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ABSTRACT

Networks of spiking neurons constitute analog systems capable of effective and resilient computing. Recent work has shown that networks
of symmetrically connected inhibitory neurons may implement basic computations such that they are resilient to system disruption. For
instance, if the functionality of one neuron is lost (e.g., the neuron, along with its connections, is removed), the system may be robustly recon-
figured by adapting only one global system parameter. How to effectively adapt network parameters to robustly perform a given computation
is still unclear. Here, we present an analytical approach to derive such parameters. Specifically, we analyze k-winners-takes-all (k-WTA)
computations, basic computational tasks of identifying the k largest signals from a total of N input signals from which one can construct
any computation. We identify and characterize different dynamical regimes and provide analytical expressions for the transitions between
different numbers k of winners as a function of both input and network parameters. Our results thereby provide analytical insights about
the dynamics underlying k-winner-takes-all functionality as well as an effective way of designing spiking neural network computing systems
implementing disruption-resilient dynamics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156447

Robustness against disruptions constitutes a key requirement for
engineered information processing systems. We here discuss how
networks of spiking neurons can perform effective and resilient
computing. Specifically, we explore networks of symmetrically
connected inhibitory neurons that can implement basic compu-
tations in a way that is resilient to system disruption such as
the complete loss of a neuron. We focus on a specific type of
computation called “k-winners-takes-all” (k-WTA) that identi-
fies the k largest signals out of a total of N input signals. Several
k-WTA circuits may be combined to realize arbitrary computa-
tions. We provide an analytical approach to derive parameters
that define regions of robust computation for given k and enable
the system to effectively adapt after a disruption. Our results pro-
vide analytical insights about the dynamics underlying this type
of computation and offer one way of designing spiking neural
network computing systems that are disruption-resilient.

I. BACKGROUND

How can spiking neural networks compute in ways that are
robust against external disruptions such as the loss of individual
components and how can they be reconfigured to compensate for
disruptions? We here study these questions for basic computational
tasks known as k-winner-take-all computations that are generaliza-
tions of rank ordering and that may be combined to yield universal
forms of computations.

Rank ordering of signals by their (average) strength is a fun-
damental computational operation, particularly useful in attention-
related tasks in both natural and artificial systems.1–3 It provides an
effective way for extracting the most important information from
high-dimensional input spaces by simply ordering in terms of rele-
vance (or strength). However, such operations are computationally
costly for high-dimensional inputs, and may retain, at times, a large
amount of irrelevant information (depending on the application). A
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less costly, but closely related, operation is called partial rank order-
ing, in which a subset of the k strongest out of N > k signals is
identified. Often such operations are referred to as k-winner-takes-
all (k-WTA) computations. Still, already for fixed k, combinatori-
ally many computational outputs (results of the task) need to be
accounted for by any system that performs k-WTA computations
and the number k of “winners” might be variable in addition.

Besides the mathematical analysis of k-WTA computations, a
variety of systems have been proposed for their implementation.
Particularly, partial rank ordering can be performed by neuron
networks.4,5 For example, to date, there exist multiple bio-inspired
implementations of one-winner-takes-all (1-WTA) functionality.6–8

More general k-WTA operations can be performed by exploiting
complex periodic orbits in symmetrical oscillator networks, simi-
lar to heteroclinic computing.5,9–15 Furthermore, simple hardware
implementation of a neural-circuit performing WTA-calculations
has been recently suggested,16 exhibiting a mixture of excitatory
and inhibitory couplings. However, with all these approaches, either
the number of winners k is fixed or not easily reconfigurable, or
computations typically take a long time.5,10–12,14,15,17,18

Recently, a fast and re-configurable k-WTA implementation
via a symmetric neural network with inhibitory pulse coupling
was proposed.19 Via adjusting a single parameter, the global cou-
pling strength, the number of winners k can be chosen freely and
hence be adapted to different scenarios. In contrast to most existing
k-WTA implementations, the system is made up from very sim-
ple, identical parts and usually converges only within a few spikes.
The network presented in Ref. 19 is a computational application of
a specific multiplicative coupling scheme in which the effect of an
incoming pulse depends linearly on the state of the receiving oscil-
lator. Although closely connected to more common coupling types
where the strength of the inhibition does not depend on the oscil-
lator voltage,20 this multiplicative coupling is the most natural way
to achieve the specific type of phase compression which is necessary
for the k-WTA functionality.

In this article, we analytically characterize the mechanisms of
k-WTA computations based on proportional inhibition. We adapt
the original Mirollo–Strogatz formalism21 to multiplicative pulse-
coupling to analytically describe the dynamics of the k-WTA net-
work proposed in Ref. 19 and explore under which conditions it
exhibits the desired computational features. In particular, we iden-
tify parameter regions in which the system may perform specific
computations and provide analytic expressions for the appropriate
coupling strength as a function of external variables. In contrast to
the seminal work,19 which uses “brute-force” parameter scans and
numerical integration, the current work addresses the question of
how to set the global coupling strength in order to obtain collective
dynamics with a specified number of k firing neurons with a more
analytical approach, hence potentially allowing for a more direct
(re-)calibration and thus reconfiguration of the computational
network.

II. k -WTA COMPUTATIONS VIA INHIBITORY

PULSE-COUPLING

We begin with a brief review of k-WTA computations via
mutual inhibition.19 Consider a system of N oscillators, neuron-like

units working in an oscillatory regime. Each neuron is described by
a voltage-like state variable xi(t), where i ∈ {1, . . . , N} is the neuron
index. The free (uncoupled) dynamics satisfies

dxi

dt
= fi(xi), (1)

where fi(xi) is a continuous and positive function, fi(xi) : [0, 1)
→ R

+. Moreover, state variables xi are reset to 0 every time they
cross a threshold value xthr

i from below. Without loss of generality,
take xthr

i ≡ 1. Specifically, the original work19 uses leaky integrate-
and-fire neurons as the neuron dynamics, which is defined as

ẋi = f IF
i (xi) = I0 + Ii − γ xi, (2)

with positive constant I0 and γ < I0, and neuron-specific Ii > 0,
giving the periodic free time evolution,

xi(t) =
I0 + Ii

γ

(

1− e−γ t
)

for 0 ≤ t < T, (3)

with periodic continuation xi(t+ nT) = xi(t) for n ∈ Z, and free
period,

Ti = −
1

γ
ln

(

1−
γ

I0 + Ii

)

. (4)

Moreover, a particular form of global inhibitory coupling is consid-
ered, which depends linearly on the voltage of the receiving neuron.
If at time tj the phase variable xj(t) of neuron j reaches the threshold

value xthr ≡ 1, the phase variables xi(t) of all other neurons i 6= j are
instantaneously updated via the rule

xi

(

tj

)

= (1− ε) xi

(

t−j

)

, (5)

with a global coupling constant ε ∈ (0, 1). Illustratively speaking, all
neurons receiving a pulse lose a certain amount ε of their respective
voltage xi

(

t−j
)

before the event.
It has been shown that symmetrical networks of such neuronal

units may be used to perform k-WTA calculations.19 An idealized
diagram of a complete computing unit is shown in Fig. 1(a). In this
context, the variables Ii [see Eq. (2)] are taken as input signals, which
determine the free dynamics and period lengths Ti of the corre-
sponding neurons, see Fig. 1(b). The reset pulses of the system not
only mediate the global coupling, but also provide the output of the
computational system: After setting the input signals Ii, the network
converges to a collective dynamic in which only the k fastest neurons
reset, leaving the other outputs silent. The underlying mechanism
can be summarized as follows. Whenever some neuron i resets, the
down-concavity of fIFi (xi), together with the proportional coupling
as described by Eq. (5) leads to a relative compression of the volt-
ages xi of all neurons i 6= j, see Fig. 1(c) (for details, see Ref. 19). If
the differences in input signals Ii and the global coupling strength
ε are both sufficiently large, neurons with shorter free period Ti

may overtake other neurons repeatedly, keeping them from reach-
ing the threshold value altogether by recurrently inhibiting them,
see Fig. 1(d). After a (typically short) transient, the system enters a
periodic orbit, in which only the k fastest out of all N neurons reset
and send pulses, while the neurons which correspond to the N–k
smallest input signals stay silent. Within any periodic orbit, the spike
patterns of the individual neurons are interpreted as output vector
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FIG. 1. k-WTA dynamics in a spiking neural network with proportional inhibitory
coupling. (a) Model sketch: symmetric network of N = 5 neurons, interact-
ing via global multiplicative inhibitory coupling. The N-dimensional input vector

