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Abstract

Recent research on the network modeling of complex systems has led to a
convenient representation of numerous natural, social, and engineered sys-
tems that are now recognized as networks of interacting parts. Such systems
can exhibit a wealth of phenomena that not only cannot be anticipated from
merely examining their parts, as per the textbook definition of complexity,
but also challenge intuition even when considered in the context of what
is now known in network science. Here, we review the recent literature on
two major classes of such phenomena that have far-reaching implications:
(a) antagonistic responses to changes of states or parameters and (b) coex-
istence of seemingly incongruous behaviors or properties—both deriving
from the collective and inherently decentralized nature of the dynamics.
They include effects as diverse as negative compressibility in engineered
materials, rescue interactions in biological networks, negative resistance in
fluid networks, and the Braess paradox occurring across transport and supply
networks. They also include remote synchronization, chimera states, and the
converse of symmetry breaking in brain, power-grid, and oscillator networks
as well as remote control in biological and bioinspired systems. By offering a
unified view of these various scenarios, we suggest that they are representa-
tive of a yet broader class of unprecedented network phenomena that ought
to be revealed and explained by future research.
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1. INTRODUCTION

Many systems in nature and society can be conceptualized as a collection of parts coupled through
a web of interactions and suitably modeled as a network. A network can be represented as a collec-
tion of nodes—e.g., particles, genes, or individuals—connected by links reflecting the interactions
between them. Two main lines of research have contributed to the study of such systems: re-
ductionist studies, focused on separating the parts to determine their individual properties; and
complex systems research, focused on the whole-system behavior. The emerging field of network
science owes its success to the recognition that collective behavior is largely determined by the
network of interactions between the parts. Substantial attention in this field has been dedicated to
the study of network structure alone and to efforts to attribute as much as possible of the observed
collective behavior to the properties of this structure. Attempts to infer the collective behavior
solely from the properties of the parts are prone to failure, and this has long been appreciated
in condensed matter physics and other fields, which nevertheless does not make those properties
unimportant. Here, we consider phenomena that depend on both the network structure and the
properties of the parts, and are thus determined by the interplay between the network structure
and dynamics.

The first part of this article focuses on scenarios in which the removal of resources from a
network—e.g., through the removal of nodes and/or links—can in fact improve network function
or performance. The notion that less can be more has been long appreciated in connection with
minimalism in architecture and arts, the paradox of choice in psychology, diminishing returns
in economics, calls to stop the seemingly endless gadget feature explosion, and even the rise of
microblogs such as Twitter. What is not widely appreciated (albeit common, as we argue) is that
a similar notion could govern complex networks, which in many cases have evolved to have more
(not fewer) nodes and links.

The key network property underlying such phenomena is that the equilibrium state sponta-
neously reached by a decentralized network is not necessarily the global optimum of the system.
Thus, even though the removal of resources constrains the solution space, which cannot improve
(and generally worsens) the optimum of the objective function, it can counterintuitively do so while
bringing the equilibrium state closer to the optimum. In the economics literature this mechanism
has been known for at least a century (1), and it now forms the basis of the Pigou–Knight–Downs
paradox, which describes scenarios in which investment in roads does not improve door-to-door
equilibrium speed because it incentivizes people to shift from public transportation to driving
(see Figure 1a). The mechanism was rediscovered in different contexts over the years, and by
the 1950s variants of it had been reported in the mainstream transportation literature (2, 3). In
transportation, the best-known formulation comes from the work of Braess, who in 1968 described
what is now known as the Braess paradox (4, 5). The paradox arises when the addition of an inter-
mediate road to a traffic network—which effectively increases its capacity—has the consequence
of increasing rather than decreasing the average travel time between origin and destination even
if the total number of cars remains the same (see Figure 1b). Related concepts have been explored
in computer science and operations research, where the difference between the equilibrium and
the optimum of the objective function (i.e., the travel time in the example just given) is often called
the price of anarchy (6).

This class of problems also admits a natural formulation in game theory, where they can be
formally related to social dilemmas, namely situations in which an agent profits from being selfish
unless everyone chooses to be selfish, in which case everyone loses. Indeed, in the example of
Figure 1b, it is the selfish routing (6) of the drivers, who seek to optimize their own travel time
with no regard to the travel time of the others, that causes the shift of the system to a less desirable
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Figure 1
Traffic paradoxes, where T = T(x) is the travel time as a function of the fraction of all users x taking the
particular path. (a) Pigou–Knight–Downs paradox, where, in equilibrium, all users take the lower path even
though the globally optimal solution would split traffic evenly. In this example, the path with fixed travel
time (top path) is often interpreted as public transportation, whereas the path with traffic-dependent travel
time (bottom path) can be interpreted as car roads. (b) Braess paradox, where all users take the marked
path through the T = 0 shortcut. In this case, global optimization of travel time requires the traffic to be
equally distributed between the top and bottom paths, which is achieved by removing the shortcut road. The
noncooperative routing causes the average travel time to increase from 0.75 to 1 in panel a and from 1.1 to 2
in panel b.

equilibrium characterized by a longer travel time. Once the shift has occurred, no faster route is
available to a driver no matter what individual choices the driver may make. In the literature of
noncooperative games (7), this scenario is known as a Nash equilibrium and is described as a stable
state in which no agent can gain from a unilateral change of strategy. In this language, the Braess
paradox emerges from the fact that the Nash equilibrium is not necessarily optimal, and thus a
capacity increase can further lower its fitness. As discussed below, the recent network literature
shows that analogous behaviors may be generic in many physical and biological networks, where
they give rise to a wealth of seemingly disparate phenomena.

