn is an

outer potency of a position vector r on the surface, thus rn is a rank n tensor. Force

multipole moments f (n+1) are rank (n + 1) tensors. Formally, we can write the force

density with respect to the force multipoles

f(r) =
∞∑
n=0

(−1)nf (n+1) · ∇nδ(r), (A.2)

with the contraction · over all Cartesian coordinates. Generally, products not written

with an explicit point mean outer products of tensors.

For testing the validity of (A.2), we first use the definition (A.1) and insert equation

(A.2) and see, if we can reproduce F(n).

f (n+1) =
1

n!

∫
S

rn
∞∑
m=0

(−1)mf (m+1) · ∇mδ(r)dr

=
∞∑
m=0

1

n!
f (m+1)(−1)m

∫
S

rn∇mδ(r)dr∫
S

rn∇mδ(r)dr =


m = n n!(−1)n

m > n 0

m < n m!(−1)m
∫
S rδ(r)dr = 0


= f (n+1)

(A.3)

95



Appendix A. Solving the Stokes equation

We can insert the formal equation (A.2) into the general solution of the Stokes equa-

tion (1.12) to obtain the flow field as a function of force multipoles

u(r) =

∫
dV T(r)f(r)

=

∞∑
n=0

(−1)nf (n+1) ·
∫
dV T(r)∇nδ(r)

(A.4)

n-fold application of partial integration yields

u(r) =

∞∑
n=1

(−1)n∇nT(r) ◦ fn+1 (A.5)

uf (r) is the velocity field that is generated by an exerted force density f . Since the

Taylor expansion was done at a distant point, the first terms are a good approximation

of the flow-field that is far away from the origin. The more terms are used, the more

accurate are the resulting flow-fields near the force density.

These equations are valid for a force multipoles that are evaluated at the origin

r′ = 0. Generalizations to multipoles with a distinct origin are straightforward, by

using ri → ri − r′i in equation (A.1) and δ(r)→ δ(r− r′) in equation (A.2).

A.2 Resistive-force theory

Resistive-force theory is a simple approximation for describing hydrodynamic properties

of moving slender objects. Global hydrodynamic interactions are not considered. It

is assumed that if an object moves, it feels a force, which is linearly coupled to the

components perpendicular and parallel to its surface, anisotropically. This is shown in

figure A.1.

Figure A.1: Friction anisotropy for the Resistive-Force Theory. A line, moving from left

to right is shown and its velocity as a vector as well as its contributions parallel and

perpendicular to the line element. Right: The resulting force vector is tilted because the

perpendicular friction is larger than the parallel one.

In the physics of microswimming, usually the method of Gray & Hancock [50] is used.

Given the dynamics of the tangent angle ∂tψ(s, t), as described in section 2.1.1, it is
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possible to calculate the line density f (s, t) of the force, acting on the flagellum by using

resistive-force theory

f (s, t) = ζ‖v‖ (s, t) + ζ⊥v⊥ (s, t) (A.6)

where v‖ is the component of the velocity, which is parallel to the flagellar shape, thus

the projection onto the tangent field t (s, t), and v⊥ is the projection of the velocity

field onto the normal field n (s, t).

v‖ (s, t) = (v (s, t) · t (s, t)) t (s, t)

v⊥ (s, t) = (v (s, t) · n (s, t)) n (s, t)
(A.7)

The product with the dot means scalar product of vectors. For a bending shape that is

clamped at one side, the velocity profile with the resulting resistive force line density is

shown in figure A.2.

Figure A.2: Velocity distribution and force density with resistive-force theory. An example

shape of a sperm cell is shown with its velocity profile as blue arrows and the resulting

force line density due to viscous friction.

A.3 Fast multipole boundary element method

Here, we sketch key concepts of the fast multipole boundary element method. For a

detailed exposition, the reader is referred to Liu [83].

The fast multipole boundary element method can be used to solve either two or three

dimensional problems of the form

∇2φ+ f = 0, (A.8)

where f is a known function in the domain V and the following boundary conditions

are considered.