(I1, . . . , IN)
T sets the intrinsic frequencies of the units. The external input dynam-

ically shapes the evolving periodic spike patterns such that only the k neurons
receiving the strongest inputs cross the threshold and send pulses (here k = 2).
(b) Free (uncoupled) dynamics of a single neuron, here for a standard leaky inte-
grate-and-fire model, see Eq. (3). The current Ii corresponds to the external input
signal of the respective neuron i. (c) Reset of neuron i = 4 (blue): Global inhibitory
coupling relative to the phase of the receiving neuron decreases the difference
of the voltage-like state variables xi(t) of the other neurons (only two shown):
d2 = d1(1− ε) < d1. (d) Periodic orbit: If the periods of the neurons are suffi-
ciently different due to the external driving, only some k neurons with the highest
inputs ever reach threshold.

by discriminating only between spiking and non-spiking neurons,
so that the N-dimensional, real-valued input vector (I1, . . . , IN)T is
mapped to a binary N-dimensional vector consisting of k ones and
N–k zeros, identifying the k highest and N–k lowest input signals.
The exact number of spiking neurons k depends on the particular
choice of input signals Ii, as well as on the global coupling strength ε.

As outlined in Ref. 19, the considered spiking neural net-
works can be reconfigured to different required numbers of winners
k and input signal differences by adapting one global parameter
(the coupling strength) after, for example, the loss of a neuron (and
its connections). Under some conditions on the input signal vector
and the system parameters, the disrupted and reconfigured network
is then capable of performing the same (k-WTA) computation as the
original non-disrupted network.

III. NUMERICAL CHARACTERIZATION OF DYNAMICAL

REGIONS

In this section, we build on numerical simulations to charac-
terize the dependency of the number of winners k on the input
signals Ii, i ∈ {1, . . . , N} as well as on the global coupling strength
ε. For illustrative purposes, we use equally spaced input signals, as
in Ref. 19,

Ii = (i− 1)1I, (6)

where I0 ≡ 1 is a constant offset which is added to all incoming
signals and the spacing parameter 1I is varied to showcase the sys-
tem’s functionality for different ranges of input signal differences.
We remark that the specific input configuration (6) is chosen only
for sake of simplicity. In particular, the indexing of the neurons

by means of increasing frequency is arbitrary and represents no
restriction. Whereas the results will depend on parameters such as
the signal spacing, the method presented below applies identically
across parameter settings.

Figure 2(a) shows the number of winners k as a function of
the input spacing parameter 1I and the coupling strength ε. For
each choice of ε and 1I, the collective dynamics is evaluated, start-
ing from 100 different random initial conditions. Throughout, we
find the number of winners k to be independent from the specific
initial conditions, so that the parameter space consists of cohesive
regions with unique k. In particular, we find that a wide range of
parameter configurations leads to period-one dynamics. In these,
every neuron spikes at most once, so that the sequence length p
of the resulting periodic orbit (i.e., the number of reset events per
orbit) is equal to the number of spiking neurons, p = k. However,
period-one dynamics with different k are usually divided by transi-
tional regions in which neurons spike more than once per period,
p > k, see the close-up in Fig. 2(b).

In general, the exact structure of the dynamical space might
depend strongly on system parameters and on the range of input
signals Ii. Meanwhile, “brute-force” parameter scans and direct
numerical integration as done for Fig. 2 and in Ref. 19 can be
computationally expensive.

Hence, in the following, we develop an analytical framework
which allows to find the system parameters which exhibit specific
types of orbits in a more direct manner, without simulating the
underlying system. For instance, given fixed input signals, as, e.g.,
given by Eq. (6), which coupling strengths enable computations for
which k.

As the transitions between different k are closely connected
to period-one orbits (or, more precisely, their absence), we put a
particular emphasis on the description of period-one orbits, before
generalizing our description to arbitrary dynamics.

IV. PHASE FORMALISM FOR MULTIPLICATIVE

COUPLING

For mathematical treatment, it is often advantageous to
describe neuronal oscillator networks via a phase formalism intro-
duced by Mirollo and Strogatz.21 It maps a system of nonlinear
oscillators with linear interactions to an equivalent system of lin-
ear oscillators with nonlinear interactions. In this approach, the
state of oscillator i is described by a periodic phase variable φi(t) :
R→ [0, 1], which increases with a constant phase velocity
dφi/dt = ωi until it reaches the threshold value φthr

i ≡ 1 and is
reset to 0. The neuron dynamics is contained in the rise func-
tion (or neuron potential) Ui : [0, 1)→ [0, 1), φi 7→ U(φi), which
is monotonically increasing, twice continuously differentiable, and
usually is normalized to U(0) = 0 and U(1) = 1. The interaction
between neurons is mediated in terms of the transfer function,

Hε,i(φi) = U−1
i [Ui(φi)(1− ε)], (7)

which describes the instantaneous reaction of oscillator i on another
oscillator j 6= i reaching the threshold value at time tj, φj

(

t−j
)

= 1,

φi

(

tj

)

:= Hε,i

(

φi

(

t−j

))

. (8)
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FIG. 2. Different dynamical regions of the parameter space as obtained by
numerical simulations. (a) Sketches of different types of common periodic orbits.
While for period-one orbits, the sequence length p is equal to the number of spik-
ing neurons, also more complex orbits with p > k occur. (b) Example network of
N = 8 integrate-and-fire neurons [Eq. (3), I0 = 1, γ = 0.95]: Number of win-
ners k as a function of the coupling strength ε and the input spacing 1I for
equally spaced external input signals Ii = (i − 1)1I. Opaque colors represent
period-one dynamics with sequence length p = k while semi-transparent colors
represent dynamics with p > k. (c) Focus on transition between k = 3 and k = 4.
While wide parts of the parameter space exhibit period-one dynamics, the tran-
sition toward larger k typically happens upon entering a transitional region with
p > k reset events per period. Throughout, 100 simulations per choice of (1I, ε),
starting from different random initial conditions. For the considered system, we find
the number of winners k to be unique, while the sequence length p might depend
on the initial condition in the transitional regions with p > k.

Note that definition (7) of the transfer function implements pro-
portional coupling [see Eq. (5)] and deviates slightly from the more
commonly used original formulation which describes systems with
constant coupling.21 Also we remark that for proportional coupling,

negative phases φi < 0 are not necessary, in contrast to many forms
of constant inhibitory pulse coupling, see for example Refs. 22
and 23.

For free neuron dynamics provided in terms of a differential
equation such as (1), one can set

Ui(φi) ≡ xi(φiTi), (9)

with the free period Ti of oscillator i. Then, the free time evolution
is determined by

dφi(t)

dt
= ωi ≡

1

Ti

for 0 ≤ φi < 1, (10)

and

φi(t+ Ti) = φi(t), (11)

where φi(t) is reset to 0 after reaching φthr = 1.
For example, the integrate-and-fire model introduced in Eq. (2)

is described as

UIF
i =

I0 + Ii

γ

(

1− e−γφiTi
)

=
I0 + Ii

γ

(

1−

(

1−
γ

I0 + Ii

)φi
)

, (12)

and

HIF
ε,i(φi) =

ln
(

ε + (1− ε)(1− γ /(I0 + Ii))
φi
)

ln(1− γ /(I0 + Ii))
(13)

with
dφi

dt
= ωi =

1

Ti

= −
γ

ln(1− γ /(I0 + Ii))
. (14)

As a second example, for neurons with dxi/dt = I0 + Ii, we get
a linear rise function

Ulin
i (φi) = φi,

dφi

dt
= ωi = I0 + Ii, (15)

and also a linear transfer function

Hlin
ε,i(φi) = (1− ε)φi. (16)

V. ANALYTICAL CHARACTERIZATION OF DYNAMICAL

REGIONS

In the following sections, we derive sets of analytical condi-
tions to determine whether a specific periodic orbit is consistent,
given specific neuron models, neuron frequencies {ωi}, and coupling
strength ε. In doing so, we follow the general approach proposed
in Ref. 24. Solving these conditions for the global coupling strength
ε yields the adequate choices for the desired dynamics. In particu-
lar, we identify coupling strengths which lead to collective dynamics
with a specific number of winners k, and hence calibrate the k-WTA
system more directly, with no need for numerical simulations of the
collective dynamics.

