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ABSTRACT

Complex and networked dynamical systems characterize the time evolution of most of the natural and human-made world. The dimension
of their state space, i.e., the number of (active) variables in such systems, arguably constitutes their most fundamental property yet is hard to
access in general. Recent work [Haehne et al., Phys. Rev. Lett. 122, 158301 (2019)] introduced a method of inferring the state space dimension
of a multi-dimensional networked system from repeatedly measuring time series of only some fraction of observed variables, while all other
variables are hidden. Here, we show how time series observations of one single variable are mathematically sufficient for dimension inference.
We reveal how successful inference in practice depends on numerical constraints of data evaluation and on experimental choices, in particular
the sampling intervals and the total duration of observations. We illustrate robust inference for systems of up to N = 10 to N = 100 variables
by evaluating time series observations of a single variable. We discuss how the faithfulness of the inference depends on the quality and quantity
of collected data and formulate some general rules of thumb on how to approach the measurement of a given system.
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The dynamics of a complex system is fundamentally governed by
the number of its active dynamical variables, the system’s state
space dimension. However, identifying state space dimension
constitutes a difficult task, in particular if the dimension is much
larger than the number of variables observed. Here, we show that
it is mathematically possible in principle to infer the dimension
of the state space using time series observations of just one vari-
able, for arbitrarily high state space dimensions. We discuss how
in practice the success of this inference depends on numerical con-
straints of data evaluation and experimental choices, such as the
sampling intervals and total duration of observations. We illus-
trate how the approach may be applied to high-dimensional sys-
tems, e.g., with 100 variables, and provide general rules of thumb
for performing and evaluating measurements of a given system.
Our results provide a novel approach for inferring the dimension
of complex and networked dynamical systems from scalar time
series data and may help to develop alternative methods, e.g., for
the reconstruction of the dimensions of system attractors.

I. INTRODUCTION

Models of dynamical systems constitute cornerstone scien-
tific tools for analyzing, predicting, optimizing, or modifying the
time evolution of the natural or human-made world, from gene
regulation in the cell and neural activity in the brain to the dis-
tribution of electric energy across power grids. Arguably, the most
fundamental property of a dynamical system is its state space dimen-
sion, i.e., the number of active dynamical variables required to
model the time evolution of the specific system of interest. For
many simple systems, its state space dimension is known. For
instance, the physical pendulum is characterized by two dynam-
ical variables, the angle of incline of a mass against the direc-
tion of gravity and its rate of change, the angular velocity. For
complex dynamical systems relevant in physics, biology, medicine,
and engineering as well as in the socio-economic sciences, how-
ever, its state space dimension N is often unknown. Such com-
plex systems typically constitute networks and consist of many
dynamical variables z(t) = (z1(t), z2(t), . . . , zN(t))T ∈ R

N. These are
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coupled via interaction topologies that are often a priori (at least
partially) unknown and their time evolutions follow some, often also
unknown, equations of motion,

d

dt
z = f(z) + s(t), (1)

in continuous time t ∈ R or

z(t + 1) = g(z(t)) + s(t), (2)

in discrete time t ∈ Z. Here, s(t) is an external signal that may, for
instance, systematically probe the system,1 continuously drive it with
deterministic or random fluctuations,2 or move it to different ini-
tial conditions.3 In many experimental or observational settings for
measuring complex systems dynamics, only one or a few variables
xµ(t) are perceptible, i.e., accessible to record time series from. If a
total of n variables are perceptible in this sense, the remaining N − n
variables remain hidden from direct experimental access. Can we
still find N?

II. BACKGROUND

Given an unknown time evolution rule, unknown interaction
topology and most dynamical variables hidden, how may we infer
the state space dimension?

Previous work has followed mainly three paths, one striving
to infer the dimension D of effective state space of an invariant set
(attractor) after a transient,4–7 a second striving to infer the dimen-
sion N of full state space by cleverly evaluating system responses to
actively ongoing and well-controlled external driving signals,1 and
a third striving to find N from time series of some n < N vari-
ables during transients in systems not externally driven.8 We briefly
discuss all three paths.

First, consider methods of inferring the dimension of attractors
after reconstructing those attractors from scalar time series. All dis-
sipative dynamical systems in the long term, i.e., after possibly long
transients, settle onto invariant sets of dimension D ≤ N. If D > 2,
the dynamics on such attractors may be chaotic. A major branch of
past research was to identify attractor dimension, i.e., the number
of active dynamical degrees of freedom that remain after a tran-
sient. To estimate D, one first finds suitable delay coordinates y(t)
= (x1(t), x1(t − τ), . . . , x1(t − N′τ))

> to embed a time series
recorded from one variable x1(t)9 into some N′-dimensional space.
One then estimates the dimension D of the resulting geomet-

ric object, i.e., the set of sample points y(tk) ∈ R
N′

in the N′-
dimensional state space obtained at many sampling times tk via
multi-dimensional statistics, for instance, correlation dimension.10