The second part of the article centers on network phenomena that invoke coexistence of seem-
ingly incompatible properties or behaviors. One may figuratively argue that things that occur and
stay together must ultimately fit together. In networks, however, the verification of this principle is
far from obvious. For example, the time evolution of two isolated chaotic systems diverges even if
they are identical—owing to their inherent sensitive dependence on initial conditions—but when
weakly coupled, they can synchronize stably to the exact same trajectory, which may even be a
solution of their isolated dynamics (8). Using synchronization as a model process of behavioral
uniformity that can emerge from interactions, we discuss below a selection of phenomena that
seem implausible in the absence of detailed analysis.

Before proceeding, we note that although it is almost impossible to talk about collective behav-
ior without thinking of the notion popularized by Anderson that “more is different” (9), the ideas
covered here are closer in content to Watts’s notion that the common sense to which our intuition
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Figure 2
Mechanical analog of the Braess paradox, in which the removal of the linking string can cause the
equilibrium position of the weight W to rise. Figure based on Reference 11.

has been trained is not a valid scientific tool in the study of network systems (10). Watts argues for
the need of a form of “uncommon sense,” which a rigorous holistic network-based description that
integrates structure and dynamics would conceivably help provide. A key difference from Watts’s
description is that his examples are mostly in the context of social sciences—where a failure of in-
tuition can be partly attributed to unknowns—whereas the phenomena we describe here manifest
themselves in a form that is counterintuitive even when the mathematical description is assumed
to be known, exact, complete, and deterministic.

2. ANTAGONISTIC DYNAMICS

Consider a weight W supported by a system of two identical springs connected by a linking string,
and assume the setup includes two identical slack support strings, as shown in Figure 2. If the
linking string is cut, the support strings become taut and, contrary to the common-sense ex-
pectation, the weight can rise. This occurs because the removal of the linking string causes the
springs to go from a series configuration to a parallel configuration, prompting them to con-
tract. Indeed, initially each spring holds the entire weight W , leading to an equilibrium height
h = 2l0 + l� + 2 W

k = l0 + ls − δ + W
k , where k is the spring constant, l0 is the length of the indi-

vidual unstretched springs, l� is the length of the linking string, ls is the length of the individual
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support strings, and δ is the amount of slack the support strings have. After the removal of the
linking string, each spring holds only half of the weight W, which leads to an equilibrium height
h = l0 + ls + W

2k . It follows that the weight rises by �h = W
2k −δ when the linking string is removed,

which is positive if δ is chosen to be smaller than W
2k .

This behavior has long been known and was popularized in Reference 11. It can be regarded
as a mechanical network effect that is formally equivalent to the Braess paradox discussed above.
This mechanical analog illustrates both that the conditions underlying this paradox can occur
in disparate network systems and that the resulting effect can lead to a rich variety of otherwise
unrelated network phenomena. We now turn to network problems of significant current interest
that expand on these points.

2.1. Synthetic Rescues in Biological Networks

In living cells, the loss of biological function caused by the inactivation of a gene can sometimes
be compensated for by the inactivation of additional genes. This phenomenon, which has been
confirmed experimentally, was first predicted in Reference 12 in the context of metabolic networks
and can be seen as a biological analog of the Braess paradox. For concreteness, consider a single-
cell organism for which the biological function of interest is growth (i.e., reproduction) rate, and
assume that the cells are fully adapted to their environment, meaning that they maximize growth
rate under the given conditions. The knockout of otherwise active metabolic genes leads to the
inactivation of the associated metabolic reactions, to which the proteins coded by those genes
serve as catalysts. Following such a perturbation, the cells are generally no longer in an optimal
growth state. An optimal state may nevertheless be approached when certain additional genes
(hence metabolic reactions) are knocked out, which gives rise to the predicted synthetic rescue, as
illustrated in Figure 3.

As a minimal description of the phenomenon, we can use flux balance analysis (13) to model
the optimal growth state of the cell as a linear programming problem. In this problem, one seeks
to maximize the rate of a putative reaction vbio that models the overall biomass production (and
hence growth rate) under the constraints imposed by the stoichiometry of the metabolic network,
nutrient availability, thermodynamics, and any imposed reaction inactivation:

max
{vj }

vbio subject to
∑

j

Sijv j = 0 ∀ i and vmin
j ≤ vj ≤ vmax

j ∀ j , 1.

where Sij are the entries of the stoichiometric matrix and vj are the reaction fluxes. The suboptimal
response to the knockout of a gene can be modeled in its simplest form using the “minimization
of metabolic adjustment” hypothesis (14), which can be implemented as a quadratic programming
problem. The model identifies the available state v′ = (v′

j ) in the space of metabolic fluxes that,
under the additional constraint imposed by the gene inactivation, is closest to the preknockout
state v: min{v′

j } ||v′ −v||2 subject to constraints in the form of those in Equation 1. Thus, this model
effectively predicts that metabolic fluxes are rerouted mostly locally, whereas the new optimal state
could require a more global flux rearrangement. The rescue state can then be predicted by applying
the same quadratic optimization to the combined perturbation of the primary and rescue gene
knockouts. From a biological standpoint, the second knockout effectively precipitates adaptation
of the perturbed network that could in principle be eventually achieved by long-term adaptive
evolution (15).

An interesting potential application of this phenomenon is to the development of pairs of
antibiotic drugs that can select against resistant cells. Each gene knockout of a synthetic rescue
pair has the potential to inhibit growth when implemented in isolation, but one of them suppresses
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Figure 3
Synthetic rescue in a toy metabolic network with four compounds, M1, . . . , M4, where the width of the
arrows indicates the strength of the corresponding reaction fluxes and the shades mark the highest flux
pathways. The panels show the equilibrium metabolic state (a) prior to any perturbation, (b) after the
primary knockout, and (c) after the rescue knockout, as well as (d ) the optimal growth state after the primary
knockout. Adapted from Reference 12 with permission.

the impact of the other when applied concurrently. Thus, they serve as targets for antibiotic drugs
that would interact antagonistically (16), and previous research has shown that the combination of
two antagonistically interacting antibiotics will select against cells that have developed resistance
to the suppressor (17).