Every periodic orbit can be characterized by its sequence of
neuron resets si, i ∈ {1, . . . p}, where the sequence length p is the
total number of reset events in the given orbit. For mathematical
analysis, it is convenient to encode the reset order of neurons in
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terms of a mapping σ : (1, . . . , p) 7→ σ(i) ≡ σi ∈ (1, . . . , N), such
that (s1, . . . , sp) = (σ1, . . . , σp). We also use σ to refer to the orbit
itself. The subset of spiking neurons within a specific orbit σ is
S ≡ Sσ = {σi|i ∈ {1, . . . , p}}, which contains k neurons. The com-
plement of Sσ , S̄ ≡ S̄σ = {1, . . . , N} \ Sσ contains the N–k neurons
which do not reset in the considered orbit and conclusively remain
silent.

Given a full description of the system parameters, the event
sequence s1, . . . , sp, or equivalently, the mapping σ , uniquely defines
a physical orbit, that is, determines phases φm ∈ {1, . . . , N} of all
neurons at any times, as well as the event times ti, i ∈ {1, . . . , p} at
which the ith neuron in the considered orbit, neuron σi, spikes, rela-
tive to the time t1 = 0 of the first reset event. We denote the time step
between two successive reset events at times ti and ti+1 of neurons σi

and σi+1, respectively, as 1ti = ti+1 − ti. As the orbits are periodic by
definition, we treat σ as cyclical, so that σi+p ≡ σi and 1ti+p = 1ti.
Also note that the description of a physical periodic orbit in terms of
a mapping σ are unique only up to cyclical permutations of σ .

The approach for finding system parameters which allow for
a specific orbit as given by σ is as follows. First, we derive a set of
p periodicity conditions, each one guaranteeing the periodicity of
a single reset event si, i ∈ {1, . . . , p} at time ti. Second, we have to
ensure that the assumed spike ordering is consistent in so far that
all time steps 1ti are positive. Third, we have to guarantee that no
neuron l ∈ S̄ reaches threshold when the system is in the orbit σ ,
leading to another set of inequalities. Finally, we have to ensure that
neurons j ∈ S reach the threshold only at reset times ti with σi = j,
leading to additional inequalities.

In Secs. V A–V C, we exemplarily demonstrate the approach for
period-one dynamics, that is, orbits where each of the k spiking neu-
rons resets exactly once, so that the number of reset events p is equal
to the number of winners k. In doing so, we illustrate that typically
violations of the inequalities correspond to transitions between dif-
ferent dynamical regions or numbers of winners k. For a discussion
of how to treat arbitrary orbits, we refer to Appendix A.

A. Analytical conditions for period-one dynamics

In the following, we provide an analytical description of period-
one orbits with fixed k and derive expressions for the transitions to
other dynamical regimes. In doing so, we explore the microscopic
mechanisms mitigating these transitions and demonstrate how to
characterize parameter choices that lead to a desired computational
functionality.

1. Periodicity of reset events

Consider an arbitrary period-one orbit, that is, an periodic
orbit with a total of p = k reset events, defined by a mapping σ ,
so that neuron σi, i ∈ {1, . . . , k} is the neuron that resets at time ti,
φσi

(

t−i
)

= 1 and φσi
(ti) ≡ 0. Because of the periodicity of the orbit,

neuron σi must reset at time ti+k again,

φσi
(ti) = 0, φσi

(

t−i+k

)

= 1 for all i ∈ {1, . . . , k}. (17)

For fixed i, starting from φσi
(ti) = 0, we successively find expres-

sions for the phase φσi
at later times,

φσi
(ti) = 0,

φσi
(ti+1) = Hε,σi

(

φσi
(ti)+ ωσi

1ti

)

= Hε,σi
(ωσi

1ti),

(18)
...

φσi

(

t−i+k

)

= φσi
(ti+k−1)+ ωσi

1ti+k−1 ≡ 1.

For each reset event si of a neuron σi, i ∈ {1, . . . , k}, Eq. (18)
expresses the periodicity condition φσi

(

t−i+k

)

= 1 as a function of
the time steps 1ti, i ∈ {1, . . . , k}. Given fixed coupling strengths,
input signals and system parameters, we have a system of k non-
linear equations of the form (18), with p = k unknowns 1ti, one for
each reset event si.

2. Constraint (1): Positive time steps

For fixed reset sequence σ , equation system (18) generally has
an unique solution. However, in the case that the reset order is not
compatible with system parameters such as coupling strength ε and
free neuron frequencies {ωσi

}, negative time intervals 1ti < 0 may
occur, which are not sensible from a physical perspective. Hence, we
explicitly require

1ti > 0 for all i ∈ {1, . . . , N} (19)

as a set of additional constraints on the solution of the periodicity
conditions (18).

3. Constraint (2): Only k neurons reach threshold

If within a specific orbit encoded by a mapping σ less than N
different neurons are spiking, k < N, we have to explicitly ensure
that the N− k ≥ 1 silent neurons l ∈ S̄ indeed always stay below
the threshold 1. Due to the monotonicity of the rise functions Ul(φl),
phase variables φl always have a local maximum just before another
oscillator σi, i ∈ {1, . . . , k}, reaches threshold at time ti, so that we
require

φl

(

t−i
)

< 1 for all i ∈ {1, . . . , k}, l ∈ S̄ . (20)

As φl

(

t−i
)

is a monotonously increasing function of the frequency

ωl, we have to evaluate this condition only for the neuron l ∈ S̄ with
the largest frequency, which we denote as ` = arg maxl∈S̄ωl in the
following, and require

φ`

(

t−i
)

< 1 for all i ∈ {1, . . . , k}. (21)

For a fixed choice of i ∈ {1, . . . , k}, we use the periodicity of neuron
`, φ`(ti+k) = φ`(ti), to find

φ`(ti) = Hε,`

(

φ`

(

t−i
))

,

φ`(ti+1) = Hε,`(φ`(ti)+ ω`1ti),
(22)

...

φ`

(

t−i+k

)

= φ`(ti+k−1)+ ω`1ti+k−1 ≡ φ`

(

t−i
)

,

which gives the phase φ`

(

t−i
)

as a function of itself and the time
steps 1tj, j ∈ {1, . . . , k} that are provided as the solution of the
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periodicity conditions (18). Solving Eq. (22) either analytically or
numerically for φ`(ti) allows to evaluate for which values of the inhi-
bition strength ε indeed all phases φ`

(

t−i
)

, i ∈ {1, . . . , k} are smaller
than 1. If (20) is not satisfied, the equation system (18) is not con-
sistent, because it neglects reset signals from at least one neuron
l ∈ S̄ .

Note that Eq. (22) closely resembles the periodicity Eq. (18), but
without a reset before the first (or after the last) line. Also note that
because of φ`

(

t−i
)

> 0, the phases at later times are always larger
than they would be with a reset at time ti, given fixed {1tj} and free
frequency ω`. This implies that if a neuron m with free frequency
ωm is reset in a given orbit, m ∈ S , also all other neurons n with
ωn ≥ ωm must reset in the given orbit, as otherwise condition (20) is
violated for l = n at the time where neuron m spikes. Indeed this is a
central property of all self-consistent periodic orbits for the consid-
ered system type: The k spiking neurons in a given orbit k are always
the k neurons with the largest input signal and therefore the largest
free frequency. This also implies that if two neurons m and n have
the same frequency ωm = ωn, it is not possible to have one neuron
spike and the other one be silent, regardless of the coupling strength,
restricting the possible options for the number of winners k.

