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Reconstructing network connectivity from the collective dynamics of a system typically requires access
to its complete continuous-time evolution, although these are often experimentally inaccessible. Here we
propose a theory for revealing physical connectivity of networked systems only from the event time series
their intrinsic collective dynamics generate. Representing the patterns of event timings in an event space
spanned by interevent and cross-event intervals, we reveal which other units directly influence the
interevent times of any given unit. For illustration, we linearize an event-space mapping constructed from
the spiking patterns in model neural circuits to reveal the presence or absence of synapses between any pair
of neurons, as well as whether the coupling acts in an inhibiting or activating (excitatory) manner. The
proposed model-independent reconstruction theory is scalable to larger networks and may thus play an
important role in the reconstruction of networks from biology to social science and engineering.
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The topology of interactions among the units of network
dynamical systems fundamentally underlies their systemic
function. Current approaches to reveal interaction patterns
of a network from the collective nonlinear dynamics it
generates [1–9] rely on directly sampling the trajectories of
the collective time evolution. Such sampling requires
experimental access to the continuously ongoing dynamics
of the network units.
For a range of systems, however, direct access to the

units’ internal states is not granted, but only times of events
are available. Prominent examples include the times of
messages initiated or forwarded in online social networks
and distributed patterns of action potentials (spikes) emitted
by the neurons of brain circuits, both reflecting the
respective network structure in a nontrivial way [10–15].
Reconstruction of physical network connectivity from such
timing information has been attempted for specific settings
for neural circuits or online social contacts. Often it is
limited to small networks (102 units) by large computa-
tional efforts, including high-performance parallel com-
puters up to about 103 units, or to knowing specific system
models in advance [13,14,16–20]. For instance, recent
efforts on reconstructing spiking neural circuit connectivity
[19] show that combining stochastic mechanisms for spike
generation and linear kernels for spike integration enables
reconstruction of larger networks (103 neurons), if the spike
integration model closely matches the original simulated
systems. Alternatively, in systems of pulse-coupled units

[20], reconstruction is feasible if the units are all intrinsic
oscillators. Besides such specific solutions, a general
model-independent theory based on timing information
generated by the collective network dynamics is as yet
unknown.
In this Letter, we propose a general theory for reconstruct-

ing physical network connectivity based only on the event
timing patterns generated by the collective spiking dynam-
ics. The theory reveals existence and absence of interactions,
and their activating or deactivating nature, and enables
reliable network reconstruction from regular as well as
irregular timing patterns, even if some (hidden) units cannot
be observed. The proposed reconstruction theory is model
independent (thereby, purely data driven) and trivially
parallelizable because linearized mappings for different units
are computationally independent of each other.
Mapping timing patterns to physical connections.—To

present the proposed theory consistently, we focus on a
setting (and notation) of networks of spiking neurons.
Alternate applications work in qualitatively the same way
and are discussed towards the end of this Letter. Here the
units are individual neurons, a physical connection is a
synapse from one neuron to another, and the events
observed for each unit are the electrical action potentials
or spikes emitted by the neuron. Specifically, interevent
intervals are interspike intervals (ISIs) and cross-event
intervals cross-spike intervals (CSIs). The theory stays
unchanged (up to notation) for all kinds of event times
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observed from and originally generated by any specific
collective network dynamics that are typically unknown but
coordinated via the network interactions.
Thus, consider a network of N units i ∈ f1;…; Ng

generating spatiotemporal spike patterns (Fig. 1) defined
by the sets of times ti;m, where m ∈ N counts the spike
times. An ISI

ΔTi;m ≔ ti;m − ti;m−1 > 0 ð1Þ

measures the duration of time between two consecutive
events, the ðm − 1Þst and themth spike times ti;m−1 and ti;m
of neuron i. Similarly, the CSIs

wi
j;k;m ≔ tj;p − ti;m−1 > 0 ð2Þ

measure the duration between the pth spike generated by
neuron j and the previous [ðm − 1Þst] spike generated by i
with tj;p < ti;m (all superscripts throughout this Letter
denote indices, not powers). We index the CSIs by integers
k≡ kðti;m−1; tj;pÞ starting with k ¼ 1 for the first spike at
tj;p ¼ minp0 ftj;p0 jtj;p0 > ti;m−1g of unit j after ti;m−1 and
sequentially increasing k by one by counting through the
sequence of tj;p forwards in time. Figure 1 illustrates this
definition for one given ISI, where the indicesm − 1 and m
are suppressed. Now consider that some finite number Ki

of spike times (for each of the other neurons j) preceding
ti;m influences the time ti;m in a relevant way.
As a core conceptual step, we propose that the ISIs of

each neuron i are approximately given by some unknown,
locally smooth function hi∶RN×Ki

