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Abstract
Fundamental response properties of neurons centrally underly the computational capabili-

ties of both individual nerve cells and neural networks. Most studies on neuronal input-out-

put relations have focused on continuous-time inputs such as constant or noisy sinusoidal

currents. Yet, most neurons communicate via exchanging action potentials (spikes) at dis-

crete times. Here, we systematically analyze the stationary spiking response to regular

spiking inputs and reveal that it is generically non-monotonic. Our theoretical analysis

shows that the underlying mechanism relies solely on a combination of the discrete nature

of the communication by spikes, the capability of locking output to input spikes and limited

resources required for spike processing. Numerical simulations of mathematically idealized

and biophysically detailed models, as well as neurophysiological experiments confirm and

illustrate our theoretical predictions.

Author Summary

Brain function relies on robust communication between a huge number of nerve cells
(neurons) that exchange short-lasting electrical pulses (called action potentials or spikes)
at certain times. How nerve cells process their spiking inputs to generate spiking outputs
thus is key not only to individual neurons’ computational capabilities but also to the col-
lective dynamics of neuronal networks. Here we analyze the response properties of
neurons to regular spike sequence inputs. We find that neurons typically respond in a
non-monotonic way. Output frequency mostly increases with input frequency as expected
but sometimes output frequency necessarily decreases upon increasing the input
frequency. Our theoretical analysis predicts that spiking neurons commonly exhibit such
non-monotonic response properties. Simulations of simple mathematical and complex
computational models as well as neurophysiological experiments confirm our theoretical
predictions.
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Introduction
Most neurons in the nervous system communicate by sending and receiving stereotyped elec-
trical pulses called action potentials or spikes [1]. The computational capabilities of neural cir-
cuits centrally rely on the input-output relations of single neurons. This relation is commonly
characterized by its output spike rate in response to a temporally continuous constant input
current I, sometimes in the presence of additional current fluctuations [2–5].

If the spikes each neuron receives are irregular in time and individually only weakly affect
the neuron’s membrane potential (the main physical quantity characterizing its dynamical
state), this continuous-input picture serves as an appropriate approximation [6–8] to the actual
spike sequence input. A neuron’s response curve in terms of its output spike rate as a function
of input current is thus considered one of its most fundamental standard characteristics
[5, 9–11]. In particular, neurons are dynamically classified according to such response curves
(so-called f-I-curves), into type-I neurons, with their output spike rates increasing from zero
above a critical current Ic, and type-II neurons which start spiking with a macroscopic, non-
zero rate upon increasing I beyond some Ic [10, 11]. For both types, neuronal output spike fre-
quencies depend monotonically on the input I.

Yet, a broad range of neural systems, including most central pattern generators, pacemaker
cells and neural pathways in the auditory and motor systems, exhibit more regular, patterned
spike sequences [12–28] such that the above mean field approximation does not apply. Some
experimental and numerical studies [29, 30] hint that certain neurons receiving regular period-
ic spiking inputs may exhibit locked spike responses together with possibly non-monotonic
input-output relations. How common this phenomenon is and which neural features may
cause non-monotonic response curves, however, remains unknown.

Here, joining theoretical, computational and experimental approaches we provide a system-
atic analysis of the response of individual neurons to regular spiking inputs. We find that non-
monotonic response is a universal feature that emerges due to a locking phenomenon [31] in a
broad range of systems. We reveal the underlying mechanisms and conclude that an arbitrary
system (neuronal or otherwise pulse-coupled) will inevitably show such non-monotonic re-
sponse, if it exhibits pulsed outputs locked to the pulsed inputs and any form of resource limi-
tation during pulse processing.

The article is structured as follows: we first derive analytical results on idealized neuron
models; based on insights from this model, we identify general theoretical (sufficient) condi-
tions underlying non-monotonicity. Second, we observe that these conditions commonly
occur across neural systems and check their robustness against temporal jitter and their occur-
rence in biophysically more detailed models. Third, neurophysiological experiments confirm
and illustrate our finding for real neurons.