4. Constraint (3): Neurons reach threshold only at

correct time

Furthermore, equation system (18) assumes that each neuron
σi ∈ S reaches the threshold 1 only once per period, exactly at time
ti. Again, as the phase of every neuron has a local maximum just
before itself or any of the others spikes, we consider time points
t = tj, with j ∈ {1, . . . , k} and require as an additional set of con-
straints

φσi

(

t−j

)

< 1 for all i, j ∈ {1, . . . , k}, i 6= j. (23)

We, therefore, require for each spiking neuron σi, i ∈ {1, . . . , k} that
k− 1 inequalities,

φσi

(

t−i+1

)

= ωσi
1ti < 1,

φσi
(t−i+2) = Hε,σi

(

φσi

(

t−i+1

))

+ ωσi
1ti+1 < 1,

(24)
...

φσi
(t−i+k−1) = Hε,σi

(

φσi

(

t−i+k−2

))

+ ωσi
1ti+k−2 < 1,

are satisfied. If any of the in total k(k− 1) conditions (24) is violated,
the solution {1ti} of the periodicity conditions (18) is inconsistent,
because at least one of the k fastest neurons reaches the threshold 1
without a reset. Again, solving Eq. (24) analytically or numerically
allows to identify values of the inhibition strength ε or other system
parameters for which constraints (23) are satisfied.

B. Period-one dynamics for linear neuron potential

For linear transfer functions Hε,i ∝ φi, the periodicity condi-
tions (17) and the additional constraints (19), (20), and (23) can
be evaluated mostly in a closed form. Hence, in the following
we consider linear neurons (i.e., neurons with a linear free time

evolution)

Ulin
i (φi) = φi, Hlin

ε,i = (1− ε)φi, ωi = Ii (25)

to illustrate our method and illuminate the microscopical mech-
anisms which lead to transitions between different numbers of
winners k.

1. Periodicity of reset events

For linear neuron models, equation system (18) can be
written as

1/ωσi
= 1ti(1− ε)k−1 +1ti+1(1− ε)k−2 + · · · +1ti+k−1(1− ε)0

=

k−1
∑

δ=0

(1− ε)k−1−δ1ti+δ , (26)

for i ∈ {1, . . . , k} or equivalently as matrix equation

E ·1t = T, (27)

with k× k matrix

E =








(1− ε)k−1 (1− ε)k−2 . . . (1− ε) 1

1 (1− ε)k−1 . . . (1− ε)2 (1− ε)

...
...

. . .
...

...

(1− ε)k−2 (1− ε)k−3 . . . 1 (1− ε)k−1








,

(28)

and k-component vectors 1t = (1t1, . . . , 1tk)
> and

T =
(

1/ωσ1 , . . . , 1/ωσk

)>
.

According to Eq. (26), we find

1

ωσi+1

−
1− ε

ωσi

= 1ti − (1− ε)k1ti, (29)

which can be solved for the time step

1ti =
1

1− (1− ε)k

(
1

ωσi+1

−
1− ε

ωσi

)

. (30)

This expression only depends on the free frequency of two neurons:
neuron σi which resets at time ti and neuron σi+1 which resets at
time ti+1 = ti +1ti. From 1ti one can reconstruct the phases φm(t)
of all neurons m ∈ {1, . . . , N} at arbitrary times (relative to an initial
time t1). Note that the total period

T =
ε

1− (1− ε)k

k
∑

i=1

1

ωσi

=
ε

1− (1− ε)k

k
∑

i=1

Tσi
(31)

is the sum over the free periods Tσi
of the k spiking neurons Tσi

,
i ∈ {1, . . . , k}, with a prefactor depending on ε and k. In particu-
lar, the order in which the neurons reset does not affect the total
period T, as long as the considered reset order σ is consistent with
the additional constraints that we evaluate in the following.
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2. Constraint (1): Positive time steps

Physically sensible orbits require all time intervals to be
positive,

1ti > 0 for all i ∈ {1, . . . , k}. (32)

Consulting formula (30) for the time steps 1ti, we write this as

ε > 1−
ωσi

ωσi+1

for all i ∈ {1, . . . , k}, (33)

or equivalently

ε > 1− min
i∈{1,...,k}

(
ωσi

ωσi+1

)

=: ε
(1)
min. (34)

Which permutations of period-one orbits minimize the right hand
side of Eq. (34), and hence are consistent for the lowest choices of
the coupling strength? We can rewrite condition (34) as

ε > 1−
1

d
, (35)

where

d = max
i∈{1,...,k}

(
ωσi+1

ωσi

)

(36)

is the maximum of the relative frequency difference between succes-
sively spiking neurons within the given orbit. Hence, the most stable
period-one orbits regarding condition (32) are those which mini-
mize the maximal frequency ratio d. These are orbits in which the
k fastest neurons reset in ascending order, regarding their free fre-
quency ωi, which we in the following refer to as standard ordering.
Of course, also cyclical permutations of σ lead to the same critical
value of ε as they represent the same physical dynamics. Further-
more, there can exist other permutations which have the same (but
not lower) critical coupling strength ε, depending on the specific
frequency configuration.

3. Constraint (2): Only k neurons reach threshold

For k < N, we explicitly require that the k+ 1-fastest neuron
(neuron `) does not reach the threshold at any time,

φ`

(

t−i
)

< 1 for all i ∈ {1, . . . , k}. (37)

For linear neuron dynamics, Eq. (22) for the phases φ` yields

φ`(ti) = φ`(ti)(1− ε)k + ω`1ti(1− ε)k−1

+ ω`1ti+1(1− ε)k−2 + · · · + ω`1ti+k−1(1− ε)0

= φ`(ti)(1− ε)k + ω`

k−1
∑

δ=0

(1− ε)k−1−δ1ti+δ , (38)

for each i ∈ {1, . . . , k}.

Subtracting φ`(ti)(1− ε)k and inserting the periodicity Eq. (26)
for neuron σi yields the condition

φ`

(

t−i
)

=
1

1− (1− ε)k

ω`

ωσi

< 1, (39)

which can be resolved for ε,

ε > 1−

(

1−
ω`

ωσi

)1/k

for all i ∈ {1, . . . , k}. (40)

The right-hand side takes on its maximum for the neuron σi = s
with the lowest input signal ωs = minj∈S{ωj} of all spiking neurons,
finally giving

ε > 1−

(

1−
ω`

ωs

)1/k

=: ε
(2)
min. (41)

Note that the critical value ε
(2)
min does not depend on the order in

which the neurons spike in the considered orbit so that for ε ≤ ε
(2)
min,

no period-one dynamics with given k are consistent, regardless of
the order of spiking neurons. In fact, also non-period-one orbits
with sequence length p > k with given k are not possible below the

critical value ε
(2)
min, as these require even higher coupling strengths

than the period-one dynamics with the same k, compare Fig. 2.

As typically ε
(2)
min � ε

(1)
min (for k < N) and ε

(2)
min � ε

(3)
min (see the next

section), the critical value ε
(2)
min usually is the lower boundary of the

coupling strength for a fixed number of winners k, regardless of the
orbit type, see Fig. 3.

What happens on a mechanistic level, if one starts with a con-
sistent orbit satisfying condition (37) and continuously decreases the

coupling strength, ε → ε
(2)+
min ? According to Eq. (39), the maximum

value of the phase φ`(t) within the orbit σ continuously increases,

and formally, at coupling strength ε = ε
(2)
min, takes on 1 just at as the

k-fastest neuron (neuron s) spikes. However, as the reset pattern σ

does not account for a reset of neuron `, at ε = ε
(2)
min the periodic

orbit σ becomes inconsistent and a discontinuous change to an orbit
with k+ 1 spiking neurons, in which also neuron ` spikes, occurs.

Typically, the coupling strength ε = ε
(2)
min is still too high for period-

one dynamics with the new number of winners k+ 1, so that we
observe a more complex orbit with p > k, in which faster neurons
spike multiple times, while two or more slower neurons take turns.
For a typical example, see Fig. 3.