Taken’s Theorem and its extensions11–15 guarantee that under mild
constraints the attractor dimension is faithfully identifiable if the
embedding dimension and delay parameter τ are chosen appropri-
ately. There exist different approaches to identify such parameter
choices, often based on empirical or heuristic arguments, but also
using more strict statistical frameworks.5

However, both the delay-embedding technique and, more
importantly, the statistical dimensional estimator based on geomet-
ric information limits the applicability of such techniques to low
dimensions, with typical deduced values of the order of D = 1.0
to D = 4.0. The core reason underlying this limitation is that the

number of data points typically required for faithful dimension
estimation scales exponentially with the dimension, thereby posing
a major obstacle to dimension estimation.4 Moreover, the technique
is applicable only to parts of the trajectory on or sufficiently close
to the invariant sets, after any transients, and infers the attractor
dimension D, not the state space dimension N which is often much
larger.

Second, consider methods exploiting external probing, i.e.,
applying a known and controlled external signal s(t) to evaluate the
system responses in the presence of these signals. Specifically, Ref. 1
has proposed a method of inferring the number N of active variables
in a network dynamical system by sinusoidially driving the system
with signal components of the form

sµ(t) = a0 sin(ω0t). (3)

applied to an arbitrary variable zµ, µ ∈ {1, . . . , N}. Here, a0 is the
probing amplitude and ω0 the probing frequency. While no detailed
information about the coupling mechanism is necessary, the cou-
pling between any two variables must be bidirectional and mediated
by an odd (and differentiable) function.

Moreover, the method is designed to operate sufficiently close
to a stable fixed point z∗ with a local Jacobian A = ∂f/∂z(z∗) that
has a single zero eigenvalue: 0 = λ1 > λ2 ≥ · · · ≥ λN. If a0 is small
relative to the non-zero eigenvalues of A, |a0| � |λ2|, the system can
adapt to the external input so that its variables collectively follow the
probing signal sµ(t) driving one variable. For inferring the system
dimension, one records the trajectory xµ(t) of the probed vari-
able and extract its maximum value xmax

µ := maxt xµ(t). The system
dimension is then estimated as

N̂ =
2a0

xmax
µ ω0

. (4)

To make sure that the whole system is responding to the local

probing, the authors vary ω0 and use a choice that maximizes N̂.
The applicability of such probing schemes may be limited. In

particular, the probing scheme is infeasible for systems that are
not experimentally accessible in such a way that it allows apply-
ing controlled external driving signals. Moreover, e.g., for biological
or other complex dynamical systems, their collective dynamics may
not satisfy the conditions of symmetric odd coupling required for
successful probing-based inference.

Third, consider the recent proposal by Haehne et al.16 to infer
state space dimensions N from time series data recorded from tran-
sients of a number n < N of perceptible system variables. Porfiri17

showed that the method can be successful if all system variables are
observable, in the control-theoretic sense, from the n perceived vari-
ables experimentally recorded from. The two works jointly imply
that under reasonably mild conditions, basically requiring local dif-
ferentiability near some state space point and sufficiently many time
series data recorded close to that point, the state space dimensions
may be inferred even if N ≥ 100.

We remark that this method relies on transients before reaching
attractors and identifies the dimension of the entire state space, in
contrast to attractor reconstruction methods discussed above which
rely on trajectories on (or very close to) attractors and identify the
dimension of the attractor. Early work18 had already considered a
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matrix rank approach for analyzing attractor in a way conceptu-
ally similar to that by Haehne et al.16 on identifying state space
dimension.

III. RECONSTRUCTING SYSTEM DIMENSION FROM A

FEW VARIABLES

The mathematical arguments underlying these two works16,17

are based on linearizing the dynamics near some point z∗ in N-
dimensional state space, yielding

x̃(t) = Ax(t), (5)

where x(t) = z(t) − z∗ is a local deviation from z∗19 and x̃(t) is an
estimate of its temporal change, e.g., x̃(t) = dx(t)/dt or ordinary dif-
ferential equation (1) and x̃(t) = x(t + 1) for discrete time maps (2).
Here, A ∈ R

N×N is the Jacobian matrix of F ∈ {f, g} evaluated at z∗,
with elements Aνµ = ∂Fν/∂xµ(z∗). How can we extract information
about N from measuring only a few variables?

We start by formally solving the local equation (5) by
matrix exponentiation for ordinary differential equations, x(t) =
exp(At)x0, or by matrix powers for discrete time maps, x(t) = Atx0.
Here, x0

= x(0) is the initial condition at time t0 ≡ 0. We label the variables
such that we measure from the first n components of x(t) while the
other

h = N − n (6)

state variables are hidden from measurement. We then obtain
the time series of these variables y(m)(t) := [x1(t), x2(t), . . . , xn(t)]

T

∈ R
n from observations given a specific (unknown) initial condition

x(m)(0) ∈ R
N by a formal projection as

y(m)(t) =
[

In 0
]

x(m)(t), (7)

with identity matrix In ∈ R
n×n and the matrix full of zeros 0 ∈ R

n×h.
We abbreviate 2(t) =

[

In 0
]

exp(At) ∈ R
n×N for continuous time

and 2(t) =
[

In 0
]