Results

Non-monotonic spike sequence responses abound
Studying first the response properties of leaky integrate-and-fire (LIF) neurons [1] receiving
periodic spiking input sequences via depressive synapses [32] (cf. Fig. 1), we find that slowly
increasing the input frequency initially also increases the output spike frequency (as ex-
pected). When crossing certain input frequencies, however, the output frequency drops
again, implying a non-monotonic response. Our extensive numerical studies show that this
phenomenon robustly emerges for various combinations of neural time scales, synaptic time
scales, synaptic efficacies and other features of the system. Checking various other types of
neuron models including Fitzhugh-Nagumo and Hodgkin-Huxley neurons, this
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phenomenon persists, even with static synapses. Fig. 1 illustrates three examples. These find-
ings led us to hypothesize that non-monotonic responses to regular spike sequence inputs are
a generic feature across neurons. To test this hypothesis, we first answered the question what
causes such non-monotonic response.

Theoretical analysis
To reveal the basic ingredients underlying non-monotonic response, we analyzed an ideal-
ized, mathematically tractable system consisting of a LIF neuron receiving spiking input via a
depressive synapse, i.e. a synapse that is weakened on short time scales when transmitting a
pulse. The LIF-model [1] is a standard model for analyzing the dynamics of spiking neural
systems and a standard model for depressive synapses was introduced by Tsodyks and Mark-
ram [32]. In their simplest setting, the combined dynamics of voltage V(t) and synaptic re-
sources x(t) are given by

_V ¼ Veq � V

t
þ cx

X1
m¼�1

dðt � tmÞ; ð1Þ

_x ¼ 1� x
m

� ux
X1
m¼�1

dðt � tmÞ: ð2Þ

Here t is the membrane time constant, Veq defines the equilibrium potential, the constant c 2 R

is the maximum possible response of the neuron to one incoming spike, it is modulated by the
amount x(t) of resources available at time t; further, m is the time constant of resource recovery,

Figure 1. Non-monotonic response to regular input spike sequences: increasing the input spike frequency may increase but also decrease the
output spike frequency. Bottom panel: input spike frequency that slowly increases ten-fold. Top three panels: output spike responses (LIF: leaky integrate-
and-fire neuron with depressive synapse, FHN: Fitzhugh-Nagumo and HH: Hodgkin-Huxley neuron, both with static synapses). Time is rescaled so that all
three data sets fit in this Figure. For details of models see equations (1)–(2) for LIF, equations (12)–(13) for FHN and equations (14)–(17) for HH.

doi:10.1371/journal.pcbi.1004002.g001
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u is the fraction of available resources depleted per spike and tm defines the time of themth
spike received by the neuron. Upon crossing a threshold V(t−)� VY≔ 1, the neuron emits a
spike and the membrane potential is reset, V(t)≔ Vreset≔ 0. With Veq< 1 the neuron is an ex-
citable system and may only send a spike at times it receives an input spike.

What is the stationary spike response of this system to regular spiking input sequences with
inter-spike intervals of fixed length T? Analytically integrating the coupled system (1)–(2) be-
tween two subsequent input spike times, we derive an event map

Vðtmþ1Þ
xðtmþ1Þ

 !
¼ VðtmÞ � Veq

� �
e�T=t þ Veq þ cxðtmþ1Þ

xðtmÞð1� uÞ � 1½ �e�T=m þ 1

 !
ð3Þ

from its state at input spike time tm to its state at the next input spike time tm+1 = tm +T. Here,
V(tm) denotes the membrane potential directly after the receiption of the spike and x(tm) denotes
the state of the synapse directly before the transmission of the spike. The resource dynamics of
this map depend only on the input interval T, but are independent of the potential dynamics.
Thus, we directly find the fixed point of the resource dynamics defined by x�(tm+1) = x�(tm). As
the response map is linearly dependent on x with slope j(1−u)e−T/mj< 1 the fixed point is global-
ly stable. A simple analysis reveals the fixed point

x�½T� ¼ 1�exp ð�T=mÞ
1� ð1� uÞ exp ð�T=mÞ ð4Þ

to which the resource dynamics converges exponentially from all initial conditions.
Assuming stationarity, we derive the dynamics of the membrane potential starting just after
reset at (V(t0), x(t0))≔ (0,x�) and consider the subthreshold membrane potential dynamics as
a function of the number n� 1 of incoming spikes. Note that from this initial condition at all
input spike times, we have x(tm) = x� by construction.