4. Constraint (3): Neurons reach threshold only at

correct time

Finally, we evaluate the third condition

φσi

(

t−j

)

< 1 for all i, j ∈ {1, . . . , k}, i 6= j, (42)

which ensures that each of the k fastest neurons σi ∈ S reaches the
threshold only once per period, exactly at relative event time ti as
defined by Eq. (30). Analogous to Eq. (24), for the phases of neuron
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FIG. 3. Discontinuous change of dynamics at critical coupling strengths. Transi-
tion between k = 5 and k = 6 for network of N = 8 linear neurons, with equally
spaced inputs Ii = I0 +1I(i − 1). The upper boundary of the coupling strength
εmax for period-one dynamics with k = 6 is shown as a dashed black line and the
lower boundary of the coupling strength εmin for period-one dynamics with k = 5
is shown as a solid black line. The latter also corresponds to the transition from
k = 5 to k = 6. Passing the critical values of ε, the period-one orbits (left reset
sequences) become inconsistent and more complex orbits with k = 6 and p > k
(right reset sequences) emerge.

σi, i ∈ {1, . . . , k} at times tj, where j 6= 1, we find

φσi

(

t−j

)

= ωσi
1ti(1− ε)µ−1 + ωσi

1ti+1(1− ε)µ−2

+ · · · + ωσi
1tj−1(1− ε)0

= ωσi

µ−1
∑

δ=0

(1− ε)µ−1−δ1ti+δ , (43)

where µ = j− i mod k denotes the number of reset events between
ti and tj. For clarity of presentation, we skip any indices of µ

although it depends on j, i, and k.

Inserting the explicit expression (30) for the time steps yields

φσi

(

t−j

)

=
1

1− (1− ε)k

(

ωσi

ωσj

− (1− ε)µ

)

, (44)

which we substitute in condition (42) to get

(1− ε)k − (1− ε)µ < 1−

(

ωσi

ωσj

)

, (45)

which must be satisfied for all i, j ∈ {1, . . . , k}, i 6= j.
As we are interested in values of the coupling strength ε for

which condition (45) is satisfied for all tuples i, j ∈ {1, . . . , k}, j 6= i,
for given k, {ωi}, and spiking order σ we have to check condition
(45) only for the tuple (i, j) that maximizes φj

(

t−i
)

.
Which ordering of neurons represents the most stable period-

one orbit fulfilling condition (45), that is, gives the smallest maxi-
mum phase φj

(

t−i
)

? Considering Eq. (44) again, we note that φj

(

t−i
)

is larger for larger µ as well as for larger ratios ωσi
/ωσj

. We find the

most stable reset pattern permutation to be the one in which all neu-
rons reset in ascending order of their free frequencies and then start
with the slowest neuron again (standard ordering), see Fig. 3. This is
because for the ascending patterns, the smaller the number of reset
events µ from i to j, the larger the ratio ωσi

/ωσj
becomes such that

both contributions compete. Hence, in order to identify values of ε

where any type of period-one dynamics with given k is possible, we
consider only orbits with ascending free frequencies.

In Appendix C, we show that, for any period-one orbits with
standard ascending ordering, if Eq. (45) is satisfied for µ = k− 1,
it also holds for any other µ ∈ {1, . . . , k− 2}, so that we have to
consider only µ = k− 1 for evaluating condition (45). The inter-
pretation is that the first violation of the condition (45) happens in
terms of some neuron i reaching threshold exactly one event “too
early.”

Taken together, we end up with the condition

(1− ε)k − (1− ε)k−1 < 1− d, (46)

with d = max
(

ωσi+1
/ωσi

)

. This can be solved for the range of
acceptable coupling strength ε via standard procedures for root

finding. We generally find a simple interval
(

ε
(3)
min, ε(3)

max

)

⊂ [0, 1],

however it might be empty for the case that no period-one dynam-
ics with a given k are possible for a specific input configuration. For

k < N, we typically find ε
(3)
min < ε

(2)
min, so that condition (46) is rel-

evant only for defining an upper boundary ε(3)
max for the coupling

strength.
What happens at the point where condition (46) is violated?

For ε → ε(3)−
max , the phase of at least one neuron σi ∈ S starts to

reach the threshold 1 at some time tj which does not correspond
to the proper reset event si as defined by the mapping σ . Depending
on the input configuration and system details, at ε = ε(3)

max either a
more complicated orbit with p > k, but the same number of winners
k, occurs, or the systems dynamics changes directly to period-one
dynamics with a new number of winners k+ 1. However, for k > 2,
we usually observe the first case. For a typical example, consider
Fig. 3.
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5. Combining all constraints

For identifying the choices of the coupling strength ε which
give rise to period-one dynamics with a given number of win-
ners k, one calculates for given input configuration ωi := I0 + Ii,
i ∈ {1, . . . , N} the ranges in which all sets of constraints (1), (2), and
(3) are satisfied. As for constraint (2) the order of reset events has
no effect and constraints (1) and (3) favor ascending ordering of the
free frequencies, in order to find the parameter choices where any
period-one dynamics with given k exist, we have to consider only
the permutations in which the k fastest neurons spike in ascending
order with respect to their free frequencies. For these orbits, con-
straints (1) and (2) both give a single minimum value for ε, while
condition (2) generally gives a minimum and a maximum value.
Also, for these orbits, constraint (3) automatically guarantees con-
straint (1) (see Appendix D for a derivation), so that for a given k,
we set as the range of fitting coupling strengths

(εmin, εmax) :=
(

max
{

ε
(2)
min, ε(3)

min

}

, ε(3)
max

)

. (47)

Note that this interval might be empty—in this case for the given
input configuration, there are no period-one dynamics with a
given k.

Figure 4 illustrates the identification of parameter regions with
period-one dynamics for linear neurons with equally spaced input

signals Ii = (i− 1)1I, for different choices of the input spacing
parameter 1I. Figure 4(a) shows both simulation results as well as
the derived boundaries for period-one dynamics for different num-
bers of winners k. Indeed, the analytical boundaries are consistent
with the simulation results. Figure 4(b) focuses on a smaller param-
eter region with k ∈ {5, 6, 7}, illustrating the transition between
different k. While the lower boundary of the coupling strength ε for
period-one dynamics with given k (solid black line) corresponds also
to a transition to a larger value of k, the upper boundary of the cou-
pling strength (dashed black line) leads to more complicated orbits
with p > k, but with the same number of winners. For k < N, we

find εmin = ε
(2)
min throughout.

We point out that for linear neuron dynamics a closed-form
solution for the time steps 1ti, i ∈ {1, . . . , p} is not only possible for
period-one dynamics, but also for arbitrary complex dynamics with
p > k, see Appendix B.

C. Period-one dynamics for nonlinear neuron

potential

For nonlinear free (uncoupled) neuron dynamics, or more
specifically, free neuron models which lead to nonlinear transfer
functions, the constraints can generally not be solved in closed
form. However, the corresponding equations can be solved for the
critical coupling strengths ε easily by using standard methods for

FIG. 4. Analytical parameter identification for robust k-WTA computations with the linear neuron model. (a) Exemplary orbits for different types of dynamics. The first orbit with
neurons resetting in ascending order regarding their free frequencies (standard ordering) is found to exist in wider regions of the parameter space than other permutations
(second orbit) with p = k. The third orbit represents a typical reset sequence with p > k. (b) The input configuration of the network consisting of N = 8 linear neurons
[Eq. (15)] is given by Ii = yi1I with yi = i − 1 and varied input spacing parameter 1I. The constant offset current is chosen as I0 = 1. (c) and (d) Upper and lower
boundary of the coupling strengths ε for period-one dynamics (p = k) with given number of winners k, as a function of the input difference 1I. Generally, the lower bound

(solid line) is given by ε
(2)
min and the upper bound by ε

(3)
max. Colors denote the number of winners as found by numerical simulations of the system starting from 100 different

random initial conditions, with opaque colors representing period-one dynamics and semi-transparent colors representing dynamics with p > k reset events per orbit with
the same k.
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root finding. As such nonlinear neuron dynamics are commonly
used for modeling biological systems, as well as in engineering
application, we briefly describe the procedure, which treats each set
of constraints (1), (2), and (3) [Eqs. (19), (20), and (23)] separately.