2.2. Metamaterials with Negative Compressibility

Although ordinary materials expand when tensioned, it has been shown that a material can be
designed to undergo a negative compressibility transition (i.e., a transition to a contracted phase)
in response to increasing tension (18). As in the case of other metamaterials, such a material is
engineered to gain its unusual property from its structure rather than composition. In other words,
this is a property of the underlying mechanical network, which can in fact be seen as a nontrivial
generalization of the spring-string system discussed above. To understand this generalization,
we can imagine the constituents of the material as consisting of four particles that interact with
each other through attractive forces, which are nevertheless nonlinear, allowing the system to be
bistable. When two stable states coexist, one generally corresponds to an expanded configuration
while the other corresponds to a contracted one. Ignoring dissipation for simplicity, each such
constituent is characterized by a potential of the form

V (x, y , h, F ) = Vx(x) + Vy (y) + Vz(y − x) + Vx(h − y) + Vy (h − x) + Vh(h) − Fh, 2.

where h is the total length and F is the applied tensional force (see Figure 4a). As F is increased,
the stable state corresponding to larger h first becomes marginally stable and then disappears. If
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Figure 4
Metamaterial exhibiting negative compressibility transitions. (a) Constituents before (left) and after (right) contracting in response to
increased tension. (b) Stress-strain projection of the hysteresis loop of the constituents as the applied tension is varied. The negative
compressibility transition, corresponding to a change from the configuration on the left to the configuration on the right in panel a, is
indicated in the figure by its initials. (c) Material formed by a square lattice of constituents, where the color code is the same as in panel
a and the white background indicates the extent of the effect. Adapted from Reference 18 with permission.

the system was initially in this extended state, it will then transition to the other stable state, which
corresponds to a smaller h.

Mathematically, this transition is determined by a bifurcation analogous to one observed for
the potential U (ξ , f ) = −ξ 3/3 + f ξ , where f is the tunable parameter. This potential has a
stable equilibrium point at ξ ∗ = −√

f and an unstable one at ξ ∗ = √
f for f > 0, has a single

(degenerate) equilibrium point at ξ ∗ = 0 for f = 0, and has no equilibrium point for f < 0.
Thus, as f is varied from positive to negative, the stable equilibrium point vanishes and the system
responds discontinuously. Physically, the disappearance of the occupied stable state is analogous
to the cutting of the linking string in Figure 2: It causes the inner particles in Figure 4a to move
closer to (and hence attract more strongly) the external particles, which is similar to the transition
from a parallel to a series configuration in the spring-string system. A key difference here is that
the process can be cycled by varying the tensional force, as shown in the hysteresis diagram of
Figure 4b.

The material itself can be formed by aggregating such constituents, as shown in Figure 4c
for a square lattice network. In the thermodynamic limit, the bifurcations undergone by the
constituents give rise to a transition between the corresponding extended and contracted phases,
which can be rigorously characterized at finite temperature using tools from statistical physics
(19). Such materials can find applications in the design of micromechanical controls and protective
mechanical devices, but they also suggest a more general principle to design metamaterials with
inverted responses that can in theory be applied not only to stress and strain but also to any pair
of thermodynamically conjugated variables.

2.3. Synchronization Improvement by Interaction Pruning

In the synchronization of coupled oscillators, a parallel with the Braess paradox has been estab-
lished in which the addition or strengthening of connections between oscillators has the adverse
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Figure 5
Desynchronization induced by line addition in a toy power grid governed by Equation 3. (a) Example system consisting of four
generators ( green) and four motor nodes (blue). A stable synchronous state exists for the network formed by the black lines, but
synchronization is lost upon addition of the red link. After this addition, the sum of the angle differences given by the relation
φi − φj = �ij violates the condition of being a multiple of 2π along some closed loops, meaning that the synchronization ansatz used to
derive the phases no longer holds. (b) Time evolution of the phases of the various nodes (color coded as in panel a), converging to a
synchronous state in the absence of the red link (left) and progressing to a desynchronous state after the link addition (right). Adapted
from Reference 20 with permission.

effect of removing a previously existing synchronous state. This possibility has attracted special
attention in connection with power-grid networks, where the addition of new line capacity for
power transmission could eliminate a phase-locked operating state among power generators and
motors in an AC network (20, 21). A minimal model to illustrate this effect is

φ̈i = Pi − α φ̇i −
∑

j

Kij sin(φi − φj ), i = 1, . . . , n, 3.

where both generator nodes (Pi > 0) and motor nodes (Pi < 0) are represented as damped
second-order phase oscillators, and Kij represents the network structure as well as the capacity of
the transmission lines (22, 23). Of special interest are the frequency-synchronized states satisfying
φ̇1 = φ̇2 = . . . = φ̇n at all times, and thus �ij = φi − φj = constant for all i and j .

This synchronization condition leads to equations of the form
∑

j Kij sin �ij = Pi , where �ij

is to be determined for given Kij and Pj . When such a solution for �ij exists, the resulting power
flows through the lines are Kij sin �ij, and they automatically respect the line capacities. A new
solution for �ij may exist if line capacities are increased (or, in particular, if new lines are added),
but therein lies the rub: For the actual state to exist, not only does a solution for each �ij have
to exist but also each phase angle φi has to be uniquely defined, and the latter is not guaranteed
when line capacities are increased even if the �ij solution continues to exist. That is, the set of
equations φi − φj = �ij (which must be simultaneously satisfied for every pair of nodes i and j
connected by a transmission line with nonzero capacity Kij) is no longer guaranteed to have a
solution. Indeed, as demonstrated in References 20 and 24, a capacity increase frequently induces
conflicts between the phases in this set of equations, which are reminiscent of the phenomenon
of geometric frustration as the conflicts necessarily occur along loops in the network.1 This effect
is illustrated in Figure 5 for a simple network of four identical generators (Pi = 1), four identical
motors (Pi = −1), and lines with identical capacity (Kij = 1.03 for any line with nonzero capacity).