Iterating the membrane potential dynamics in the event map (3) n times from the initial
condition (V(t0), x(t0)) = (0, x�) yields

VðtnÞ ¼ cx�½T�
Xn
m¼1

e�ðn�mÞT=t þ Veq 1� e�nT=t
� �

: ð5Þ

which we prove by induction.
Induction basis: For n = 1, (5) becomes

Vðt1Þ ¼ cx�½T� þ Veq 1� e�T=tð Þ ð6Þ

which is the first iteration of the potential dynamics in (3) for V(t0) = 0, x(t0) = x� and t1 − t0 = T.
Induction step: Assume (5) holds for some n 2 N. Substituting (5) into (3) we obtain

Vðtnþ1Þ ¼ ðVðtnÞ � VeqÞe�T=t þ Veq þ cx�½T�

¼ cx�½T�
Xn
m¼1

; e�ðn�mÞT=t þ Veq 1� e�nT=t
� �� Veq

 !
e�T=t þ Veq þ cx�½T�

¼ cx�½T�
Xn
m¼1

e�ðnþ1�mÞT=t þ cx�½T� þ Veq 1� e�ðnþ1ÞT=t� �

¼ cx�½T�
Xnþ1

m¼1

e�ðnþ1�mÞT=t þ Veq 1� e�ðnþ1ÞT=t� �
ð7Þ

which is equation (5) with tn = nT replaced by tn+1 = (n+1)T.
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Evaluating the geometric sum, (5) further simplifies to

VðtnÞ ¼ 1� e�nT=t
� � cx�½T�

1� e�T=t
þ Veq

� �
ð8Þ

which is the membrane potential immediately after the nth spiking input received after poten-
tial reset at t0.

As a consequence, the first time tñ where V(tñ)� 1 defines the number of input spikes ñ re-
quired for the neuron’s potential to reach threshold and thus for the neuron to emit a spike. For

certain combinations of system parameters and input frequencies, where cx�½T�
1�e�T=t þ Veq

� �
< 1 ,

no positive integer ñmakes expression (8) larger than one. Thus, the neuron does not emit any
spike and has output frequency lout = 0. For all other combinations, we find

~n ¼
&
� t
T

ln 1� 1

Veq þ cx�½T�
1�e�T=t

 !’
: ð9Þ

Here we denote by dze the smallest integer larger than z. As the input frequency of a periodic

spike sequence is given by lin = 1/T and the output period by Tout ¼ ~nT ¼ l�1

out , combining (9)
with (4) yields

lout ¼ lin �

&
� tlin ln 1� 1

Veq þ
c

1�expð�1∕ ðmlinÞ
1�ð1�uÞexpð�1∕ ðmlinÞ
1�expð�1∕ ðtlinÞÞ

0
B@

1
CA
’�1

ð10Þ

as the output frequency of this neuron-synapse system. This input-output relation exhibits
qualitatively different shapes depending on system parameters. For instance, the neuron
will spike for arbitrarily low input frequencies for one set of parameters while at others it
only spikes when receiving inputs beyond a certain minimal frequency, see Fig. 2 for an
illustration.

Locking and limited resources suffice
What do relations (9)–(10) tell us about the spiking response of the neuron? First, there are in-
tervals where the output frequency is locked to the input frequency by an integer ñ. This lock-
ing ratio in turn changes in a jump-like manner at certain critical lin. Thus, in the neuron’s
response curve, the output frequency lout either increases proportionally to the input
frequency lin (with constant slope 1/ñ), or – at the critical frequencies – ñ changes by one
and the response changes qualitatively to a different proportional dependence. Interestingly,
depending on the time scales in the system and the coupling constants, ñmay not only de-
crease, but also increase by increasing of lin, thereby lowering the response frequency by in-
creasing the input. Fig. 2 shows two qualitatively different examples. Indeed, as our prior
numerical results suggested, an increase in ñ and thus a downward jump in the response
curve, implying its non-monotonicity, is a persistent feature in this simple neuron-synapse
system.