φ = φ̄ on Sφ,

q =
∂φ

∂n
= q̄ on Sq,

(A.9)
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Appendix A. Solving the Stokes equation

Figure A.3: Spatial discretization in the fast multiple boundary method. (a) Two dimen-

sional space is filled with a one dimensional boundary. Starting with one square, determine

if a boundary is inside it. If so, divide the square into four equally sized squares filling all

of the large square. For each new, smaller square, that procedure is repeated any number

of iterations. (b) Space that is discretised as in (a) can be represented as a tree structure,

in which every node has either zero or four nodes.

with the outward normal n of the boundary S and Sφ ∪ Sq = S. If a fundamental

solution G(x,y) for A.8 exists, we can define F (x,y)) = ∂G(x,y)
∂n(y) . It is now possible to

write the integral formulation of potential problem

c(x)φ(x) =

∫
S

dS(y) [G(x,y)q(y)− F (x,y)φ(y)] +

∫
V

dV (y)G(x,y)f(y), ∀x ∈ S.

(A.10)

After discretising, we arrive at a system of linear equations

Fφ = Gq

⇒ Aλ = b.
(A.11)

The second equation is obtained by switching columns in between the matrices F and

G, thus λ being a vector with mixed components from φ and q. Solving this matrix

with the conventional boundary element method requires O(N3) operation with the

number N of discretization points, because the resulting matrices are dense. With

the fast boundary element method, the complexity of the algorithm can be reduced to

O(N lnN).

The fundamental reason for this to be possible is that we can expand the Green’s

function at the expansion point yc

G(x,y) =
∑
i

Gxi (x,yc)Gyi (y,yc). (A.12)
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A.3. Fast multipole boundary element method

With this expansion we are able to write∫
Sc

dS(z)G(z0, z)q(z) =
1

2π

∞∑
k=0

Ok(z0 − zc)Mk(zc),

=
1

2π

∞∑
l=0

Ll(zL)Il(z0 − zL),

Mk(zc) =

∫
Sc

dS(z) Ik(z − zc)q(z),

Ll(zL) = (−1)l
∞∑
k=0

Okl(zl − zc)Mk(zc).

(A.13)

The first expansion is called multipole moment expansion, the latter is called local

expansion. The basis functions are polynomials Ik(z) = zk

k! and Ok(z) = (k−1)!
zk

. Mk

are called moments and Ll is called moment-to-local translation. Another important

equation is the local-to-local translation

Ll(zL′) =

p−l∑
m=0

Im(zL′ − zL)Ll+m(zL). (A.14)

The algorithm for solving potential problems with the fast multipole boundary ele-

ment method is as follows.

Discretization. The surface of the object has to be discretised. In three dimensional

problems, a two dimensional triangulated surface is provided. Example surfaces are

shown in figure 2.2.

Tree structure determination. A bounding cube is created that contains all of

the object’s discretization points. This cube represents the root of the tree structure.

The cube is now separated in the following way. If more than a prescribed number

of discretization points is inside the cube, it is divided into eight equally sized cubes.

Those cubes are child nodes to the cube that contains the cubes. For each cube that

procedure is repeated. See figure A.3 (a) for an example in two dimensions, and figure

A.3 (b) for the resulting tree. In the following, the cubes are called cells.

Upward pass. For all cells, the moments are computed. First the multipole expansion

moments Mk are computed for the points inside the leave cells, then the moment to

moment translation

Mk(z
′
c) =

k∑
l=0

Ik−l(zc − z′c)Ml(zc) (A.15)

is applied to translate the moments to the next higher cell in the tree structure.

Downward pass. The local expansion coefficients Ll are computed at level two of

the discretization tree. Those are passed downward to all children via local-to-local

translation, equation (A.14).

99



Appendix A. Solving the Stokes equation

Evaluation of the integrals. The integral A.13 is evaluated with the help of mo-

ments, moment-to-local and moment-to-moment translations.

Iterations of the solution. An iterative method can be used to solve the eigenvalue

problem (A.11), such as Arnoldi-iteration. The unknown vector λ is updated and the

algorithm is continued at the upward pass, if the solution is not converged within a

given tolerance.
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AppendixB

Linearized Navier-Stokes equation

The flow-field, that is exerted by an oscillating point force, is derived. In the first part,

the underlying hydrodynamic equations are justified. In the second part the case of an

oscillating sphere is worked on. Then the limit to vanishing radii is made. At the end,

the relation to the greens function of the linearized Navier Stokes equation is shown.