1In the familiar case of geometric frustration in spin systems, not all pairwise interaction energies can be minimized simulta-
neously precisely because of geometric constraints similar to the ones considered here.
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In networks of diffusively coupled oscillators, which describe the dynamics of power generators
in the vicinity of their synchronization manifold (25), an analogous effect can be observed even in
the absence of any loops (26). The simplest such model reads ẋi = F(xi ) − σ

∑
j LijH(xj ), where

L = (Lij) is the Laplacian matrix representing the (possibly directed) network of interactions, and
the stability of a synchronous solution xi (t) = s(t) ∀i is determined by a master stability function
that often has a bounded stability region (27, 28). Accordingly, the system is synchronizable
for a wider range of the coupling strength σ when the nonidentically null eigenvalues of the
Laplacian matrix L are less scattered; the optimally synchronizable networks are those for which
these eigenvalues satisfy λ2 = . . . = λn. As shown in References 26 and 28, every network that
can be spanned from one of its nodes (a necessary condition for stable synchronization to be
possible) can also be converted into an optimally synchronizable network by removing edges or
reducing edge strengths. In particular, any unweighted oriented tree spanning the entire network
is an optimally synchronizable network. Therefore, starting from an arbitrary network that is not
synchronizable, one can always turn it into a synchronizable network by pruning the interactions
between oscillators (28).

Because such systems can have a bounded stability region, they exhibit a number of other
counterintuitive effects as a result of the nontrivial dependence of the eigenvalue spread on the
interaction network. For example, it has been shown that otherwise unstable synchronous states
can be stabilized by transiently uncoupling the oscillators (29, 30; see also 31–33). In different
work, it was shown that an otherwise nonsynchronizable network can become synchronizable not
only by removing nodes but also by adding nodes despite the resulting increase in the number of
eigenvalues that need to fit inside the stability region (34).

2.4. Control by Antagonistic Interventions

A problem of fundamental interest in network dynamics is the one of preventing the loss of
resources by means of interventions that are themselves limited to only further removing resources.
As a concrete example, consider a food-web network in which a primary extinction triggers a
cascade of secondary extinctions. The question of interest is to design a control intervention that
if applied after the first extinction (but before the propagation of the cascade) would prevent the
other extinctions. An elementary model to conceptualize the problem is the n-species Lotka–
Volterra predator–prey model (35):

Ẋi = Xi

⎛
⎝bi +

∑
j

aijXj

⎞
⎠ , i = 1, . . . , n, 4.

where Xi ≥ 0 is the population of species i , and parameter bi is the growth rate for basal species
(those that do not feed on others) and the mortality rate for nonbasal ones. Upon removal of
one species, this system generically has one fixed point at which all other species populations are
nonzero when the matrix A = (aij) is invertible (for simplicity, let us ignore the possible presence
of a non-fixed-point attractor in which all other species survive).

The primary extinction will cause subsequent extinctions if (a) this fixed point is unstable and/or
outside the positive (n − 1)-dimensional orthant or (b) the fixed point is stable and in the positive
orthant but the initial extinction laid the network state outside its basin of attraction. Within this
simplified picture, control to prevent secondary extinctions should be geared toward manipulating
the position and stability of this fixed point and/or directing the state to its basin of attraction. Rec-
ognizing that realistic interventions over the relevant timescale cannot directly increase species
populations, recent research (36) has considered interventions that either temporarily suppress
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a   Without control  b   With state control  

c   Without control  d   With parameter control  

Population reductionSpecies extinction

S*

S*

S*

S*

Growth rate reduction Mortality rate increaseSpecies extinction

Figure 6
Examples of antagonistic control to mitigate extinction cascades in food-web networks, where the various species are represented by
circles and their feeding relations by arrows. State control: (a) The sudden extinction of species S∗ leads to the subsequent extinction of
seven other species; (b) all secondary extinctions are prevented by the targeted population reduction of four species. Parameter control:
(c) The extinction of species S∗ leads to the subsequent extinction of eight other species; (d ) all secondary extinctions are prevented by
the targeted reduction of the growth rate of three basal species and an increase in the mortality rate of three nonbasal species. Adapted
from Reference 36 with permission.

certain species’ populations {Xi }—to bring the state to the desired basin of attraction—or perma-
nently reduce (increase) their growth (mortality) rates {bi }—to manipulate the fixed point and/or
basins of attraction. Figure 6 shows for both types of interventions examples in which they would
prevent all secondary extinctions for the model in Equation 4.

The scenario just described is ecologically plausible in view of other antagonistic effects that
take place in food-web networks, such as the paradox of enrichment (37), in which increasing
food availability to a prey may eventually lead to the extinction of its predator. More importantly,
the concept generalizes to other network processes, including the control of cascading failures in
power-grid networks and the reprogramming of intracellular networks, where, owing to scenarios
similar to the one above, the most effective beneficial interventions often appear to be deleterious
(38).
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2.5. Other More-for-Less Paradoxes in Networks

The “inefficiency” of the Nash equilibrium (39)—which follows from the equilibrium not being
globally optimal—can lead to numerous other “more-for-less” paradoxes in networks. To be
specific, we focus on variants and implications of the Braess paradox and note that related effects
can be recognized across diverse network systems.

For example, in traffic networks exhibiting the Braess paradox, as originally formulated in
Reference 4, the paradox has been shown to actually disappear for sufficiently high traffic demand
(40). This means that new routes that inadvertently give rise to the paradox may slow traffic when
demand is low and not even be used when demand is high. Other work has shown that, in networks
with multiple origin and destination nodes, a decrease in demand can in fact lead to an increase
in average travel time (41, 42). An even stronger effect has been established in which an increase
in travel time along a route can result in a new equilibrium characterized by the abandonment of
a different route connecting the same origin and destination nodes while the original route may
continue to be used (43). In addition, there are also numerous essentially equivalent restatements
of the same underlying phenomena, such as in the conclusion that an increase in the local travel
time can lead to a reduction in the global travel time (44), or that the overall transport capacity of
a network can be reduced upon addition of capacity to individual links (45).