This non-monotonic response does not rely on dynamic features of the synapse: Whereas
the exact form of (10) is specific to the simple synapse-neuron system considered above, the
main mechanism underlying non-monotonic input-output relations is rooted in the fact
that in systems with periodic pulsed inputs and outputs locking per se occurs only between an
integer number of pulses. One key observation is that a formula similar to (10) is (at least)
implicitly defined across spiking neuron models, specifying the output spike frequency lout as
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a function of input frequency lin in the regime of locking. Such an expression would be of the
form

lout ¼ lin � df ðp; linÞe�1 ð11Þ
where f(p;lin) is some function of all model parameters p and the input frequency. As for
the simple LIF system above, continuously changing the input frequency lin implies an
output frequency lout proportional to lin within certain intervals where f(p;lin) has real
values between two integers. At frequencies lin where f(p;lin) 2 N exactly equals an
integer, the response lout jumps. Non-monotonicities emerging this way may be shielded
for instance by noise, measurement errors or intrinsic obstacles to locking in complex
neurons.

There are thus three conditions sufficient for this phenomenon to emerge: (i) the
discrete nature of communication by pulses (such as spikes), (ii) an output pulse
sequence that locks to the input sequence and (iii) any type of resource limitation in pulse-
transmission.

As a consequence, it is not important where the resources are expended, whether in the
presynaptic part, during intinsic processing in the postsynaptic neuron, or during action
potential initiation in that neuron: in particular, non-monotonicity will also occur in neurons
without dynamic synapses, as soon as any resources (e.g. ions, vesicles, neurotransmitters,
calcium, or others) are needed for the spike transmission. The limited resources may thus ei-
ther be expended in the presynaptic synaptic terminal leading to depressive synaptic
transmissions, or may consist of the configuration of the membrane proteins which cannot
change state twice within the relevant time scales. Moreover, the amount of charge required
for action potential generation is limited and may be viewed as limited resources in the general
theoretical sense. Finally, the notion of resources also relates to the fact that neurons exhibit a
so-called refractoriness, so that immediately after the emission of a spike a neuron cannot emit
a second spike due to a lack of resources.

More complex neuron models
Thus, the nonmonotonic response properties should persist in more complex neuron
models and real biological neurons. We first numerically demonstrate this in two further exam-
ple classes of neuronal model systems. We start with a Fitzhugh-Nagumo neuron [33] with
temporally extended postsynaptic currents receiving spiking input via a static synapse. This

Figure 2. Non-monotonic response functions of the idealized LIF synapse-neuron system. Input-
output response (a) for resource recovery that is much slower than the time scale of membrane potential
leakage (τ = 1, μ = 10), for system with dynamics shown in Fig. 1, (b) for both processes occurring on the
same time scales (τ = 1, μ = 1). In (a) only downward jumps, in (b) upward as well as downward jumps occur.
Further parameters were u = 0.2, c = 0.5, Veq = 0.8 for (a) and u = 0.4, c = 0.8, V eq = 0 for (b).

doi:10.1371/journal.pcbi.1004002.g002
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model is defined by the membrane potential V(t) and a gating variableW(t). The differential
equations

_V ¼ � VðV � 1ÞðV � aÞ �W þ c
X1
m¼�1

Kðt � tmÞ ð12Þ

_W ¼ V � bW
m0 ð13Þ

define their time evolution where a is a parameter setting the equilibrium membrane potential,
b defines the opening rate of ion channels, c is the input strength arriving via a static synapse
and m′ is related to the gating time constant. K(t) is the kernel modeling the post-synaptic re-
sponse to incoming spikes. The second output spike train in Fig. 1 demonstrates that the out-
put rate can decrease with increasing input frequency in this neuron model. We studied this
model systematically by recording the mean output frequency for different input frequencies
in simulations. These simulations again reveal a non-monotonic input-output relation
(Fig. 3a), albeit a more complicated one than for the more abstract model discussed above: As
before, wherever the input is locked to the output, the response frequency necessarily increases
in proportion to the input frequency. Between such bands of simple n:1-locking, we now ob-
serve extended transition regions exhibiting either more complex locking (such as, e.g., 11:3)
with periodic output as well as unlocked, aperiodic output spike sequences (Fig. 3b-d). We at-
tribute such broader transition regions to the higher-dimensional membrane potential dynam-
ics that, together with the temporally extended spike response (and possibly numerical noise)