At ∈ R
n×N for discrete time systems to encode

both the projection and the time evolution as

y(m)(t) = 2(t)x(m)(0). (8)

A. Collecting and arranging time series data

Given M different initial conditions x(m)(0), m ∈ {1, . . . , M},
the collection of observed time series y(m)(t) of Eq. (7) is summarized
into a matrix

Y(t) := [y(1)(t), y(2)(t), . . . , y(M)(t)]

= 2(t)X0 ∈ R
n×M, (9)

of observed states at time t, where the matrix X0 := [x(1)
0 , x(2)

0 , . . . ,

x
(M)
0 ] ∈ R

N×M collects the M different initial conditions.
We emphasize that the time evolution is obtained by formal

solutions that yield 2(t) but the actual time evolution encoded by
2(t) is entirely unknown, because even A and F are unknown.
Moreover, the initial conditions are also unknown up to those of the
(typically few) observed variables x1(0), . . . , xn(0). We only know
that an equation of the form (9) exists and we will exploit this fact
shortly.

To address a practical caveat, we emphasize the discreteness
of temporal observations. Any real-world or numerical experiment
is not capable of obtaining the full functions Y(t) in an interval of
t ∈ [0, T] up to measurement time T. Instead, it samples the tra-
jectories of the first n variables y(m)(t) (for each initial condition
x(m)(0), m ∈ {1, . . . , M}) at k discrete time points tκ , κ ∈ {1, . . . , k},

measured relative to the initial time t(m)
0 of the specific measurement.

We remark that the choice of the tκ must be the same across all initial
conditions (and variables). However, the time points tκ do not need
to be equally spaced, i.e., the time steps tκ+1 − tκ need not to be con-
stant. Given such data, we collate all measured data points y(m)(tκ)
up to time tk into a detection matrix

T(k,M) := [Y(t1)
>, . . . , Y(tk)

>]
>

. (10)

Here, (k, M) denotes the number of time steps k and the number
of initial conditions M that are contained in matrix T(k,M) ∈ R

kn×M.
Because of the missing knowledge about 2(t) and the largely miss-
ing knowledge about X0, we progress with the assumption that the
detection matrix contains all the information we have, i.e., the values
of all observed variables at all sampled times across the experiments.

B. State space dimension from the detection

matrix—Basic theory

Introducing

2(k)(t1, . . . , tk) := [2(t1)
>, . . . , 2(tk)

>]
>

∈ R
kn×N, (11)

we obtain the overall equation

T(k,M) = 2(k)X0, (12)

that constrains all our measurement data, similar to Eq. (9).
Equation (12) linearly relates the detection matrix T(k,M) to unknown
maps 2(k) encoding the dynamical evolution, as well as to the ini-
tial conditions X0. We again emphasize that by assumption only the
matrix T(k,M) is known, whereas 2(k) and X0 are unknown.

Our task now is estimate the dimension N of state space from
T(k,M) by sequentially increasing the number M of experiments taken
into consideration. Linear algebra yields the rank inequality

rank(T(k,M)) ≤ min
{

rank
(

2(k)

)

, rank (X0)
}

(13)

that the detection matrix necessarily satisfies. As rank(X0)

= min(N, M) and 2(k) = min(kn, N), the upper bound of the rank
of the detection matrix T increases with increasing numbers of
experiments and thus time series M and increasing numbers of time
steps k per series. Increasing M and k by sequentially taking into
account more data points, we find that typically the rank itself,
not only its upper bound, does increase16,17 until it reaches N, i.e.,
once M ≥ N and k ≥ N/n. This finding may be intuitively expected
because taking into account trajectories starting from additional ini-
tial conditions typically creates time series vectors that are linearly
independent of all such vectors previously entering T unless they
are specifically aligned to be linearly dependent. We thus generically
obtain

N̂ = rank(T(k,M)) (14)

as a predictor for the number of variables N of the dynamical sys-
tem. If the number of experiments or the number of time points
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sampled is not sufficiently large, the state space dimension is neces-

sarily underestimated, N̂ < N. We remark that no method is capable
of (rigorously) obtaining a faithful inference of N with such insuffi-
cient data. If the quantities are sufficiently large and the time series
data vectors are linearly independent, we have

N̂ = N. (15)

As Haehne et al. report in Ref. 16 for N of the order of 50–200 and

n of the order of 10–70, the estimated N̂ indeed increases and sat-
urates at N. For the examples analyzed in Ref. 16, noise, parameter
heterogeneities, etc., can typically be compensated for by increasing
the number M of evaluated trajectories and the number k of evalu-
ated time steps. However, so far, there is no systematic analysis of
the influence of n and specifically no general results about whether
and how dimension inference from time series of n = 1 variable is
feasible.

IV. DIMENSION ESTIMATE FROM A SINGLE

VARIABLE—THEORY AND PRACTICE

In the following, we highlight that such inference is possi-
ble even if only n = 1 variable is measured and explore practical
constraints of such inference.