Such paradoxes have also been considered in numerous concrete settings, in the context of both
complex networks (46–48) and specific application domains, including computer networks (49, 50),
chemical reaction networks (15, 51), and electric networks (11, 47, 52, 53). In electric networks, in
particular, it has been shown that for graph topologies similar to the one in Figure 1b, addition of
the intermediate (current-carrying) link can create overloads in other links for certain AC circuits
(52) and lead to an increase in voltage drop for a fixed current source in certain two-terminal DC
circuits (11, 53).

Among physical systems, a major class of applications concerns the study of fluid networks.
Using simplified models of the fluid dynamics, it has been shown that increase in the conductivity
of individual pipes in a fluid network can lead to increase in power loss, which can be regarded as
a fluid analog of resistance. Although generally not observed for two-terminal networks (54), this
behavior has been predicted for single-source multiple-destination delivery networks of both water
(54, 55) and natural gas (56, 57). This behavior can also be characterized as a need for pressure
difference increases to maintain the same outputs following the capacity increase of specific pipes
(57), thus bearing direct analogy with previous results on simple electric circuits (11). Finally,
it is interesting to note that similar transport inefficiency has recently been observed also in the
quantum regime in mesoscopic material networks (58, 59), in which the addition of a transport
path induces a decrease in the overall conductance.

3. INCONGRUOUS COEXISTENCE

Consider a network of identical oscillators. It appears intuitive to assume that synchronization into
a common state for all oscillators would be facilitated when the interactions between the oscillators
are attractive. This assumption is false, however, as it can be shown that in many cases2 an otherwise
unstable synchronous state can be stabilized by turning part of the network interactions repulsive
(34). But why would our intuition suggest the opposite in the first place? One explanation is that
we tend to reason in terms of individual interactions—the interaction between an isolated pair of
oscillators must indeed be attractive for them to synchronize. Such a local view fails to capture the

2This is common, for example, for networks of diffusively coupled chaotic oscillators with a bounded stability region.
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effect that comes from the other interactions in the network, suggesting a situation that may be
common in the study of network dynamics. In this section, we discuss a selection of phenomena
of significant current interest involving similar (albeit more intricate) apparent oxymora. To keep
the discussion focused, we continue to use synchronization dynamics as a main model process,
though we anticipate that many conclusions extend naturally to other forms of collective dynamics,
including pattern formation, self-organization, herd behavior, and consensus processes.

3.1. Converse of Symmetry Breaking

Consider a network of phase oscillators of the form

θ̇i = ωi + σ
∑

j

Aij sin(θj − θi − α), i = 1, . . . , n, 5.

where Aij ≥ 0 and σ cos(α) > 0. Each individual oscillator is identified by its natural frequency
ωi , whereas the other terms represent interactions between oscillators. What natural frequencies
should the oscillators have in order to facilitate complete synchronization of the form θ1(t) =
θ2(t) = . . . = θn(t)? This question can be answered using a small angle approximation in the vicinity
of the synchronous state to obtain θ̇i = ωi −σki sin(α)+σ cos(α)

∑
j Aij(θj −θi ), where ki = ∑

j Aij

is the indegree of node i . The synchronization condition implies θ̇i = ωi − σki sin(α) ≡ 
 ∀i for
some constant 
, which leads to ˙̃θ i = −σ ′ ∑

j Lijθ̃j for θ̃i = θi − 
t and σ ′ = σ cos(α). The
synchronous state is stable if and only if all except the identically null eigenvalue of the Laplacian
matrix L have positive real parts, which is guaranteed to be the case in any network that can be
spanned from a node (as generally assumed in the study of synchronization). On closer examination,
the actual condition for synchronization stability is thus that ωi = 
/[σki sin(α)], meaning that
the natural frequencies of the individual oscillators have to be nonidentical unless the network
has identical indegrees for all nodes. This is intuitive because, in order to achieve an identical
state, the oscillators need to be nonidentical to compensate for their nonidentical couplings. A
generalization of this argument can be used to optimize synchronization in complex networks in
general (60), and analogous results are expected if a different characteristic of the system (e.g.,
delays, noise level, or coupling strength) is nonuniform across components. For a long time, cases
involving such compensatory nonuniformities were the only ones in which differences between
the oscillators were found to help minimize differences between their states.

However, it was recently shown that stable identical synchronization can require the oscillators
to be nonidentical even when they are identically coupled and indeed equal with respect to all
other aspects. A simple scenario in which this was first demonstrated (61) was for phase-amplitude
oscillators characterized by a phase variable θi and an amplitude variable ri such that the system
always has one synchronous solution corresponding to θ1(t) = θ2(t) = . . . = θn(t) and r1(t) =
r2(t) = . . . = rn(t) = 1. The question is whether this solution is stable or not. The uncoupled
dynamics of the amplitude variable takes the form ṙ = bir(1 − r), where bi is the only parameter
allowed to vary from node to node. All other parameters and the network structural properties are
identical for all oscillators. As illustrated in Figure 7 for a rotationally invariant network of three
such oscillators, there are scenarios for which the synchronous state is not stable for any choice
of b1 = b2 = b3, but the synchronous state becomes stable for specific choices of nonidentical
bi . This is remarkable because the synchronous state is the state that would reflect the rotational
symmetry of the system and, nevertheless, this symmetric state is stable only when the symmetry
of the system is broken by making the oscillators nonidentical.