Figure 3. Non-monotonic response in a Fitzhugh-Nagumo neuron receiving periodic input via a static
synapse. (a) Input-output response exhibits dominant n:1-locking interrupted by broad transition regions
(b), magnified from (a). Several locking ratios n:m are indicated. In the transition regions, periodic, n:m-locked
as well as nonperiodic, irregular dynamics arise. (c,d) Membrane potential dynamics (c) in the 4:1-locking
region and (d) in the irregular regime. The model parameters were a = 0.139, b = 2.54, c = 0.5, μ′ = 125 and
K(t) = 2(exp(−t)−exp(−2t)).

doi:10.1371/journal.pcbi.1004002.g003
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includes a mechanism for the generation of spikes of different amplitudes and thus makes the
system amenable of “skipping” a full spike (cf. Fig. 3c,d).

The biophysically more detailed Hodgkin-Huxley model yields qualitatively the same re-
sults, in particular non-monotonic input-output relations (cf. also third spike train in Fig. 1).
As an example, Fig. 4 illustrates the input-output relation of a standard Hodgkin-Huxley neu-
ron where we followed [5, 34] to describe the neuron by four dynamic variables

_V ¼ 1

C
½Iex þ I0 � gNam

3hðV � VNaÞ � gKn
4ðV � VKÞ � gLðV � VLÞ� ð14Þ

_m ¼ 0:1ðV þ 40Þ
1� e�ðVþ40Þ=10

� �
ð1�mÞ � 4e�ðVþ65Þ=18m ð15Þ

_n ¼ 0:01ðV þ 55Þ
1� e�ðVþ55Þ=10

� �
ð1� nÞ � 0:125e�ðVþ65Þ=80n ð16Þ

_h ¼ 0:07e�ðVþ65Þ=20ð1� hÞ � 1

1þ e�ðVþ35Þ=10 h; ð17Þ

where Iex is the input current arriving via an excitatory synapse

Iex ¼ e
X
m

Kðt � tmÞ: ð18Þ

In the above set of equations, V is the membrane potential in mV,m, n, and h are dimension-
less gating variables, Iex is the input current in mA/cm2 arriving via an excitatory synapse and I0
is a constant input current in mA/cm2. C is the membrane’s capacity in mF/cm2, gNa, gK and gL
are the maximal specific conductances for sodium (Na) and potassium (K) induced currents
and the leakage current through the membrane (L) in mS/cm2.VNa, VK and VL denote the cor-
responding equilibrium (reversal) potentials in mV. K(�) is the dimensionless kernel function
defining the shape of the synaptic response and e specifies the strength (peak amplitude) of sin-
gle inputs in mA/cm2. Time t and reception times tm are given in ms.

In direct numerical simulations of this complex four-dimensional neuron model, we
find input-output relations that are qualitatively similar to the responses described above.
Fig. 4 shows that Hodgkin-Huxley neurons exhibit locked as well as irregular dynamics.
The input-output relation increases for frequencies with locked dynamics and decreases in the
transition regions with irregular dynamics, akin to those in the simpler Fitzhugh-Nagumo
model. We conclude that this behaviour persists even in complex high-dimensional neuron
models.

Insensitivity to jitter in the input spike times
Does the non-monotonicity of the response curve depend on the exact periodicity of the in-
puts? To answer this question we simulated the dynamics of the above described LIF model
system with the input pulse intervals Dt being Gamma-distributed, i.e.

pðDtÞ ¼ lae�lDtDta�1

GðaÞ ð19Þ

where l is the scale parameter and a is the shape parameter. The mean input interval is then
�Dt ¼ a=l , so that the input rate is defined by lin = l/a. The relative standard deviation of the

input intervals is sDt=
�Dt ¼ 1=

ffiffiffi
a

p
.
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We again find a non-monotonic response function (see Fig. 5). Now, the infinitely fast
downwards jumps (found for the deterministic input) become finite downward slopes due to
the stochasticity of the input. In particular, we generally find that the non-monotonicity pre-
vails. In the presence of any sufficiently small stochasticity the transition regions become more
narrow and the frequency-decreasing jumps more pronounced the more regular the input se-
quences are. Based also on the theoretical finding that the main mechanism is rooted in generic
resource limitation, we conclude that the phenomenon is also insensitive to fluctuations in
input spike times. Only for highly irregular input the effect becomes indetectable as the dynam-
ics are no longer locked to the input and the responses are dispersed due to the stochastic com-
ponent in the input. In particular, the neuron’s response function is monotonic in the limit of
uncorrelated (Poisson) spike inputs. This holds for systems without any resource limitation as
well as for systems with intrinsic resource limitation [39–41]. For instance, spike frequency ad-
aptation, one specific form of resource limitation, may turn a neuron into a high pass filter
with a response function that is modified compared to neurons without adaptation but still
monotonic [40, 41].