B.1 Linearized Navier-Stokes equation

The treatment in this section is conform with [55].

The Navier-Stokes equation has the form

ρ (∂tu + u · ∇u) = −∇p+∇2u, (B.1)

with the density ρ, flow field u and pressure p. We introduce the following dimensionless

quantities, by stating that the timescale is independent of the velocity scale.

t =

∼
t

ω
,

r = l
∼
r,

u = U
∼
u,

p =
∼
p
ηU

l
+ p∞.

(B.2)

Here, we introduced a pressure at infinity p∞, a time scale ω−1, spatial scale l and

a velocity scale U . Then, equation (B.1) can be rewritten in terms of dimensionless

quantities,

Rer∂∼
t

∼
u + Ret∼u ·

∼
∇∼u = −

∼
∇∼p +

∼
∇

2∼
u,

Rer =
l2ωρ

η
,

Ret =
lUρ

η
.

(B.3)

Ret and Rer are the Reynolds numbers for translational and oscillating effects, re-

spectively1. When considering an oscillating object, that performs little net propulsion,

1For microswimmers, that swim very slowly by means of an oscillatory shape change, it is reasonable

to assume a vanishing translational Reynolds number while considering a non-vanishing oscillatory

Reynolds number Rer
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Appendix B. Linearized Navier-Stokes equation

it is reasonable to set Ret = 0, while having non zero Rer. Doing so in equation (B.3)

and back transformation to dimension afflicted quantities leads to the linearized Navier

Stokes equation.

ρv̇ = −∇p+ η∆u (B.4)

B.2 The case of an oscillating sphere

The explanations in the following two sections follow [74]. A solution to the linearized

Navier-Stokes equation is presented for the case of a translationally oscillating sphere.

Be the velocity of a sphere v = v0e
−iωt.

Since the rotation of gradients vanishes, rotating equation (B.4) results in

∂t(∇× u) = η∆(∇× u) (B.5)

The continuity and incompressibility of the fluid leads to the fact, that the velocity

field can be written as a rotation u = ∇ × c with the axial Vector c, which can be

represented by a cross product of two polar vectors. The following ansatz for the

velocity field is chosen:

u = ∇× c

= ∇× (g′(r)n× v)

= e−iωt∇× (∇g × v0)

(B.6)

By using Lagrange’s formula ∇× (∇× c) = ∇∇c−∇2c, the rotation of the flow-field

can be expressed as

∇× u = −∆(∇× gv) = −∆(∇g × v) (B.7)

which can be inserted into (B.5), and time derivation can be performed.

(iω∆ + η∆2)(∇g × v0) = 0

∇(iω∆g + η∆2g) = 0

iω∆g + η∆2g = const.

(B.8)

The second equation holds, because u0 is constant. The constant in (B.8) is chosen

to be zero, due to the boundary condition of the velocity field and all its derivatives to

be zero at infinity.

We need an expression of ∂rg, for obtaining the velocity field, therefore obtaining a

solution for ∂rg is sufficient to obtain the flow field (B.6). If we choose the following

ansatz, exploiting that g only depends on the radial direction

∆g =
1

r2
∂r
(
r2∂r

)
g = a

eikr

r

⇒ ∂rg = a
eikr

r2

(
r − 1

ik

)
+

b

r2
,

(B.9)

102



B.3. The small radius limit

we can determine the constants a and b with the boundary condition, that the velocity

on the sphere surface must be the same as the velocity of the sphere u(r = R) = u.

a = − 3R

2ik
e−ikR,

b = −R
3

2

(
1− 3

ikR
− 3

R2k2

)
.

(B.10)

B.3 The small radius limit

We will execute the small radius limit of the previous solution for an oscillating sphere,

equation (B.9) with (B.6). We can write the flow field as a function of space and time,

parameterized by the radius R of the sphere and the amplitude of the velocity v0. We

use Stokes Law to obtain the force acting on the sphere, assuming that the extension of

the oscillations are small compared to the positions, at which we evaluate the flow field.

u = uR,u0(r, t)

f(t) = 6πηRu0e
−iωt = f0e

−iωt

u0 =
f0

6πηR

(B.11)

Although Stokes law is valid for vanishing Reynolds number, we assume its validity here

as well, since we expect corrections to the Stokes equation to happen at a distance of

the point force.