It is instructive to contrast this effect with the well-studied phenomenon of symmetry breaking.
On one hand, the fact that the symmetric system does not exhibit a stable synchronous (hence
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θ·i = ω + ri – 1 – γri ∑ sin(θj – θi)
j

θ i –
 〈〈θ

i〉
r i

1 – δ

1
a b

c
2

2.67
2.59

2.67
2.58

2.67
3.72

3

1 – δ

1 – δ

1 + δ

r·i = biri (1 – ri ) + εri ∑ Aij sin(θj – θi)
j

0.3

0

–0.3
1.5

1

0.5
0 10 20

Time
30

Figure 7
Network of identically coupled oscillators in which the oscillators themselves need to be nonidentical in
order to stably synchronize in an identical state. (a) Example network of three phase-amplitude oscillators
(top), where the edges represent matrix (Aij) in the system’s equations (bottom). Marked next to each node are
the values of parameter bi that optimize synchronization stability with (red ) and without (blue) the constraint
of being identical across the three nodes (for a given homogeneous assignment of all other parameters).
(b,c) Evolution of the oscillators for an initial condition close to the synchronous state, where the red
trajectories are for the identical parameter assignment, showing desynchronization, and the blue trajectories
are for the nonidentical parameter assignment, which clearly synchronize. Figure based on Reference 61.

symmetric) solution can be seen as an ordinary manifestation of spontaneous symmetry breaking.
On the other hand, the fact that the symmetry of the stable solution is preserved when (and only
when) the symmetry of the system is broken can be seen as the converse of symmetry breaking.
More generally, in the same way the former shows that an asymmetric reality may be described by
a symmetric theory, the latter shows that a symmetric reality may require an asymmetric theory.

The specific observation that synchronization can be stabilized or enhanced by tuning the
oscillators to be nonidentical has potential implications for power-grid networks, whose operation
requires frequency synchronization among power generators. As shown in Reference 62, the
stability of the synchronous state of interest can be significantly enhanced when an effective
parameter that depends on the damping, inertia, and droop coefficients of the power generators
is set to be suitably different for different generators.

3.2. Chimera States

In networks of coupled oscillators, symmetry breaking itself can lead to rather surprising spa-
tiotemporal patterns formed by two or more domains of qualitatively different dynamics, some
in which the oscillators are mutually synchronized and others in which they evolve incoherently.
First identified by Kuramoto (63) and later termed chimeras (64), such states may provide insights
into unihemispheric sleep in some animal species (65) and fibrillation in the cardiac muscle of
ventricles (66).
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2π

ϕ

x
0

0 1

Figure 8
Reproduction of Kuramoto’s first published plot of a chimera state, showing the coexistence of a domain
of incoherence (center) and a domain of coherence (extremes). This figure was published in Reference 63 and
presents the oscillator phase as a function of the position for the ring network system described by Equation 6.

The first model in which chimera states were systematically described was a ring network of
nonlocally coupled phase oscillators (67),

∂φ(x, t)
∂t

= ω −
∫

G(x − x′) sin
[
φ(x, t) − φ(x′, t) + α

]
dx′, 6.

where the kernel G(x − x′) is a decreasing function that determines the distance-dependent
strength of the coupling. This equation, which can be derived via phase reduction from a nonlocally
coupled complex Ginzburg–Landau equation, describes identically coupled identical oscillators
in the limit of a large number of oscillators. The complete synchronous state is always a solution
and can in fact be stable. But its basin of attraction is not global, and the system also exhibits
persistent chimera states that are approached for other initial conditions. Inspection of the phases
of the oscillators along the ring, as in the snapshot in Figure 8, shows a clear separation into a
domain of incoherence (scattered points) and a domain of coherence (continuous line). Dynamical
variants of such patterns, including spiral chimeras in two-dimensional arrays of oscillators, have
been known to exist from the very first studies (68), and experimental demonstrations of chimera
states have been successful on various systems, including networks of coupled electro-optic (69),
chemical (70), and mechanical (71) oscillators.

In part because the initial theory to describe chimera states was based on a self-consistent
mean-field solution, it was originally believed that such states would not emerge in systems with
local or global coupling (64) and, furthermore, that they would be long lived but not perma-
nently stable in finite-size networks (72). Subsequent research demonstrated that chimeras can
emerge across a surprising range of models and conditions, which include examples of locally
and globally coupled systems (73). In addition, while the question of stability remains open for
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many systems, stable chimera states have now been rigorously identified in finite-size networks
of chaotic oscillators (74; see also 75–77). Yet, previous work focused exclusively on discrete sys-
tems or systems in which the coupling was not strictly local (78), leaving open the question of
whether locally coupled continuous systems could exhibit chimera states.3 The latter was ad-
dressed by recent research, which demonstrated the existence of symmetry-breaking chimera
states whose coherent and incoherent phases are analogous to laminar and turbulent phases of
a fluid system (79), thereby revealing an important connection with the classical field of pattern
formation.

3.3. Remote Synchronization

Distant oscillators in a network can synchronize stably even when they are connected exclusively
through oscillators that are asynchronous. This remote form of cluster synchronization has poten-
tial implications for information processing in the brain (80) and for secure communication (81),
and has been recognized in many systems. For example, in an initially synchronized undirected
star network of diffusively coupled chaotic oscillators, an increase in coupling strength can lead to
a short-wavelength bifurcation that drives the center node off pace but keeps all the other nodes
synchronized; this long-known behavior is observed when the stability region is limited, and has
been referred to as a drum-head-mode bifurcation (27; see also 82).

More recently it has been noticed that variants of this behavior extend to complex networks
in general, largely owing to cluster synchronous states that derive from network symmetry. For
example, Reference 80 considered the system in Equation 5 for identical ωi to show that suit-
able choices of the phase parameter α lead to a frustrated state in which directly connected
oscillators do not synchronize, whereas certain oscillators that are distant from each other do
synchronize. The oscillators that synchronize are those symmetrically coupled to the network
(i.e., in the same symmetry cluster). This is so because the equation of motion remains invariant
under the action of the symmetry group of the network, meaning that the system admits a syn-
chronous solution among those nodes, which in this case is stable even when they are not directly
connected.