For constraint (1) (no negative time steps), the critical coupling
strength is identified by solving the equation system consisting of the
k periodicity conditions (17) and

min
i∈{1,...,k}

(1ti) = 0, (48)

for the free variables {1ti}, i ∈ {1, . . . , k} and ε ∈ (0, 1).
For constraint (2) (no neuron l ∈ S̄ reaches threshold), for a

fixed i, we require φ`(ti) = 1 in Eq. (22),

FIG. 5. Analytical parameter identification for robust k-WTA computations with nonlinear neuron models. Upper and lower boundary of the coupling strength ε for period-one
dynamics with given number of winners k, as a function of the input difference 1I. Colors denote the number of winners as found by numerical simulations of the system.
Opaque colors represent period-one dynamics and lighter colors represent dynamics with p > k reset events per orbit. (a), (d), and (g) Relative input signals strengths yi of
the input signals Ii = yi1I. (b), (e), and (h) Dynamical regions as a function of1I, ε (c), (f), and (i) Zoom in on a specific part of the parameter space. (a)–(c) System of N = 8
leaky integrate-and-fire neurons [Eq. (3), with with I0 = 1, γ = 0.95], with equally spaced input signals (yi = i − 1). In comparison to the linear case, the period-one regions
are spread out more evenly across different coupling strengths ε and the regions with p > k are significantly thinner. (d)–(f) The same system with only approximately equally
spaced input signals, effecting in larger regions with p > k. (g)–(i): The same system with two inputs deliberately chosen closely together. While this shifts the boundaries of
most period-one regions, the main effect is a significant extension of p > k-regions with k = 4 towards higher coupling strength, diminishing period-one regions with k = 3.

Chaos 33, 083143 (2023); doi: 10.1063/5.0156447 33, 083143-10

Published under an exclusive license by AIP Publishing

 21 N
ovem

ber 2023 13:18:11

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 6. Analytical identification of parameter regions for more complex orbits. (a) Two typical orbits for more complex dynamics, with sequence length p = 2(k − 1). We find
the first permutation, where the (k − 2) fastest neurons spike in ascending order regarding their free frequencies (standard ordering) in wider regions of the parameter
space, in particular, directly at transitions. (b) and (e) Relative input signal strength yi defines the input configuration Ii = yi1I configuration for network consisting of N = 8
nonlinear neurons [Eq. (3) with I0 = 1, γ = 0.95] with constant offset I0 = 1 and varied input spacing parameter 1I. (c), (d), (f), and (g) Upper boundaries (dashed line)
and lower boundaries (solid line) of the coupling strength ε for dynamics with p = 2(k − 1) for different numbers of winners k, as a function of the input difference 1I. We
confirm our analytical predictions by showing the number of winners k as found by direct simulation of the dynamical system, with opaque colors representing regions with
p = 2(k − 1) and transparent colors regions with p 6= 2(k − 1). (b)–(d) System of N = 8 nonlinear neurons with approximately equally spaced input signals, inducing large
regions with sequence length p = 2(k − 1), which are exactly identified by our approach. (e)–(g) The same system with two inputs chosen very closely. Note that while
some regions with p = 2(k − 1) are very small, in particular, for k = 3 considering also non-period one dynamics for computation might be advantageous. [Throughout, we
excluded p = 2(k − 1) for k = 2, as these orbits are more naturally described as period-one dynamics.]

φ`(ti) = Hε,`

(

φ`

(

t−i
))

= Hε,`(1),

φ`(ti+1) = Hε,`(φ`(ti)+ ω`1ti),

...

φ`

(

t−i+k

)

= (φ`(ti+k−1))+ ω`1ti+k−1 ≡ φ`

(

t−i
)

≡ 1,

and solve the system that consist of this equation and the periodicity
conditions (18) of the spiking neurons, for independent variables
{1tj}, j ∈ {1, . . . , k}, and ε ∈ (0, 1). In general, this has to be done
for each i and the maximum value of ε must be identified; how-
ever for period-one dynamics, we find that the relevant value of ε

is always found for i = m where σm = arg maxi∈Sωi is the spiking
neuron with the lowest frequency.
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For constraint (3) (neurons reach threshold only at reset posi-
tion as defined by σ ), we consider the phases of all spiking neurons
σi ∈ S , φσi

(

tj

)

, at times tj ∈ {1, . . . , k}, j 6= i. As we are interested
in the choices of ε where at least one of these phases reaches 1, we
require

max
i,j(j6=i)

(

φσi

(

tj

))

≡ 1, (49)

which together with the k periodicity Eq. (18) forms an equation sys-
tem with k+ 1 unknowns, {1tm}, m ∈ {1, . . . , k}, and ε. Generally,
solutions exist for multiple choices of ε, so that special care has to be
taken to identify all solutions in (0, 1).

We find the microscopical mechanisms for the transitions
between different orbit types to be qualitatively the same as for linear
neurons (cf. Fig. 3). In general, the overall structure of the dynam-
ical space is similar to the results for linear dynamics, with regions
exhibiting period-one dynamics separated by intermediary regions
with more complex dynamics. Figure 5 confirms the analytically
obtained boundaries for period-one dynamics with different k with
simulation results, for different input signal distributions,

Ii = yi1I, i ∈ {1, . . . , N}. (50)

While for equally spaced signals, yi = i− 1, the transition regions
with p > k are comparably small (as a function of the coupling
strength ε and the input spacing parameter 1I), see Figs. 5(a)–5(c),
for only approximately equally spaced input signals, the transitional
regions (lighter color) take up a larger portion of the parameter
space, see Figs. 5(d)–5(f). In Figs. 5(g) and 5(i), we further inves-
tigate the widening of transition stripes induced by non-equally
spaced input signals, by deliberately choosing two inputs very close
together. The main effect lies in the k = 4 region extending sig-
nificantly towards higher values of the coupling strength ε, with a
noticeable larger region with p > k = 4 and a diminished period-
one dynamics region for k = 3. As the input of neurons 5 and 6
are similar in amplitude (relative to the others) indeed it is intuitive
that the choices of ε which allow only neuron 5, but not neuron
6 to spike are comparatively limited. However, also regions with
other k /∈ {3, 4} are affected slightly, because the maximum coupling
strength ε(3)

max for which the constraint (3) is satisfied is lowered. In
Sec. V D, we illustrate how in such scenarios of unevenly distributed
input signals also dynamical regions with p > k may be effectively
exploited for computational uses.

D. Analytical characterization of more complex

dynamics

Depending on the distribution of the input signals Ii, the range
of choices of the coupling strength ε which lead to period-one
dynamics might be significantly smaller than for equally spaced
inputs. Hence, it can be advantageous to also consider more com-
plicated orbits with reset sequence lengths p > k for computational
applications. The analytical description of period-one orbits and the
derivation of consistency constraints as demonstrated in Sec. V A
can be generalized in a straightforward way also to arbitrary reset
patterns. Furthermore, for linear neuron models, also for p > k a
closed-form solution for the time intervals 1ti is possible. While
for the mathematical description we refer to the appendix, here we
briefly illustrate results for a specific class of more complex orbits

with p = 2(k− 1), where the (k− 2) fastest neurons reset twice per
period, while the (k− 1) and k fastest neuron reset only once, see
Fig. 6(a). In the considered system class, these represent one of the
most common more complex orbit types.

In order to find all choices of ε which lead to a dynamic with
sequence length p = 2(k− 1) for given k, in principle we have to
check all permutations of the pattern as shown in Fig. 6(a) for
consistency. However, similar to the period-one case, we find that
patterns in which the fastest (k− 2) neurons spike in ascending
order regarding their frequency are the most stable ones, so that
only their consistency has to be checked explicitly. Figure 6 illus-
trates the analytical prediction of p = 2(k− 1) dynamics for the
same input configurations as in Figs. 5(d)–5(i). Apparently, while
unevenly or closely spaced input signals might widen the transition
stripes with p > k and reduce the range of coupling strengths ε that
correspond to period-one dynamics, by considering also dynam-
ics with p = 2(k− 1) an effective re-calibration is still possible. In
the same manner, even more complicated dynamics can be explic-
itly identified, potentially opening up the whole parameter space for
computational uses.