With equation (B.11) into (B.6), we find a relation between the amplitude of the force

and the flow field. This relation can be used to take the limit to small radii. We then

obtain the flow field that is exerted by an oscillating point force.

uf (r, t) = lim
R→0

e−iωt

6πηR
∇× (∇× f0g) (B.12)

When using appropriate abbreviations, the flow field, that is exerted by an oscillating

point force, with f0 = (1, 0, 0) can be expressed as

vx =
Ee−iωt

8πηr

[
(1− iD)i+ (1 + 3iD)

x2

r2

]
,

vy =
Ee−iωt

8πηr
(1 + 3iD)

xy

r2
,

vz =
Ee−iωt

8πηr
(1 + 3iD)

xz

r2
,

E = e(i−1) r
δ ,

D =

(
δ

r

)2 [ 1

E
− 1− (1− i)r

δ
− (1− i)2

(r
δ

)2
]
,

δ =

√
2η

ρω
.

(B.13)
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Analogous expression are obtained with forces f1 = (0, 1, 0) and f2 = (0, 0, 1). Due

to the linearity of the linearized Navier-Stokes equation (B.4), velocity fields can be

linearly superposed, and the flow field of arbitrary oscillating forces f = (fx, fy, fz) =

fxf0 + fyf1 + fzf2 can be obtained, which allows us to write

u(r, t) = G(r, ω)fe−iωt

Gij =
E

8πηr

[
(1− iD)δij + (1 + 3iD)

rirj
r2

] (B.14)

Note that the Green’s function G is not explicitely time dependent. As shown in the

next section, this is a valid property of G.

B.4 Greens function

It is shown that the Green’s function for the hydrodynamics of oscillating force densities

can in fact be written as a function that does not depend on time, although general

time dependent motion would enforce explicit time dependence of G.

Equation (B.4) is a linear equation, thus a Green’s function G exists, such that Gijf0j

solves the inhomogeneous linearized Navier-Stokes equation:

ρu̇(r, t) +∇p(r, t)− η∆u(r, t) = f0δ(r, t) (B.15)

Let us consider the problem of a force density f(r) on the time varying surface S(t)

of a body.

u(r, t) =

t∫
−∞

dt′
∫

S(t′)

dS Gij(r− r′, t− t′)fj(r′, t′) (B.16)

say, this body performs an oscillation, that is small compared to the distances at which

we want to evaluate the flow field: r′ � r. The movement can be written as: f(r, t) =

f(r)e−iωt.

u(r, t) =

t∫
−∞

dt′ Gij(r, t− t′)
∫

S(t′)

dS fj(r
′, t′)

=

t∫
−∞

dt′ Gij(r, t− t′)
∫

S(t′)

dS fj(r)e−iωt
′

=

t∫
−∞

dt′ Gij(r, t− t′)Fje−iωt
′

(B.17)

The integral can be decomposed into two integrals with the limits
∫ t
∞ =

∫∞
−∞−

∫∞
t .

The second term vanishes, because forces are not propagated backward in time, or in
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B.4. Greens function

formulas: Gij(r, t) = 0, for t < 0. It follows, that inside the time integral the time can

be translated arbitrarily, and time reflections may occur.

u(r, t) =

∞∫
−∞

dt′ Gij(r, t− t′)Fje−iωt
′

=

∞∫
−∞

dt′ Gij(r, t′)Fjeiωt
′
e−iωt

=
∼
Gij(r, ω)Fje

−iωt

(B.18)

which is the same expression as the first equation of (B.14) for the far field.
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Hydrodynamic friction

C.1 A passive particle

In Stokes flow, forces and velocities depend linearly on each other due to the linearity

of Stokes equation. A spherical particle that translates with the velocity v exerts the

force

F = ζtv

ζt = 6πµa
(C.1)

on the surrounding fluid, with translational friction coefficient ζt. Equation (C.1) is

called Stokes law for a translating sphere. The radius of the sphere is a and the sur-

rounding medium has viscosity µ. A very similar law exists for rotational movement ω

that leads to a torque

τ = ζrω

ζr = 8πµa3
(C.2)

with the rotational friction coefficient ζr.