First, we remark that the derivation (5)–(14) is independent of
the choice of the number n of perceived variables. Core equation
(14), in particular, also holds for n = 1, i.e., if time series of only one
variable are available, as schematically shown in Fig. 1.

This statement is mathematically exact. Still, quantitative fea-
tures of the time series data as well as numerical issues in determin-
ing the rank influence the practical feasibility of inferring state space
dimension N from time series recordings of only one variable. In

FIG. 1. Identification of system dimension from a single unit. (a) Networked
dynamical system composed from an unknown number of dynamical units N.
Depending on the experimental situation, only a number n < N of variables can
be measured. (b) The approach proposed in Ref. 16 introduces the detection
matrix T to reconstruct the number of active variables N from multiple measure-
ments of just a few perceptible dynamical variables (blue, purple, orange, yellow,
and green, n = 5). (c) The approach is equally valid also for only n = 1measured
variable (blue).

particular, there are several options to numerically obtain the rank,
for example, using the singular value spectrum (as discussed below).

Let us first illustrate the performance of the inference approach
for a class of simple linear model systems. Consider a continuous-
time dynamical system

ẋ = Ax, (16)

with state vector x(t) = (x1(t), . . . , xN(t)) ∈ R
N and coupling matrix

A ∈ R
N×N. The non-diagonal elements of A can be interpreted as the

adjacency matrix of a simple weighted directed graph G that encodes
the interaction structure of the system. The diagonal elements of
A determine the free time evolution of the individual variables xi,
which represent the nodes of G.

Given ensemble parameters N ∈ N, β ∈ R, and γ ∈ (0, 1], the
coupling matrix is given by

A = R − INβ , (17)

where R ∈ R
N×N is a matrix with elements randomly distributed

according to the normal distribution with mean 0 and variance
1/(γ N) and a fraction γ of randomly chosen elements are set to
zero. The matrix IN is the N × N identity matrix. The parameter
β determines the strength of the self-coupling of the individual
units relative to the inter-unit interactions. The coupling matrix A
is designed such that in the limit of N → ∞ its eigenvalues are uni-
formly distributed on the complex unit disk centered at (−β , 0) ∈ C.
Figures 2(a)–2(c) illustrate interaction network, adjacency matrix,
and eigenvalue spectrum of an exemplary linear dynamical system
as given by Eqs. (16) and (17), with β = 1, γ = 0.5, and N = 12.

Using the analytical solution x(t) = exp(At)x0 to Eq. (16), we
simulate the measurement of trajectories of the first variable y(t)
≡ x1(t), starting from M different initial conditions, each chosen
randomly from a uniform distribution on [−1, 1]N, see Figs. 2(d)
and 2(g). The trajectories y(t) are evaluated at k discrete time points,
which for sake of simplicity are equally spaced, with a time step
1ti = ti − ti−1 ≡ 1t between successive measurements. For a sin-
gle reconstruction trial, a detection matrix T(k,M) containing M
measurement series with k sampling points each is constructed
[Figs. 2(e) and 2(h)] and the rank is extracted by counting the
number of singular values of T(k,M) which lie above the largest
gap in the log-scaled singular value spectrum (as computed by the
LAPACK routine dgejsv20). Figures 2(d)–2(i) exemplarily illustrate
two dimension reconstruction trials for the same dynamical sys-

tem, one leading to a correct prediction N̂ = N, and one leading

to an incorrect prediction N̂ < N. The dimension of the detection
matrix and even the M different initial conditions are identical for
both examples, the only difference lies in the choice of the time
step 1t between successive sampling points, which evidently may
be important for successful reconstruction.

Figure 3(a) illustrates that the prediction quality generally
strongly depends on the specific choice of the time step 1t during
sampling, relative to an (potentially unknown) intrinsic time scale

of the system. However, by varying 1t to maximize N̂(1t), typically
we are able to successfully extract the true system dimension without
prior information about the time scales of the interactions. Hence,
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FIG. 2. Model system and rank extraction. (a)–(c) Typical realization of linear
model as given by Eqs. (16) and (17), for β = 2, γ = 0.5. (a) Network topology.
Directed, weighted links encode the self- and inter-variable coupling strengths.
(b) Plot of the adjacency matrix A, same color code as in (a). (c) Eigenvalue
spectrum of coupling matrix A. In the limit limN→∞, all eigenvalues are uni-
formly distributed on a disk in the complex plane with radius 1 around point
(−β , 0) (d) and (g) The first component of M = 15 trajectories consisting of
k = 15 equally spaced sampling points each are recorded and the resulting data
points are (e) and (h) collated into a detection matrix T(k,m). Sampling time steps
1t = 0.2, 0.1 in (d) and (g), respectively. (d) and (e) The prediction for the system

dimension, N̂ = rank(T(k,m)) is extracted performing a singular value composition
and taking the number of singular values which lie above the largest gap in the
log-scaled singular value spectrum as the matrix rank. (d)–(f) Successful recon-
struction trial. The largest gap 1max is in fact at the right place, 1max = 1N ,

leading to a correct prediction N̂ = N. (g)–(i) Incorrect prediction. The logarith-
mic gap below the N largest singular values is smaller than some other gap,