VI. CONCLUSION

The question of how spiking neural networks can compute in
resilient and reconfigurable ways constitutes a general open prob-
lem. Here, we have explored a recent implementation of k-WTA
computations, basic computational tasks that can be assembled to
perform universal forms of computations, and studied their capa-
bilities for performing resilient and reconfigurable computations.
Transferring the standard phase description for oscillatory neurons
to multiplicative interactions, we derived analytical conditions for
the parameter regions where specific basic periodic spike sequences
exist. Our results identify regions in the parameter space of cou-
pling strengths and signal strength differences where the system can
perform k-WTA tasks for different given k. Furthermore, we illumi-
nate the mechanisms underlying the transition between regions with
different dynamics and thus computational options. Going beyond
basic periodic spike sequences, we also provide a general descrip-
tion for arbitrary periodic spike sequences and demonstrate how
exploiting more complicated orbits may allow for a wider choice
of coupling strengths, potentially making the computation more
resilient. While in this work we illustrate our results for (approxi-
mately) equally spaced input signals with known input differences,
the proposed method works for any type of input configuration. In
particular, generalization to input vectors drawn from specific ran-
dom distributions should be addressed in future work to address
the open question of how to ensure robust computations also when
there is only moderate knowledge about the range of expected input
signals.
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APPENDIX A: ANALYTICAL DESCRIPTION OF

ARBITRARY ORBITS

While in the main manuscript we focus on period-one dynam-
ics, in which each neuron resets at most once per orbit period, in
the following we extend our description to arbitrary reset patterns.
Again we start by stating periodicity conditions and afterwards
introduce three different types of additional constraints given in
terms of inequalities.

1. Periodicity

Consider an arbitrary orbit with reset sequence length p,
defined by a mapping σ : {1, . . . , p} → {1, . . . , N}, such that neuron
σi, i ∈ {1, . . . , p} is the neuron that resets at time ti, φσi

(

t−i
)

= 1 and
φσi

(ti) ≡ 0. Now let l ≤ p be the number of reset events until neu-
ron σi resets again in the given orbit, after resting at time ti: σi+l = σi,
φσi

(

t−i+l

)

= 1, which leads to the periodicity conditions

φσi
(ti) = 0, φσi

(

t−i+l

)

= 1, for all i ∈ {1, . . . , p}. (A1)

Note that although we do not use an extra index, l in general depends
on i. Starting from φσi

(ti) = 0, we successively find expressions for
the phase φσi

at later times, up until φσi

(

t−i+l

)

≡ 1,

φσi
(ti) = 0,

φσi
(ti+1) = Hε,σi

(

φσi
(ti)+ ωσi

1ti

)

= Hε,σi
(ωσi

1ti),

(A2)
...

φσi

(

t−i+l

)

= φσi
(ti+l−1)+ ωσi

1ti+l−1 ≡ 1.

Taken together, we have a system of p nonlinear equations of
the form (A2), one for each reset event si of neuron σi, with p
unknowns 1ti.

2. Constraint (1): Positive time steps

As for period-one orbits, also for arbitrary orbits with p ≥ k we
have to ensure that the time steps 1ti are positive,

1ti > 0 for all i ∈ {1, . . . , p}, (A3)

which gives a set of p additional constraints on the periodicity
conditions, or equivalently, a single additional condition

min
i∈{1,...,p}

1ti > 0, (A4)

which can be evaluated analogously to the case with period-one
dynamics.

3. Constraint (2): Only k neurons reach threshold

If within a specific orbit as encoded by σ less than N differ-
ent neurons are spiking, k < N, we have to explicitly ensure that the
N− k ≥ 1 silent neurons l ∈ S̄ indeed always stay below the thresh-
old 1. Due to the monotonicity of the rise functions Ul(φl), phase
variables φl always have a local maximum just before another neuron
σi, i ∈ {1, . . . , j}, reaches threshold at time ti, so that we require

φ`

(

t−i
)

< 1, for all i ∈ {1, . . . , p}, (A5)

where we have to consider only the phase φi of the fastest neu-
ron ` ∈ S̄ which is not supposed to be spiking. For each choice of
i ∈ {1, . . . , p}, we use the periodicity of neuron `, φ`(ti+k) = φ`(ti),
to find

φ`(ti) = Hε,`

(

φ`

(

t−i
))

,

φ`(ti+1) = Hε,`(φ`(ti)+ ω`1ti),
(A6)

...

φ`

(

t−i+k

)

= (φ`(ti+k−1))+ ω`1ti+k−1 ≡ φ`

(

t−i
)

,

which gives the phase φ`

(

t−i
)

as a function of itself and the time steps
1tj, j ∈ {1, . . . , p}, which are provided as the solution of the peri-
odicity conditions (A2). Note that formally, the resulting condition
is exactly the same as for period-one dynamics, compare Eq. (22).
Again, solving Eq. (A6) analytically or numerically, one can iden-
tify values of the inhibition strength ε for which constraint (A5) is
satisfied.

4. Constraint (3): Neurons reach threshold only at

correct time

Equation system (A1) assumes that each neuron m ∈ S reaches
the threshold 1 only at times tj, with σj = m. Again, as the phase of
every neuron has a local maximum just before itself or any of the
others spikes, we consider only time points t = tj, with j ∈ {1, . . . , p}
and state as an additional set of constraints

φm

(

t−j

)

< 1 for all m ∈ S , j ∈ {1, . . . , p}, m 6= σj. (A7)
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We, therefore, require for each i ∈ {1, . . . , p} that

φσi

(

t−i+1

)

= ωσi
1ti < 1,

φσi

(

t−i+2

)

= Hε,σi

(

φσi

(

t−i+1

))

+ ωσi
1ti+1 < 1,

(A8)

...

φσi

(

t−i+l−1

)

= Hε,σi

(

φσi

(

t−i+l−2

))

+ ωσi
1ti+l−2 < 1,

where l is the number of resets it takes for the specific neuron σi

to reset again after time ti, at time ti+l (again, l generally depends
on i). For all choices of i ∈ {1, . . . , p} together, we get a total of
p(k− 1) equations. Very similar to period-one dynamics, by exam-
ining Eq. (A8) analytically or numerically, one can identify values of
the inhibition strength ε for which the constraints are satisfied for
all i, j.

APPENDIX B: STABILITY CONDITIONS FOR

ARBITRARY SPIKING PATTERNS FOR LINEAR

NEURONS

1. Periodicity

Again, for linear neurons, we can solve the periodic-
ity conditions (A2) in a closed form for the time steps 1ti,
i ∈ {1, . . . , p},

1ti =

1
ωσi+1

hσi+1
(i+ 1)− α

ωσi
hσi

(i)

1− αp
, (B1)

where we use α = 1− ε ∈ (0, 1) and hm(i) is a polynomial of α, with
exponents which correspond to the distance (in number of reset
events) to former reset events of neuron m, seen from event si at
time ti,

hm(i) =

p−1
∑

n=0

αnδσi−n ,m, (B2)

where δσi−n ,m denotes the Kronecker-delta.
For example, for the reset sequence (1, 3, 2, 3), we get

h1(1) = 1, h1(2) = α, h1(3) = α2, h1(4) = α3, (B3)

for neuron m = 1 and

h3(1) = h3(3) = α + α3, (B4)

h3(2) = h3(4) = 1+ α2, (B5)

for neuron m = 3. For the same orbit, we get for the timesteps 1t1

and 1t2

1t1 =

1
ωσ2

hσ2(2)−
α

ωσ1
hσ1(1)

1− α4
(B6)

=

1
ω3

h3(2)−
α

ω1
h1(1)

1− α4
(B7)

=

1
ω3

(1+ α2)− 1
ω1

α

1− α4
, (B8)

1t2 =

1
ωσ3

hσ3(3)−
α

ωσ2
hσ2(2)

1− α4
(B9)

=

1
ω2

h2(3)−
α

ω3
h3(2)

1− α4
(B10)

=

1
ω2
− 1

ω3
(α + α3)

1− α4
. (B11)

2. Constraint (1): Positive time steps

Constraint (1)

1ti > 0 for all i ∈ {1, . . . , p}, (B12)

can be directly evaluated by using the solutions for the time
steps (B1).