We expect similarly blurred non-monotonicity for other forms of stochastic inputs modify-
ing regular periodic input spike trains, as discussed above. For instance, spike sequence inputs
with missing (skipped) spikes or sufficiently correlated spike timings may induce related non-
monotonic responses. For correlated inputs this has been, e.g., observed in [37, 38].

Figure 4. Non-monotonic response in a Hodgkin-Huxley neuron receiving periodic input via a static
excitatory synapse. (a) In the response curve n:1-locking regions are interrupted by broad transition
regions (b), magnified from (a). In the transition regions nonperiodic, irregular dynamics arise. (c) and (d)
show example dynamics of the membrane potential (c) in the 3:1-locking region (λin = 170Hz) and (d) in
the irregular regime (λin = 140.2Hz). Simulation parameters were C = 2, VNa = 50, VK = −77, VL = −54.4,
gNa = 120, gK = 36, gL = 0.3, I0 = 5 and ε = 9. We used an alpha-function KðtÞ ¼ e t

tex
exp ð�t=texð ÞÞ with

time constant τex = 1 to model the synaptic inputs (e is the Euler constant to normalize K(t)).

doi:10.1371/journal.pcbi.1004002.g004
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Neurophysiological experiments: Biological neurons
The above theory predicts generic non-monotonic responses to regular spike sequences for all
neurons that exhibit at least two locking regimes. Our simulations further indicate that non-
monotonic responses persist in less perfect setups, and should thus also exist in real biological
neurons. Here various types of noise and structural heterogeneities influence the neuron dy-
namics, specifically the exact timing of the membrane potential’s response to inputs and the
spike generation mechanism act as additional stochastic componentes dispersing the output
spikes in time. To check if the phenomenon persists despite this dispersal due to heterogene-
ities, we studied neuronal responses also experimentally. For our experiments we chose neu-
rons from the medial nucleus of the trapezoid body (MNTB) of rats. Such MNTB neurons play
an essential role in the auditory pathway of rodents [35] where they support to encode and
transmit features of sound stimuli. They process spike sequences of much higher regularity
than those typical for basic cortical circuits [26] with input frequencies ranging from a few to
several hundreds of Hertz. For this relevant frequency range we stimulated such neurons in
vitro with 1ms rectangular current pulses to emulate spiking inputs (see Methods section for
details of slice preparation, electrophysiology and the analysis of recorded spike sequences).

Whole-cell patch-clamp recordings of MNTB neurons yielded non-monotonic response
curves consistent with our theoretical predictions (Fig. 6). Panels (a) and (b) of Fig. 6 show the
non-monotonic response curves for two different neurons, at three different stimulation ampli-
tudes each. The recorded response of one (Fig. 6a) is apparently much less noisy than that of
another (Fig. 6b). The overall picture is similar to the dynamics of the FHN-neurons studied
above, with the exception that we did exclusively find irregular, unlocked dynamics in the tran-
sition regions, but no n:m-locking. We speculate that states of higher order n:m-locking are not
sufficiently robust to be visible under such noisy conditions in inhomogeneous environments.
Fig. 6(c-f) illustrates the membrane potential dynamics for the observed 1:1-, 1:2- and 1:3-
locking as well as for an example of unlocked, irregular response.