1max > 1N , leading to a false prediction N̂ 6= N.

in the following we take

N̂ ≡ arg max
1t

(

N̂(1t)
)

, (18)

where 1t is varied across multiple orders of magnitude.
Figure 3(b) visualizes the reconstruction quality in terms of the

share of correct predictions P as a function of the system dimen-
sion N, for different choices of β and 200 model realizations for
each N. Throughout, we set a graph density of γ = 0.5. We find sys-
tem dimension inference from a single variable to be quite robust
up to dimension N = 18. Reconstruction quality generally is bet-
ter for systems with smaller self-interaction strength β , which for
the considered model corresponds to Jacobian matrices with eigen-
values closer to the origin, which lead to eigenmodes decaying on
relatively different time scales.

FIG. 3. Reconstruction performance for linear system. (a) Predicted system

dimension N̂ as a function of the (constant) time step 1t between consecutive

sampling points ti , ti+1. Typically, by varying 1t, so that N̂ is maximized, we find
a good predictor for the true system dimension N. (b) Reconstruction quality in

terms of the share P of correct predictions N̂ = N as a function of the system
dimension N for different system parameters β and γ = 0.5. For each of 200
system realizations for every choice of N, β , reconstruction is carried out for dif-
ferent time steps 1t ∈ [0.01, 1], with M = k = 25, and the maximum value of

N̂(1t) is taken as prediction for the specific system.

V. ROLE OF DATA COLLECTION

For successful reconstruction, it is necessary that both the num-
ber of trajectories M and the number of time steps k per trajectory
are larger than the (unknown) system dimension N. From a strictly
mathematical viewpoint, these conditions are also sufficient, if the
considered system is observable (cf. Ref. 17). However, in the last
section, we saw that from a numerical perspective also the choice of
the time step 1t between successive sampling points is critical [see
Fig. 3(a)]. Often, an optimal choice can be found by maximizing the

prediction N̂ [see Eq. (18)] upon varying parameters. We explore in
more detail how the number of time steps per trajectory k, the time
step 1t, and the total measurement time T = (k − 1)1t co-act and
together affect the inference quality.

Figure 4 illustrates the share of correct predictions P as a func-
tion of the time steps 1t and the number of trajectories k (left
column) as well as as a function of the time steps 1t and the total
measurement time T = (k − 1)1t (right column), for N = 12 and
different choices of the self-interaction strength model parameter β .
Though the exact details may depend on the specific model type and
the system dimension N, we can distinguish qualitatively different
cases. Depending on the value of β , the choice of time steps 1t which
leads to nearly perfect reconstruction P ≈ 1 is determined either by
minimal and maximal values of either the time step 1t itself, the
total measurement time T or combinations of both. For example,
for β = 1 [Figs. 4(a) and 4(b)], we find the choices of 1t which lead
to nearly perfect reconstruction to be determined only by the total
measurement time T, regardless of 1t, while for β = 2 [Figs. 4(c)
and 4(d)], a minimum total measurement time T has to be sur-
passed, while the time step 1t should not exceed a maximum value.
Finally, for larger β = 5 [Figs. 4(e) and 4(f)], we find the choices
of 1t that lead to a high share P ≈ 1 of correct predictions to be
entirely independent of k (as long as k > M) and bounded by values
of the time step 1t itself. We point out that the situation changes
qualitatively, if we do not require a high share of correct predictions
P ≈ 1 but instead require only that P > 0 (any correct predictions
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at all). In this case, for the considered class of linear systems, the
lower boundary is typically defined in times of a minimal total mea-
surement time T, while the upper boundary is set by a maximum
time step 1t. We remark that the described effect of 1t and T on
the share P of correct predictions is inherently defined for ensem-
bles. Across given model realizations, the effect of 1t and T may
differ. We expect the observed behavior to be closely connected to
the eigenvalue spectrum of the coupling matrix A, which determines
the time scales of the different decaying eigenmodes of the system.
For successful reconstruction, all of these have to be appropriately
resolved.

Thus, knowledge about the dependency of the optimal choice
of sampling parameters 1t and k may allow a more effective
calibration in terms of setting the time step 1t. Without such
knowledge, the reconstruction quality can still be optimized by
varying it without any prior information.

In contrast to the number of trajectories k, which indirectly
might influence the reconstruction quality for fixed 1t via the total
measurement time T = (k − 1)1t, we find that the number of tra-
jectories M (i.e., the number of initial conditions) often does not
influence the reconstruction quality at all, as long as it exceeds the
actual system size, M ≥ N.