If the immersed particle is not a sphere, we need to take into account that an applied

force at the particle may induce an angular motion and an applied torque may lead to

a velocity. With composite vectors U = (v,ω) and P = (F, τ ), the friction ζ can be

expressed as a 6x6-matrix and couples forces and velocities by

P =

(
ζtt ζtr

ζrt ζrr

)
U . (C.3)

Here, ζtt relates the translational quantities F and v to each other, ζrt relates the

rotational movement ω to the translational force F and so forth.

Generally, the friction matrix ζ = ζ (S) depends on the shape S of the particle. Just

for very few cases, analytic expressions for ζ are available. A useful formula for the

friction of a prolate as well as a oblate ellipsoid is derived by Perrin [98].

C.2 Multiple Particles

When multiple particles are immersed into the fluid, their movements will affect each

other by means of hydrodynamic interactions. This can be elegantly expressed in

a hydrodynamic friction matrix Z, when we define the multi particle velocity V =
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(U1, . . . ,Un) and the multi particle force F = (P1, . . . ,Pn) for an immersion with n

particles, with composite velocities U i = (vi,ωi) and P i = (Fi, τ i)

F = ZV

Z =


ζ11 ζ12 · · · ζ1n

ζ21 . . .
......

ζn1 ζn2 · · · ζnn

 .
(C.4)

Now, ζij describes hydrodynamic interactions between particle i and j. Those inter-

actions are different for different spatial configuration of the particles. That means,

if another particle k, has a different positions, the hydrodynamic interactions ζij will

change. Self couplings ζll, that are interpreted as in equation (C.3) (ζij ∈ R6×6), will

change, too.

There are different methods for computing approximations to the friction matrix

Z, like the method of reflection [55], which is an iterative method that converges to

the physical solution, or the Rodne-Prager approximation, which is an instance of the

method of reflection with just two iterations.

In this work I will generate friction matrices with the help of the fast multipole

boundary element method, as described in appendix A.3.

C.3 Generalized coordinates

Expressing the dissipation rate, equation (2.19), in terms of a discretized surface and in

terms of a linearly related set of coordinates, such as the generalized coordinates intro-

duced in section 4.2.1, gives us a computational recipe for calculating friction matrices

in terms of those coordinates.

Be S(t) a surface that is triangulated into N triangles, see section 2.1.2. The positions

of the triangle centers are collected in a mesh position vector S = (r1, . . . , rN )T . The

boundary condition is then represented as Ṡ = (v(r1), . . . ,v(rN ))T . The force surface

density can be represented similarly: fS = (f(r1), . . . , f(rN ))T . It is then possible to

find a linear relation L that maps any generalized velocity q̇ into a mesh velocity Ṡ and,

since Stokes flow is a linear equation, we can also find a linear map K between mesh

velocities Ṡ and force surface density collection fS .

Ṡ = L · q̇
fS = K · Ṡ

(C.5)

Here, L is a 3N ×M matrix, where M is the number of generalized coordinates, thus

the number of components of q̇. With this, the dissipation rate R can also be written

as

R = ṠT · fS = ṠT ·K · Ṡ
= q̇T · LT ·K · L · q̇
= q̇T · Γ · q̇

(C.6)
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C.3. Generalized coordinates

Γ = LT ·K · L
Γij = LTiγKγβLβj = LTi · Kj

(C.7)

Latin indices are used as indices for the generalized coordinates whereas Greek symbols

describe the indices that refer to specific components inside the mesh. The change of

a generalized coordinate δqi corresponds to a velocity profile Li on the triangulated

surface. This in turn is imposed by traction force Ki.
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Data analysis methods

D.1 Nematic filter

The nematic filter is an edge detection algorithm that we use to track flagellar shapes

from experimental data [90]. It takes an image I : R2 → R and converts it into a

nematic field, that we express as a nematic strength field |n| : R2 → R and a directional

field φ : R2 → R. First, nemats and a possible representation of it are introduced. Then

formulas are presented for computing a nematic field from an image.