Several variants of remote synchronization are particularly intriguing. For example, in the
study of so-called relay synchronization, it has been shown that two delay-coupled oscillators can
synchronize identically (thus without delay) when connected through a third oscillator that lags
behind (83). In a different study, two chaotic oscillators have been shown to synchronize stably
while connected through an intermediate cluster of oscillators that are incoherent both with the
outer nodes and with themselves; termed incoherence-mediated remote synchronization (81), this
scenario blends together the properties of remote synchronization with those of chimera states
(see Figure 9). It has the advantage of being robust to perturbation of the intermediate oscillators
and can in principle be useful for encryption key distribution.

A common theme underlying all forms of remote synchronization just mentioned is indeed
symmetry in the network. To appreciate how general symmetry-based remote synchronization
can be, it is important to notice that even random networks can exhibit a large number of nontrivial
symmetry clusters and that the nodes in such clusters are often not directly connected (84). Recently
developed techniques (85) to study the stability of cluster synchronous states while exploring their
relationship with symmetries promise to be useful in future studies of this phenomenon.

3Not to be confused with the continuous representation of discrete systems, such as in Equation 6, whose variables are not
spatially continuous (as shown in Figure 8).
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Figure 9
Incoherence-mediated remote synchronization. (a) Example of a network equipped with electro-optic phase oscillators. (b) Time
evolution of the extreme nodes 1 and 42, showing that they are in a state of complete synchronization (the trajectories overlap
perfectly). (c,d ) Representative plots of the incoherence observed between the extreme nodes and any node in the intermediate group
(panel c) as well as between any two nodes in the intermediate group (panel d ). Adapted from Reference 81 with permission.

3.4. Remote Control of Information Routing

In network systems, the hallmarks of emergent distributed phenomena are found not only in
overt manifestations of collective dynamics but also in the associated information transmission
and processing. These characteristics are common across numerous systems in biology, physics,
and engineering, ranging from neural and biochemical circuits to self-organized communication
networks (86–89). In biological systems, in particular, information handling is often referred to
as distributed, but how information may be specifically communicated and dynamically routed in
such systems is not yet well understood. Recent work (90) offers concrete hints on what distributed
information routing actually means and what it might condense to, qualitatively and quantitatively.

A theoretical framework for networks of oscillatory units (91) predicts the patterns of infor-
mation routing in networks and their dependence on the interaction network and other factors.
The framework is established using model systems of the form

ẋ = f (x) + ξ , 7.

where f (x) represents the intrinsic time evolution rules and interaction structure of the network,
and ξ represents an external (stochastic) input. The theory determines how routing patterns depend
on the dynamical reference state [taken to be a periodic or fixed-point solution of ẋo = f (xo )] in the
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Figure 10
Remote control of information routing in oscillatory networks. The diagrams illustrate remote control for a hierarchical network,
where the uncolored arrows indicate directed interactions, which are stronger within modules (black arrows) than between modules
( gray arrows). Modifying local properties (here, a local coupling strength J) in one part of the network (subnetwork A) may switch the
information routing direction between two other parts (subnetworks B and C). Specifically, for J = J1, net information is routed from
subnetwork B to C (orange arrows in top middle panel ), whereas for another value of the local coupling strength, J = J2, information is
routed from C to B (brown arrows in bottom right panel ). Adapted from Reference 91 with permission.

presence of small external inputs. Because xo and ξ are system-wide variables, local modifications
of individual unit properties, network interactions, and external inputs provide mechanisms to
flexibly change information routing throughout the entire network.

As a particularly intriguing property, we mention that local modifications in one part of the
network may remotely influence and even reverse the direction of information routing between
two other parts (see Figure 10). This points to a potentially general mechanism of remote control
that is possible because information routing is ultimately determined by the network dynamics,
which are collective and distributed.

3.5. Other Unconventional Phenomena in Networks

Limiting ourselves to synchronization dynamics for concreteness, we note that delays, noise, and
correlations between node parameters and network structure have been found to lead to other
unanticipated phenomena. For example, scenarios have been described in which time delay in
node-to-node communication can facilitate rather than inhibit in-phase (zero-lag) synchronization
(92). This has been observed, for instance, for pulse-coupled oscillators with inhibitory coupling
(93) and for relay-coupled oscillators (83). For excitatory coupling, on the other hand, networks
of pulse-coupled oscillators can be shown to often exhibit attracting periodic orbits with points
that are isolated from their basins of attraction, and thus have the peculiar property of being both
attractive and unstable (94).

Another notable class of behaviors comes from considering coupled oscillators in the presence
of noise, where it has been shown that, due to coupling, modular networks can synchronize
in response to noise even when the noise applied to different modules is uncorrelated (95). In
networks of globally coupled oscillators, different work has demonstrated that independent noise
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at individual nodes can also stabilize otherwise unstable states of partial synchronization (96).
Moreover, in systems of directionally coupled nonidentical oscillators, it has been shown that the
phase diffusion in an oscillator can depend nonmonotonically on the noise intensity in a coupled
oscillator, and thus become more coherent as noise is further strengthened (97).

Finally, following the discovery of explosive percolation (98)—characterized by abrupt tran-
sitions (99–102)—analogous transitions (in fact strictly discontinuous ones; 103) have also been
identified in synchronization processes, giving rise to so-called explosive synchronization (104).
Explosive synchronization occurs when, as the coupling strength is increased, an otherwise second-
order phase transition to synchronization becomes first order. This behavior has been demon-
strated for both phase oscillators (104) and chaotic oscillators (105) in scale-free networks, in which
the oscillator frequency is positively correlated with the node degree. Such transitions exhibit hys-
teresis, in which the transformation from coherence to incoherence occurs at a smaller critical
coupling than that from incoherence to coherence. The dynamical origin of the hysteretic behavior
has been explicitly related to a change in the basin of attraction of the synchronization state (106).