3. Constraint (2): Only k neurons reach threshold

Employing the expression (B1) for the time steps, for constraint
(2) [Eq. (A6)] we get

αp +
ω`

ωσj

hσj
(j)− 1 < 0 for all j ∈ {1, . . . , p}, (B13)

where ` is the index of the neuron with the k+ 1 largest frequency.
In the case of period-one dynamics with sequence length p = k, this
can be solved directly for ε,

ε > 1−

(

1−
ω`

ωσj

)1/k

for all j ∈ {1, . . . , k}, (B14)

compare Eq. (41) in the main part.

4. Constraint (3): Neurons reach threshold only at

correct time

For constraint (3), we get for the phases φσi

(

t−j
)

φσi

(

t−j

)

=
1

1− (1− ε)p







ωσi

ωσj

hσj
(j)− hσi

(j)
︸ ︷︷ ︸

hσi (i)α
µ







, (B15)

where µ = j− i mod p. For period-one orbits with p = k, this
simplifies to

φσi

(

t−j

)

=
1

1− (1− ε)k

(
ωσi

ωj

− αµ

)

(B16)

Requiring φi

(

t−j
)

< 1, we get

αp +
ωσi

ωσj

hσj
(j)− hσi

(j)
︸ ︷︷ ︸

hσi (i)α
µ

> 1 (B17)

for arbitrary orbits and

αk +
ωσi

ωσj

− αµ > 1. (B18)

for period-one dynamics.
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APPENDIX C: VIOLATION OF CONSTRAINT (3) FOR

STANDARD (ASCENDING) ORDERING

Introducing α = 1− ε ∈ (0, 1), we want to show that from

αk − αk−1 < 1− max
i∈{1,...,k}

(
ωσi

ωσi−1

)

(C1)

follows

αk − αµ < 1− max
i∈{1,...,k}

(

ωσi

ωσi+µ

)

, (C2)

for all µ ∈ {2, . . . , k− 1}, or equivalently,

αk − αk−δ < 1− max
i∈{1,...,k}

(
ωσi

ωσi−δ

)

, (C3)

where δ = k− µ ∈ {2, . . . , k− 1} and k > 2. The interpretation is
that in period-one orbits in which the k fastest neurons spike in
standard (ascending) order regarding their intrinsic frequencies,
constraint (3) [Eqs. (C2), (C3)] is always violated first for µ = k− 1,
or equivalently δ = 1, which means that some neuron i reaches
threshold exactly one event to early, at time ti−1 instead of time ti.

First, we define

d := max
i∈{1,...,k}

(
ωσi

ωσi−1

)

> 0. (C4)

For period-one orbits with ascending ordering of neuron frequen-
cies, ωσ0 < ωσ1 < · · · < ωσk

, we have

max
i∈{1,...,k}

(
ωσi

ωσi−δ

)

= max
i∈{1,...,k}

(
δ−1
∏

l=0

ωσi−l

ωσi−l−1

)

(C5)

≤

δ−1
∏

l=0

d = dδ . (C6)

Together with

0 < d < 1− αk + αk−1 (C7)

[which follows directly from the assumption (C1)] we find

max
i∈{1,...,k}

(
ωσi

ωσi−δ

)

<
(

1− αk + αk−1
)δ

. (C8)

Hence,

1− max
i∈{1,...,k}

(
ωσi

ωσi−δ

)

> 1−
(

1− αk + αk−1
)δ

, (C9)

so that to conclude (C3) we can show

αk − αk−δ < 1−
(

1− αk + αk−1
)δ

, (C10)

or equivalently,

(

1− αk + αk−1
)δ

< 1− αk + αk−δ , (C11)

for all δ ∈ {2, . . . , k− 1}. We employ natural induction, first show-
ing the inequality (C11) for δ = 2:

α2k + α2k−2 − 2αk + 2αk−1 − 2α2k−1 < −αk + αk−2 (C12)

⇐⇒ α2k + α2k−2 + 2αk−1 < αk + αk−2 + 2α2k−1. (C13)

We rearrange the terms to get

2αk−1 − 2α2k−1 + α2k−2 − αk−2 + α2k − αk < 0 (C14)

and

2αk−1(1− αk)− αk−2(1− αk)− αk(1− αk) < 0. (C15)

Division by 1− αk > 0 gives

⇐⇒ 2αk−1 − αk−2 − αk < 0 (C16)

⇐⇒ −αk−2 + αk−1 + αk−1 − αk < 0 (C17)

⇐⇒ −αk−2(1− α)+ αk−1(1− α) < 0 (C18)

⇐⇒ αk−1 − αk−2 < 0 (C19)

⇐⇒ −αk−2(1− α) < 0 (C20)

⇐⇒ −αk−2 < 0 (C21)

⇐⇒ α > 0 � (C22)

Hence, Eq. (C11) is satisfied for δ = 2.
Next we show that from

(1− αk + αk−1)
δ−1

< 1− αk + αk−(δ−1) (C23)

follows

(1− αk + αk−1)
δ
< 1− αk + αk−δ , (C24)

for all δ ∈ {3, k− 1}.
We multiply (C23) with (1− αk + αk−1) > 0 to get

(

1− αk + αk−1
)δ

<
(

1− αk + αk−(δ−1)
) (

1− αk + αk−1
)

= 1− 2αk + αk−1 + α2k − α2k−1

+ αk−(δ−1) − α2k−(δ−1) + α2k−δ . (C25)

To prove Eq. (C24), now we have to show that the right-hand side
of Eq. (C25) is smaller than or equal to the right-hand side of (C24),

1− 2αk + αk−1 + α2k − α2k−1 + αk−δ+1 − α2k−δ+1 + α2k−δ

≤ 1− αk + αk−δ , (C26)

which we arrange as

αk−δ+1 − αk−δ + αk−1 − αk + α2k−δ − α2k−δ+1 + α2k − α2k−1 ≤ 0
(C27)

and

− αk−δ(1− α)+ αk−1(1− α)+ α2k−δ(1− α)− α2k−1(1− α) ≤ 0.
(C28)
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Division by 1− α > 0 gives

−αk−δ + αk−1 + α2k−δ − α2k−1 ≤ 0 (C29)

⇔ −αk−δ
(

1− αδ−1
)

+ α2k−δ
(

1− αδ−1
)

≤ 0 (C30)

⇐⇒ −αk−δ + α2k−δ ≤ 0 (C31)

⇐⇒ −αk−δ
(

1− αk
)

≤ 0 (C32)

⇐⇒ −αk−δ ≤ 0 (C33)

⇐⇒ α ≥ 0 � (C34)

Hence, we showed that from Eq. (C23) follows Eq. (C24) (induction
step) so that together with equation (C12) (induction start) follows
the inequality (C11) and conclusively our claim.

APPENDIX D: CONSTRAINT (3) IMPLIES

CONSTRAINT (1)

We show that, for linear neurons, from constraint (3) for
period-one orbits with ascending ordering,

(1− ε)k − (1− ε)k−1 < 1− d, (D1)

with d = max
(

ωσi+1
/ωσi

)

> 0, compare Eq. (46), follows constraint
(1) for the same type of orbits,

ε > 1−
1

d
, (D2)

compare Eq. (35). First, we rewrite Eqs. (D1) and (D2) with
α = 1− ε ∈ (0, 1) and claim

1− αk + αk−1 > d (D3)

=⇒ α <
1

d
, (D4)

To show this, from Eq. (D3) we find

1

1− αk + αk−1
<

1

d
, (D5)

using that (1− αk + αk−1) > 1. We now conclude (D4) by showing
that the left-hand side of (D5) is larger than α,

α <
1

1− αk + αk−1
(D6)

←→ α
(

1− αk + αk−1
)

< 1 (D7)

αk − αk+1 < 1− α (D8)

⇐⇒ αk(1− α) < 1− α (D9)

⇐⇒ αk < 1 � (D10)

where we used that α ∈ (0, 1).
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