D.1.1 Nemat

A nemat is a mathematical structure, which can be thought of a vector without an

arrow head. Given a nemat, we are given a direction, but without a sign. Thus, a

rotation of a nemat by an angle of π leads to the same nemat. This property can be

fulfilled by a traceless symmetric matrix

n =

(
nxx nxy
nxy −nxx

)
= |n|

(
cos(2φ) sin(2φ)

sin(2φ) − cos(2φ)

)
!

= R(π)nR(−π) (D.1)

The nemat in two dimensional can be described by two quantities: The orientation

φ, which can be obtained by φ = 1
2 arctan

(
nxy
nxx

)
, and its length |n| =

√
n2
xx + n2

xy.

D.1.2 Nematic correlation

Figure D.1: Nematic transformation. For position r the intensity field I is evaluated in the

environment U . The intensities are weighted with a nematically deformed Gaussian kernel

g, see equation (D.2).

An edge is a region of similar intensity of a scalar field with an aspect ration that

differs from one. Thus, it can be obtained by a weighted correlation, in the following
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way

nxx(r) = I(r)

∫
d∆r g(∆r) sin(2φ∆r)I(r + ∆r)

nxy(r) = I(r)

∫
d∆r g(∆r) cos(2φ∆r)I(r + ∆r)

g(r) = exp−
r2

λ2

(D.2)

The image I is represented as a function of two dimensional space. The image is

convoluted with a quenched Gaussian kernel g(∆r) · (sin(2π∆r), cos(2π∆r)), such that

noise due to pixelation or other dirt is removed and the nematic property is fulfilled.

D.2 Principal-component analysis

Principal-component analysis (PCA) is a method for classifying a dataset by a reduced

number of parameters. It is also called a dimensionality reduction method, because the

state of the system can be described by a point in a state space with lower dimensionality.

An interesting application of PCA is the classification of shapes, such as flatworms, cells

within tissues or cilia and flagella [134]

Figure D.2: Principal component analysis of the mean shape.

We can write m observations of n features of a system as a data matrix ∆ ∈ Rn×m,

which can be decomposed via singular-value decomposition.

∆ = U∗SV (D.3)

U and V are unitary matrices, and S is a diagonal matrix. An advantage of this

decomposition is, that for many systems, many entries of S are very small, letting us

neglect their contributions. Equation (D.3) in index notation reads as

∆ij = U∗ikSklVlj = S∗ilVlj . (D.4)

For an exact treatment, the summation over l must be done for l = 1, . . . ,m, but the

ordering of the components of S and the generalized rotations U and V are in such a

way, that we are allowed to consider less terms for a similarly accurate description. The

number of modes to consider is specific to the problem at hand and the accurateness

obliged.
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D.3 The quality of the limit-cycle projections of experi-

mental data

Figure D.3: Comparison of tracked shape and shape projections on two shape modes. (a)

For three different flow speeds exemplary shapes are shown with the trajectories of the

flagellar tip below it. (b)
〈

(ψ)
2
〉

is a measure for the shape variance. Top: We see that for

two modes (m = 2) about 90% of the shape variance can be reproduced. Bottom: With

two modes, it is possible to map about 80% of the shape deformations due to external load.

The quality of the approximation of the projected shapes ψ(m) onto the tracked shapes

ψ is quantified by comparing the variances

P (0)
m =

〈(
ψ(m) − ψ0

)2〉〈
(ψ − ψ0)2

〉 (D.5)

Similarly, we quantify to what extent the projected shape changes capture the load-

response

P (u)
m =

〈(
ψ

(m)
u=u0 − ψ

(m)
u=0

)2
〉

〈
(ψu=u0 − ψu=0)2

〉 (D.6)

with the number of modes m that are used to approximate the shape. For m → ∞
the reproduced shape would be identical to the originally tracked ones, thus P

(i)
∞ → 1.
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Figure D.3 shows the projection qualities for low values of m. Considering just two

modes, faithfully represent the measured shape and capture the load-response of the

flagellar beat.
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AppendixE

Adler equation

The Adler equation is derived for the case of two weakly interacting oscillators L and R

with generic coupling. The oscillators intrinsic frequencies are ωL and ωR are coupled

by generic coupling function d and b. The dynamics of the phases ϕL and ϕR is follows