4. OUTLOOK

What do we learn from these examples of collective dynamics? We have illustrated various types
of network phenomena, highlighted conditions for their occurrence, and identified some common
mechanisms underlying them. Can we expect to achieve a more unified view of collective network
dynamics in the near future?

The question of “unification” is indeed a recurrent one in the study of complex systems (107).
Many argue that the similarities observed in certain phenomena across disparate systems are
suggestive of common governing principles. Others further contend that an overarching goal of
twenty-first-century physics is to construct a unified theory of complex systems, which is a pursuit
that implicitly assumes that such a unified account of everything would be both simple and useful.
The question of whether all observed phenomena can be the result of simple rules determined by
common theories is noncontroversial—if we abstract from the fact that we probably do not know
all fundamental laws of physics, they would all follow from a handful of fundamental interactions.
But such a description, however simple, is of limited practical use at the scale relevant to most
complex systems phenomena. Conversely, computer experiments are useful as broadly applicable
approaches to simulate the intricate behavior of complex systems but may be no simpler to interpret
than the empirical data. This limitation is all-important precisely because complex systems tend
to defy our ability to understand them. Thus, whether a unified description satisfying the basic
requirements of simplicity and usefulness can be constructed (even in principle) remains an open
question.

On the other hand, networks definitely offer a unified way of thinking about a broad range
of complex systems. Although not all complex systems lend themselves to being described as a
network, the existence of an underlying network of interactions is indeed a defining property of
complex systems, and many complex systems can be usefully represented as a network. The network
description may not result in a theory of everything, but it constitutes a unifying principle in and
of itself and offers a common framework for the development of broadly applicable mathematical,
computational, and experimental tools, which are conducive to new discoveries. Such a description
is sufficiently general to apply to many systems yet sufficiently flexible to account for system-specific
features as needed. In particular, complex systems generally require different portrayals at different
scales (9), and networks do offer a versatile representation across scales.

The natural progress of network research is that—as more is learned—new principles will
be discovered, new tools will be developed, and new relations between different systems and
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phenomena will be established. The end product of such a research program, no matter how
successful, may not be a unified theory. After all, it may be argued that there are principles that
govern all, principles that govern some, and principles that govern specific systems. This does not
reduce the importance of identifying common mechanisms in disparate complex systems. This
article represents an effort to help bring such mechanisms to light and offer a unified view of a
broad class of network phenomena, even though the systems hosting these phenomena can be
very different and come with their own idiosyncratic properties in each case.

Looking forward, it is legitimate to posit that further methodological advances would per-
mit development of better understanding and possibly allow us to predict the limits of, for in-
stance, antagonistic responses or remote actions in networks. In condensed matter physics, for
example, several innovative forms of representing and analyzing collective behavior of many-
particle systems have become standard and now facilitate synergy between subfields. If similar
overarching techniques are developed for collective dynamics in network systems, they would
likely be drastically different from current methods in dynamical systems theory, in which
the focus has traditionally been on low-dimensional systems. As illustrated in various exam-
ples of network phenomena considered here, the joint presence of high dimensionality, com-
plex coupling structure, and nonlinearity leads to new phenomena but also pose new chal-
lenges. These examples may thus provide some common starting ground to not only explore
new collective phenomena in their own right but also to develop new tools applicable to a
broader range of systems and settings. Again, developing such tools will likely require a shift
in theoretical perspective, possibly comparable in significance to the shift required to go from
individual particle dynamics to statistical mechanics. This shift might, nevertheless, already
be under way as a coproduct of the wider adoption of network representations of complex
systems.

Finally, we note that the phenomena reported here raise numerous immediate questions for
future research. For instance, it is instructive to reflect on the more-for-less paradoxes as they relate
to the formation and evolution of networks in real systems. Conceptually, forming a network is
often seen as a mode to establish connections, which is a bottom-up view that tacitly assumes
that the system is built from isolated (or less connected) parts. But a network is also a way to set
constraints, which is a top-down view that conceptualizes the notion that the system realizes only a
subset of all potential interactions. The latter is relevant in our discussion of network phenomena
resulting from the equilibrium state not being the optimal state because they all are examples in
which the state realized by the system can be brought closer to the optimum by constraining the
structure (or dynamics) of the network.

Still, in real systems, this alone does not explain why network resources whose removal increases
performance have not been trimmed over time. This question is particularly relevant in the case
of growing networks, such as many biological and infrastructure ones, which exhibit a net gain
rather than loss of links and nodes as they evolve. One contributing explanation for this apparent
oxymoron is the pressure imposed by the need to perform under multiple conditions: Even though
the presence of certain network components may lower performance under the considered con-
dition, they may be needed for improved performance under different conditions. For instance, a
living cell activates different parts of its metabolic network depending on the nutrients available in
the surrounding medium. A complementary explanation is that systems often operate under the
competing pressures of two or more objectives. For example, in a power grid the addition of a link
to increase power transmission capacity may inadvertently cause desynchronization (20), which
illustrates scenarios in which the addition of resources required to improve one function can be
strictly deleterious for a different function. The need to understand such scenarios is yet another
motivation for future research.
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A common theme in the network phenomena we described is that, in general, one cannot
disentangle the network structure from the network dynamics or attribute the behavior solely to
structural properties. This is rooted in the collective and decentralized nature of the dynamics, in
which the observed behavior emerges from interactions. For example, the relevance of chimera
states lies in them being emergent rather than in the mere coexistence of ordered and disordered
phases, which could be realized by collections of certain bistable oscillators in the absence of any
coupling. Much is left for future work, however. In particular, it is important to recognize that
as powerful as networks of simple nodes and links have been in representing a broad range of
complex systems, in real systems links and nodes are often complex dynamical systems on their
own.

In the broader context of the phenomena illustrated in this review, it is where they run most
strongly against our intuition that we can learn the most and possibly make the most progress
into novel conceptual directions. We argue for this perspective of research to make advances into
unanticipated network phenomena currently unexplained or still unknown.
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