While the requirements on the dimension of the detection
matrix T(k,M), namely, k ≥ N, M ≥ N are strict requirements directly
following from its mathematical derivation, in practice usually the
absolute numerical resolution ρ of the observed data is the limit-
ing factor. Figure 5 illustrates that the inference quality P depends
strongly on the resolution of the available trajectory data and that the
maximum number of variables NP>0.95 which is reconstructed cor-
rectly in at least a portion P > 0.95 of all cases scales approximately
logarithmically with the resolution ρ,

NP>0.95 ∝ C log 1/ρ, (19)

where C is a constant. Note that the value of 0.95 is just an exam-
ple, and Eq. (19) also applies for other values. Furthermore we find
that, if the system exhibits a stable fixpoint z∗ = 0 ∈ R

N, using a rel-
ative precision (rather than, e.g., a fixed number of decimal places)
is advantageous, as much smaller deviations from z can be resolved,
see the gray line in Fig. 5(a).

VI. ROBUSTNESS OF DIMENSION RECONSTRUCTION

So far, we only considered systems described by determinis-
tic linear differential equations. This section addresses the effect of
nonlinearities and stochastic noise on reconstruction quality.

First, we consider stochastic linear dynamics with multiplica-
tive noise as described by

dx = Ax(t)dt + κx(t)dW (20)

(in Itô calculus), where W(t) ∈ R
N denotes a vector of indepen-

dent standard Brownian motions, scalar parameter κ controls the
noise amplitude, and the coupling matrix A is created according
to Eq. (17). We find that stochastic noise affects the reconstruc-
tion quality P in a similar way as the measurement precision
ρ, albeit more strongly. Nevertheless, for small noise levels, the
reconstruction of small systems dimensions is still possible.

FIG. 4. Effect of sampling time step 1t and total covered time T = (k − 1)1t.
Linear model as given by Eqs. (16) and (17), with parameters β = 1 (a) and
(b), β = 2 (c) and (d), and β = 5 (e) and (f). (a), (f), and (k) Share of correct
predictions P as a function of the time step 1t between successive sampling
points and the number of sampling points k. (b), (g), and (e) Same data visu-
alized as a function of the time step 1t between successive sampling points
and the total covered time T = (k − 1)1t per time series. (White regions: no
data.) Blue/red lines: parameter choices with P = 0.05, 0.95. Depending on β ,
the range of time steps 1t, total measurement times T , and number of samples
per trajectory k which lead to robust reconstruction (P ≈ 1) are determined by
boundaries on either1t or T or mixtures thereof (red lines). However, the possibil-
ity of having any correct predictions is always determined by a minimum total time
T = (k − 1)1t, and a maximum time step 1t, regardless of β (blue lines).
Throughout, N = 12, γ = 0.5,M = 200,P calculated for ensemble of 100 real-
izations for each β , 1t, k. Exemplaric eigenvalue spectra of coupling matrix A
shown as the inset for each respective choice of β .

Second, we illustrate successful dimension inference for non-
linear dynamics by employing networks of Kuramoto oscillators

ẋi = ωi +
K

N

N
∑

j=1

Aij sin (xi − xj), i ∈ {1, . . . , N}, (21)

with intrinsic frequencies ωi chosen independently from a standard
normal distribution N (0, 1) and elements of A being 1 with proba-
bility γ = 0.5 and 0 otherwise. The value of the coupling strength K
determines the degree of synchronization of the oscillator network.
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FIG. 5. Effect of measurement precision. The resolution for recording the tra-
jectories of the single accessible variable characterizes the maximum system
dimension which can be robustly inferred. (a) Share of correct predictions P as
a function of N for different numbers of decimal places ρ and for floating preci-
sion with 16 significant digits. (b) Share of correct predictions P as a function of
N and the number of decimal places ρ of the dynamical data. Note the approxi-
mately linear relation betweenρ and the number of variables which can be reliably
reconstructed.P averaged over 200 linear model realizations per value of N, with

β = 1, γ = 0.5. The time step 1t is chosen to maximize N̂, and M = k = 25,
throughout.

After a sufficiently long transient, per reconstruction trial M + 1 tra-
jectories are simulated by applying a perturbation of the order 10−6

and simulating the resulting transients. Then the difference vectors
of the first M trajectories and the M + 1-th make up the columns of
the detection matrix. We find that dimension inference is particu-
larly good for small values of K = 0.2 (almost no synchronization),
where reconstruction of N = 100 units is fairly robust [see Fig. 6(b)],
while for larger values of K = 2, the reconstruction quality it gets
less robust. In particular, we find that for higher K, often the sys-
tem dimension is overestimated, so that varying the sampling time

step 1t to maximize N̂ (as is done in the examples) might not be
as effective as a more careful calibration of 1t, see also the inset of
Fig. 6(b).

VII. CONNECTION TO THE HANKEL-MATRIX

APPROACH21

Reference 21 introduces an approach that is formally simi-
lar to the detection-matrix technique proposed by Haehne et al.16

but requires only a single trajectory for dimension inference. The
authors consider a network system of N variables with time-discrete
dynamics

x(t + 1) = f(x(t)), (22)

where x(t) = (x1, . . . , xN) ∈ R
N represents the internal state of the

system at time step t ∈ N and f : R
N → R

N is an unknown, continu-
ously differentiable function that determines the underlying dynam-
ics. Assuming the first n variables are accessible for measurement,
one records a trajectory y(t) = (x1(t), . . . , xn(t)) ∈ R

n by sampling
at times t ∈ N. The resulting n-variate time series are collated into
so-called Hankel matrices

Hl =











y(0) y(1) . . . y(l − 1)
y(1) y(2) . . . y(l)

...
...