Discussion
The above results provide a characterization of how regular spiking inputs to neurons yield spik-
ing output responses with universal, system-independent features. This subject was broadly ne-
glected so far as the focus was on responses to continuous-time inputs [24, 36, 42, 43]. That
neuronal dynamics can lock to the input it receives is long known and the consequence of the
locked dynamics and associated changes in the neuron’s response under certain conditions were
observed before in specific neuronal systems [29, 30, 44–46]. Furthermore, previous studies
found non-monotonic neuronal response to periodic spiking inputs [29, 30] and non-monotonic
gain curves for neurons receiving correlated inputs via depressive synapses [37, 38]. However,

Figure 5. Non-monotonicity of response curves is robust against irregularity of the input.
Panels (a)–(c) show the input-output response of the LIF model system receiving input spike sequences with
Gamma-distributed inter-spike intervals. The system parameters in (a) and (b) are identical to the system
parameters in Fig. 2(a),(b). (c) shows the response of the system for parameters τ = 4, μ = 1, u = 0.2, c = 0.5
and Veq = 0, where the inset demonstrates that for small input rates no output is generated. Inset of (b) shows
the distribution for one fixed input rate, normalized to one. The shape parameter of the distribution was set to
α = 100, so that the relative standard deviation of the input intervals is sDt=

��Dt ¼ 0:1 .

doi:10.1371/journal.pcbi.1004002.g005
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the ultimate cause for the emerging non-monotonicity as well as its generality across systems’ de-
tails were not revealed in these studies. Our results now demonstrated that locking in systems
that receive spiking inputs and exhibit any type of limited resource generically induces responses
that are non-monotonic. We emphasize that this phenomenon relies on system-independent fea-
tures and therefore is not restricted to the four systems (LIF, FHN, HH, MNTB neurons) studied
here theoretically, computationally and experimentally. The above theoretical considerations
demonstrate that any neuronal system exhibiting output locked to the spiking input generically
exhibits non-monotonic response curves whenever resources are limited. Perfectly periodic in-
puts are not necessary for non-monotonic responses, but correlated inputs [37, 38] suffice to ex-
cite locking in the system and thus ultimately cause non-monotonic gain curves. This finding is
backed by our simulations considering jitter in the input spike times. Whereas initially revealed
for systems with adaptive synapses, it is also not relevant whether resources are mainly limited in
the pre-synapse or during input processing within the postsynaptic cell itself, causing, e.g., refrac-
toriness or other effective inhibition of an action potential.

How a neuron processes regular spike sequences thus serves as a general characteristic that
is complementary to its f-I-response to continuous input currents [10, 11].

Figure 6. Non-monotonic response to regular inputs as observed in MNTB-neurons fromwhole-cell
patch-clamp recordings. (a,b) Experimentally obtained response curves of two different MNTB-neurons for
different pulse currents [(a) green: 375pA, orange, red: 425pA, blue: 450pA (b) orange: 575pA, red: 600pA,
blue: 650pA]. The dashed lines indicate the major n:1-locking states predicted—no free fit parameter. Error
bars indicate the estimated error made by calculating the mean output frequency from a finite number of
output spikes. (c–f) Membrane potential dynamics for different locking types: (c) 1:1-locking, (d) 2:1-locking,
(e) 3:1-locking, (f) unlocked, irregular dynamics. The letters in (b) indicate the data points where these
dynamics were observed.

doi:10.1371/journal.pcbi.1004002.g006
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Interestingly, certain neurons may exhibit a different type of non-monotonic, typically
unimodal response [42, 43]. Such responses, however, are markedly distinct from the
phenomenon revealed above, because potential non-monotonicities in the output rate arise as
a consequence of a subthreshold resonance due to a combination of noisy and oscillating con-
tinuous-time inputs and as such are unrelated to the direct locking of discrete time spikes.

Neurons exhibiting dynamical responses similar to those illustrated above (cf. Fig. 2a) on a
coarse scale display a linear transmission function with saturation threshold such that any
input substantially above the threshold (about lin ≈ 0.3 in our LIF example) would result in an
output around that value, lout ≈ 0.3, thus providing a nonlinear computational element that
roughly fixates the output if the frequency of the input sequence is sufficiently high.

More generally, non-monotonic single-neuron responses will have strong functional im-
pacts already in simple neural circuits using spike-time codes [47–49]. As an example, even a
short chain, small network motifs [50] and cyclic networks of a few neurons may reliably set an
operating point and classify external inputs according to their frequency. We speculate that
such basic computations may be essential in neural circuits that require stabilized spike se-
quences and as such be of central relevance for controlling behavior. Examples for such systems
operating with close-to periodic spike sequences are central pattern generators— essential for
controlling locomotion— and the CA1 area of the hippocampus exhibiting oscillations with a
precise and stable frequency [12–22]. In these neural networks the nonmonotonic response
properties of the single neurons may well be important for the stability of the overall network
dynamics. This points towards the open question how the non-monotonic relations between
spiking inputs and spiking outputs of single neurons impact the computational capabilities of
neural circuits in general.