ϕ̇L = ωL + d(ϕL, ϕR)

ϕ̇R = ωR + b(ϕL, ϕR)
(E.1)

For simplicity and because it holds for the theoretical description in section 4, we assume

ωL = ωR. We also set b(ϕL, ϕR) = d(ϕR, ϕL), meaning that interchanging ϕL with ϕR
leads to the same equations. We write the dynamics of the phase lag δ = ϕL − ϕR as

follows.

δ̇ = d(ϕL, ϕR)− d(ϕR, ϕL) (E.2)

and decompose the coupling term d into Fourier modes since it is periodic in the phases

ϕL and ϕR.

d(φ1, φ2) =

∞∑
n=0

Dn(ϕ1) sin(nϕ2) + En(ϕ1) cos(nϕ1)

Dn(ϕ) =
∞∑
m=0

D′nm sin(mϕ) +D′′nm(ϕ) cos(mϕ)

En(ϕ) =

∞∑
m=0

E′nm sin(mϕ) + E′′nm(ϕ) cos(mϕ)

(E.3)

Let’s now consider just the first two Fourier mode and plug those into equation (E.2).

δ̇ ≈ A (sin (ϕL)− sin (ϕR)) +B (cos (ϕL)− cos (ϕR))

+ C (sin (ϕL) cos (ϕR)− cos (ϕL) sin (ϕR))

= 2A cos (ϕ̄) sin

(
δ

2

)
− 2B sin (ϕ̄) cos

(
δ

2

)
+ C sin (δ)

(E.4)

The following shorthands were used: A = E′01 −D′′10, B = E′′01 − E′′10, C = E′11 −D′′11,

ϕ̄ = ϕL+ϕR
2 .

The crucial assumption for the Adler equation to hold is that the coupling is weak,

which means that the dynamics of the phase ϕL and ϕR or equivalently ϕ̄ are much

faster than the dynamics of the phase lag δ. We apply that assumption to equation

(E.5) by treating ϕ̄ and δ as independent variables and averaging out the fast dynamics
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˙̄ϕ. Thus, the first two terms of equation (E.5) vanish and the famous Adler equation

comes out.

δ̇ = −λ sin(δ) (E.5)

If the synchronization strength λ = −C is positive, there is stable in-phase synchro-

nization between the two oscillators, if λ < 0, in-phase synchronization is unstable but

anti-phase synchronization is stable.
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Sensitivity analysis for computational re-

sults

F.1 The distance function of basal coupling

As we see in section 4.2.5, the synchronization strength λ depends on the details of

the distance functions dL and dR. It is not obvious if the distance functions di should

depend on the amplitude Ai or not. Figure F.1 shows the synchronization strength for

different offset ϕ0 and basal spring stiffnesses kb for two different variants of the distance

function db = dL + dR.

Figure F.1: Parameter scans for the synchronization strength for two different distance

functions. (top) Amplitude dependent distance function. (bottom) Amplitude independent

distance function. (left) clamped cell. (right) freely swimming cell.

We observe that the dependence of the synchronization strength λ on the offset ϕ0

and the basal coupling stiffness kb is qualitatively similar, but larger values of kb are

necessary to obtain the same values for λ for the case of the distance function that is

independent of the amplitude.
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F.2 Computed synchronization strength for alternative

waveform

Here, we compare the synchronization properties of a cell with different flagellar shapes.

The synchronization strength is shown in figure F.2, analogously to figure 4.7. The

qualitative features of the synchronization strength match well with the shape data

used in section 4.2.5. We observe that the phase offset ϕ0 is shifted, which is due to

a phase shift from using a different set of shape modes. Note also that quantitative

agreement would be obtained by using values for the basal coupling constant kb double

as large as was used for the cell from section 4.2.5.

Figure F.2: Distance function parameter scan for different shape data. (left) freely swim-

ming cell. (right) clamped cell.