. . .
...

y(l − 1) y(l) . . . y(2l − 2)











∈ R
l×l, (23)

where l is an integer that refers to the size of the matrix. With data
covering k different time points, one creates Hankel matrices Hl up
to l =

⌊

(k + 1)/2
⌋

. If the observability matrix O of the system has
maximum rank, i.e., the system is observable from the n accessible
variables in the sense of control theory,22 all matrices Hl with l > N
must be singular. Therefore, increasing the size of Hl continuously
by adding more data points eventually does not change the rank of
the Hankel matrix anymore, revealing the system dimension

N̂ = max
l

rank (Hl) . (24)

Note that for linear or linearized systems, the discrete formula-
tion

x(t + 1t) = Bx(t), (25)

and the continuous formulation

ẋ = Ax(t), (26)

are equivalent for

B = exp(A1t), (27)

for t = i1t, i ∈ N, as can be verified by integrating both (25) and
(26). Now, consider again the detection-matrix approach as pro-
posed by Haehne et al.16 for a single observable variable, n = 1,
see Eq. (10). From a mathematical point of view, it is acceptable

to have initial conditions x
(1)
0 , . . . , x(m)(0) that themselves constitute

a time evolution x̃(t) of the dynamical system, so that x
(1)
0 = x̃(t0),

x
(2)
0 = x̃(t1), and so on. This allows to construct a valid detection

matrix with k = M = l from a single univariate time series ỹ(t) with

FIG. 6. Reconstruction quality for noisy and nonlinear dynamics. (a) Share of cor-
rect predictionsP as a function of system dimensionN for stochastic dynamics as
given by Eq. (20) for different strengths κ of multiplicative noise. 200 model real-

izations per value ofN, time step1t varied to maximize N̂, as always. (b) Share of
correct predictionsP as a function of system dimension N for nonlinear networks
of Kuramoto oscillators as described by Eq. (21) for different coupling strengths

K ∈ {0.2, 2}. Unlike with linear systems, maximizing N̂ across large ranges of
1t may induce an overestimation of the true system dimension, see the inset
for five system realizations (five colored lines), each with K = 2,N = 50. For the
main plot, we varied1t ∈ [0.1, 1] for K = 0.2, and1t ∈ [0.18, 56] for K = 2, as
marked in the inset (black vertical lines). Throughout, we average over 100 model
realizations per value of N.
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2l − 1 equally spaced sampling points,

T(k=l,M=l) =











ỹ(t1) ỹ(t2) · · · ỹ(tl)

ỹ(t2) ỹ(t3) · · · ỹ(tl+1)

...
...

. . .
...

ỹ(tl) ỹ(tl+1) · · · ỹ(t2l−1)











. (28)

This is equivalent to the Hankel matrix Hl From Ref. 21 for a sin-
gle observable variable (n = 1), compare Eq. (23). An analogous
argumentation can be applied in the case that multiple variables
are perceivable (n > 1). Hence, the single-trajectory Hankel-matrix
approach from Ref. 21 is a special case of the detection-matrix
approach addressed in Ref. 16 and in this work.

Depending on the experimental situation, one method may be
chosen over the other. On one side, for the Hankel-matrix method,21

the experimental setup must allow measurement with a precise con-
stant sample rate over a longer time—otherwise, the same data point
cannot be used in different positions of the detection matrix. This
also implies that the transient of the system dynamics is actually long
enough, and that the measurement system’s resolution capabilities
can sufficiently cover the whole observed dynamics. On the other
side, for the more general method described in this manuscript and
Ref. 16, a larger number of trajectories M > N must be available.
However, we point out that for practical applications also combi-
nations of the approaches introduced in Refs. 21 and 16 may be
an option. For example, suppose that experimental conditions allow
measuring multiple trajectories but not enough to ensure M > N. In
such a case, additional series may be synthesized by splitting trajec-
tories which are long enough into smaller parts, or by time-shifting
them in a manner similar to Ref. 21. Of course, this approach can
also be generalized to cases where multiple variables are perceivable,
n > 1.

By performing simulations for n = 1, we find that generically
using multiple shorter trajectories leads to a better dimension pre-
diction performance than using a single longer trajectory, when the
total number of sampled data points is the same, see Fig. 7. This
might be explained by the fact that a single trajectory comes with
higher levels of correlation and carries substantially less dynamical
information, making numerical rank evaluation more ambiguous.
Apart from this, long trajectories may be problematic because ampli-
tudes get very small, deteriorating reconstruction quality. Hence,
whenever possible, it might be preferable to distribute available mea-
surement capacities on multiple time series starting from different
initial conditions. We also exemplarily illustrate the inference qual-
ity for a mixed scenario, in which M ′ < N trajectories are recorded
and split in the middle. As expected, its performance falls between
the pure single-trajectory approach and the approach with M > N,
suggesting it as a viable alternative if the number of trajectories is
constrained.