Methods
The neurophysiological experiments on principal neurons of the medial nucleus of the trape-
zoid body (MNTB) were carried out in the following way.

Slice preparation
Brainstem slices were prepared fromWistar rats (postnatal day 8 to 10) essentially as described
before in [51]: the brainstem was quickly immersed in ice-cold low Ca2+ artificial cerebral spi-
nal fluid (aCSF) containing (in mM): NaCl (125), KCl (2.5), MgCl2 (3), CaCl2 (0.1), glucose
(25), NaHCO3 (25), NaH2PO4 (1.25), ascorbic acid (0.4), myo-inositol (3), Na-pyruvate (2),
pH = 7.3 when bubbled with carbogen (95% O2, 5% CO2). The tissue was glued onto the stage
of a VT1000S vibratome (Leica, Nussloch, Germany) and 200 µm thick slices were cut. Slices
were transferred to an incubation chamber containing normal aCSF and maintained at 35°C
for 30–40 min, and thereafter kept at room temperature (22–24°C) for at most 4 hours. The
composition of normal aCSF was identical to low Ca2+ aCSF except that 1.0 mMMgCl2 and
2.0 mM CaCl2 were used.

Electrophysiology
Whole-cell patch-clamp recordings were obtained fromMNTB-neurons using an EPC-10 am-
plifier. The analog signals were digitized and stored on disk using ‘Pulse’ software (HEKA Elek-
tronik, Lambrecht/Pfalz, Germany). Sampling intervals and filter settings were�20 µs and 4.5
kHz, respectively. All offline analysis was performed with ‘Igor Pro’ software (Wavemetrics,
USA). Cells were visualized by IR-DIC microscopy through a 40x water-immersion objective
(NA = 0.8) using an upright BX51WI microscope (Olympus, Germany) equipped with a 1.5–
2x pre-magnification and a VX45 CCD camera (PCO, Germany). All experiments were carried
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out at room temperature. Patch pipettes were pulled from borosilicate glass with filament
(Science Products GmbH, Hofheim, Germany) on a P-97 micropipette puller (Sutter Instru-
ment, Novato, CA). Open tip resistance was 2–4 MO and access resistance (RS) was�20 MO.
Action potentials (AP) trains were elicited by injecting trains of 50 short (1 ms duration) rect-
angular, depolarizing current pulses at various frequencies (20 to 176 Hz) and amplitudes (250
to 900 pA). The sweep interval was 200ms to allow voltage-activated conductances to fully re-
cover from inactivation. APs were measured in the current-clamp mode of the EPC-10 after
adjusting the fast-capacitance cancellation while in cell-attached mode. Pipette were filled with
a solution consisting of (in mM): K-gluconate (100), KCl (60), HEPES (10), EGTA (5), Na2-
phosphocreatine (5), ATP-Mg (4), GTP (0.3), pH = 7.3 with KOH.

Analysis of recorded spike sequences
We extracted the output frequency from each data trace resulting from the measurements
using a self-written program. This program counted the number of output spikes N generated
by the MNTB neuron and registered the time T between the first and the last spike. Here, we
made use of the fact, that the first input spike always generated an output spike. Then, the out-
put frequency was given by lout = (N−1)/T. As we cut off the remaining data trace, where no
further output spike was measured, we made a small error e. We estimated the size of this error
in the following way: Whenever the input is locked 1:1 to the output, there is no error as we
cannot miss any output spike interval. The probability of missing one interval is proportional
to the difference of input and output frequency. As we measured the neuron’s output to 50
input spikes the error we make in missing one interval is 1/50th of the overall measured fre-
quency. Thus, we estimated the error to be e = (lin−lout)/50.

Analysis of simulated spike sequences
As for recorded spike sequences, we counted the number N of generated spikes for a time inter-
val of length at least Dt� Dt� = 10s or 100 spikes, implying a maximum error of the output fre-
quency of jDfj � (fDt)−1 or jDfj/f� 1% resp.
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