F.3 Insensitivity of computed load-response to ampli-

tude correlation time

Simulation as in section 3.3.2 were performed, in which external flow is imposed on a

clamped cell, but with different values of the amplitude correlation time τA, as well as

phase dependent τA(ϕ). Except for very low values of τA ≈ 1 ms, the susceptibilities

χϕ and χA are qualitatively similar and within a range of 80% with respect to the case

τA = 5.9 ms.
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Figure F.3: Low sensitivity of load-response to change of amplitude correlation time. The

load-response as in section 3.3.2, figure 3.10 for different as well as for phase dependent

values of the amplitude correlation time τA.
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List of Symbols

A amplitude of the flagellar beat

α relative orientation of the force dipole with respect to microswimmer orientation

A0 equilibrium value of the flagellar amplitude, see section 3.2.5

b1 length scale of displacements of basal bodies from their equilibrium distance d0,

see equation (4.7)

βi flagellar shape score coefficient to mode ψi

Ci elastic force from basal body coupling, see section 4.2.5

δ phase difference, or phase lag ϕL − ϕR

∆ fluid strain, symmetrized spatial derivative of the flow vector field

dL, dR distance functions of basal coupling, see equation (4.7)

d0 equilibrium distance from flagellar anchoring point to basal-body center, see

equation (4.7)

DA amplitude diffusion, see section 5.1

Dϕ phase diffusion, see section 5.1

δs inertial screening length, see equation (2.14)

η energy conversion efficiency, see section 3.2.3

ε force dipole planarity, see equation (2.11)

f force surface density

F force acting on a microswimmer

ϕ flagellar phase

f frequency of the flagellar beat

f (2) force dipole, see equation (2.10)

fs force dipole strength, see equation (2.11)

u frequency of external periodic flow

f (n) force multipole of order n, see equation (1.13)
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Γ friction matrix in generalized coordinates

G Green’s function for the Navier-Stokes equation, see equation (2.15)

Γ(h) hydrodynamic friction matrix in generalized coordinates

Γ(i) intra-flagellar friction matrix in generalized coordinates

kA amplitude spring stiffness, see equation (3.19)

kb elastic coupling constant between basal bodies of Chlamydomonas

Kt, Kϕ flagellar curvature, see section 3.3.1

λ synchronization strength of a system of two coupled oscillators

µ dynamic viscosity

Ω orientation of microswimmer

P composite vector of force and torque

P vector of generalized forces due to friction

p pressure field

Π stress tensor, see equation (1.6)

ψ tangent angle of the flagellar shape, see equation (2.1)

ψ0 mean bending of the flagellar tangent angle

ψi flagellar shape mode number i or principal mode

Q vector of generalized active forces

q state vector or vector of generalized coordinates, see section 3.2.1

QA flagellar amplitude constraining force, see section 3.2.4

Qϕ flagellar phase driving force, see section 3.2.4

q̇ref reference dynamics for the clamped cell, see equation (3.5)

ρ mass volume density

R energy dissipation rate, see section 2.4

R rotation matrix

Re Reynolds number, see equation (1.8)

s arclength
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σ force dipole symmetry, see equation (2.12)

S surface of microswimmer

T Oseen tensor, Greens function of the Stokes equation

θ protophase, periodic quantity, not necessarily proportional to time

t time

τ torque acting on microswimmer

τA amplitude correlation time, see equation (3.17)

U composite vector of velocity and angular velocity

u fluid flow field

u external flow speed on a clamped Chlamydomonas cell

u(n) flow field, generated by a force multipole f (n), see equation (1.14)

v velocity of microswimmer

ω angular velocity of microswimmer

ω mean frequency of the flagellar beat

ξA effective amplitude noise, contributes to active flagellar noise, see section 5.1

ξϕ effective phase noise, contributes to active flagellar noise, see section 5.1

χA linear susceptibility of flagellar amplitude to external flow speed, see section 3.3.2

χϕ linear susceptibility of flagellar phase speed to external flow speed, see section

3.3.2

y generalized coordinate for translation in the model of synchronous swimming,

see section 3.2

ζ grand friction matrix, see section 2.1.4
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einer anderen Prüfungsbehörde vorgelegt.

Die Arbeit wurde am Max-Planck-Institut für Physik komplexer Systeme angefertigt
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