We point out that the Hankel-matrix method performs better
In Ref. 21, than in our own simulations. This might be due to a
thresholding scheme for the rank extraction which is more carefully
calibrated to the model, while this work for sake of comparability
and generality uses a completely model-free approach which is based
on the largest logarithmic gap in the singular value spectrum (see
Fig. 2). However, our results should qualitatively hold also for more
sophisticated rank extraction schemes.

FIG. 7. Comparison between multi-trajectory and single-trajectory approach.
Share of correct predictions P as a function of system dimension N for differ-
ent inference methods, using the same total number of data points, for noiseless
dynamics (solid lines) and multiplicative noise (κ = 10−6, dashed lines). (a) The
multi-trajectory approach as discussed in this manuscript with M = 25 univariate
time series consisting of k = 25 samples typically performs better than the sin-
gle-trajectory approach suggested in Ref. 21 with a single time series including a
total of 2l + 1 = M × k = 625 time points, leading to a 312 × 312 Hankel-ma-
trices Hl . (b) Combined approach withM

′ = 4 time series consisting of k′ = 156
data points each. From each of the 4 time series, 6 shorter time series with length
24 are constructed by collating every 6th data point into the same series. This
leads to a 24 × 26 detection-matrix with an effective time step 61t, with a total
of 624 data points. The reconstruction quality lies between the multi-trajectory
approach withM > N and the single-trajectory approach with l � N, suggesting
its use in cases when multiple trajectories M ′ are available, but not enough to
guarantee that M ′ > N. P shown for an ensemble of 200 linear model realiza-
tions for each N, with β = 1, γ = 0.5. For each system realization and inference

approach, 1t is varied to maximize N̂.

VIII. CONCLUSION

The dimension of a dynamical system, that is, its number
of dynamical variables, is arguably one of its most fundamental
properties. Knowing the exact number of variables of a network
dynamical system is crucial for applying more specific reconstruc-
tion techniques23–28 as well as for estimating models of the system
in the first place. While there is a notable amount of literature
on inferring the network dimension from observable continuous
time dynamics, all of these methods consider multiple perceivable
variables,16 at most a few hidden units,8,29–31 or are limited to rather
specific experimental situations.1,21 Our article addresses the chal-
lenge of inferring the dimension of a network dynamical system
from univariate time series covering only the dynamics of a single
variable.

Building on the detection-matrix method as introduced in
Ref. 16, we show that from a mathematical perspective, reconstruc-
tion of the system dimension from dynamical data from only a sin-
gle variable is not qualitatively different from reconstruction using
multi-dimensional data. We demonstrate that dimension recon-
struction from a single variable is not only possible in theory, but
also numerically relatively robust. We explore which system prop-
erties and measurement decisions determine the prediction quality
and point out that typically the inference quality is restricted only
by the numerical precision of the measured data. In particular, we
illustrate how the detection-matrix method comes out without any
presumptions on the probed system, if the sampling rate is var-
ied systematically, and that its performance may in fact improve
with larger nonlinearities. Finally, we analytically demonstrate that

Chaos 33, 073136 (2023); doi: 10.1063/5.0156448 33, 073136-8

Published under an exclusive license by AIP Publishing

 24 July 2023 11:48:15

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

another dimension-inference approach, which is based on Hankel-
matrices build from single-trajectories, represents a special case of
the detection matrix approach as treated in Ref. 16 and this work.

A possible future step would be to study the applicability of
the proposed inference technique to real-world systems which con-
sist of a small number of units, such as small biological networks,
e.g., metabolic, genetic or neural, depending on available data qual-
ity and quantity. Even though in most realistic scenarios dimension
reconstruction from a single node may not be yet practical due
to unrealistic demands on the numerical precision of the observed
data, a general bottleneck for detection-matrix approaches, our con-
ceptual work may serve as a starting point for a systematic study
of dimension reconstruction from a very small number of variables
(e.g., n = 2, 3), in particular, regarding the choice of sampling time
steps, and possibly the consideration of topological features. On the
technical side, we point out that we chose the relative-thresholding
approach for rank extraction primarily for sake of simplicity and
generality, while other, more evolved approaches may increase the
power of the inference method,32 in particular, if they are chosen
based upon potential a priori information about the considered
system.

Overall, we have demonstrated that inference of state space
dimension, as inference of attractor dimension, from single vari-
able time series is possible. It is also robust, with its accuracy mainly
limited by the resolution of the time series data. By using the sug-
gested calibrating scheme for the sampling time steps, the proposed
approach is entirely model-free. A suitable, close to optimal sam-
pling may be determined by either the time step or the total observed
time, depending on the system type. Time series recorded from
truly nonlinear dynamics, not only close-to-linear near fixed points,
might increase predictive power because the recorded time series
“look less similar,” i.e., fill a detection matrix with less aligned
vectors. Moreover, as a rule of thumb, our results and previous
works16,21 suggest that independent trajectories yield more robust
results than inference based on a single long trajectory.
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