→ R of the Ki relevant
cross-spike intervals [see Fig. 1(b)] such that

ΔTi;m ¼ hiðΛiWi
mÞ ð3Þ

for all m. Here the explicit dependency matrix
Λi ∈ f0; 1gN×N (cf. [21]) is a diagonal matrix (to be

determined) indicating whether there is a physically active
(synaptic) connection from neuron j to i (Λi

jj ¼ 1) or not
(Λi

jj ¼ 0). The matrix

Wi
m ≔

2
6666664

wi
1;1;m wi

1;2;m � � � wi
1;Ki;m

wi
2;1;m wi

2;2;m � � � wi
2;Ki;m

..

. ..
. . .

. ..
.

wi
N;1;m wi

N;2;m � � � wi
N;Ki;m

3
7777775
∈ RN×Ki ð4Þ

collects the Ki CSIs generated by each neuron j until just
before the mth spike generated by neuron i. We refer to the
kth column

wi
k;m ≔ ½wi

1;k;m; w
i
2;k;m;…; wi

N;k;m�T ∈ RN ð5Þ

of Wi
m as the kth “presynaptic profile” of neuron i before

its mth spike time. It indicates when presynaptic neurons
fired for the first time, second time, and so on until the Kith
time, before ti;m. For illustration purposes, we here spe-
cifically constrain Ki to take into account only those spike
times within the currently considered ISI such that
tj;p ∈ ½ti;m−1; ti;m�. If a presynaptic neuron does not spike
within this interval, its CSIs are set to zero, wi

j;k;m ≔ 0, in
(4). From a biological perspective, the function hi is
determined by the intrinsic properties of neuron i, including
its spike generation mechanism, as well as its pre- and
postsynaptic processes. The function hi is, in general,
unknown.
In particular, Eq. (3) assigns a specific ISI to a specific

collection of timings of presynaptic inputs. Therefore, we
may represent such ISI-CSIs tuple in a higher-dimensional
event space Ei ⊂ RðNKiþ1Þ, where each realization of
neuron i’s dynamics is given by events defined as

ei;m ≔ ½vecðWi
mÞ;ΔTi;m�T ∈ RðNKiþ1Þ; ð6Þ

where the operator vec∶RS×R → RSR stands for vectoriza-
tion of a matrix and it transforms a matrix into a column
vector [22].
So, how can events ei;m in the event space Ei help us

determine the synaptic inputs to neuron i? Consider a
local sample of M þ 1 events in Ei as follows [Fig. 2(a)].
Selecting a reference event

ei;r ≔ argmin
ei;s

X
m

kei;m − ei;sk2 ð7Þ

closest to all other events in the sample, with
m; s ∈ f1; 2;…;M þ 1g, yields an approximation

ΔTi;m ≐ ΔTi;r þ tr

�� ∂hi
∂Wi

�
T
Λi½Wi

m −Wi
r�
�

ð8Þ

(a) (b)

FIG. 1. Representing timing patterns in event space. (a) Sche-
matics of an event for a sample unit (i ¼ 1) formed by the
interevent time of unit 1 and all cross-event intervals that may
influence the subsequent event of unit 1. An additional counting
index m is dropped for simplicity. (b) In the event space for
neuron i, each event ei;m is represented by a point on the manifold
defined through (3).
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of (3) linear in the differences ½Wi
m −Wi

r� around ei;r. Here
ð∂hi=∂WiÞ≡ ð∂hi=∂WiÞ½ΛiðWi

rÞ� ∈ RN×Ki
is a matrix

derivative and trð·Þ is the trace operation. Rewriting (8)
yields

ΔTi;m ≐ ΔTi;r þ
XKi

k¼1

∇hi;kΛi½wi
k;m − wi

k;r�; ð9Þ

where ∇hi;k≔ ½ð∂hi=∂Wi
1kÞ;ð∂hi=∂Wi

2kÞ;…;ð∂hi=∂Wi
NkÞ�

∈RN is the gradient of the function at the kth presynaptic
profile. Thus, given m ∈ f1; 2;…;Mg different events (in
addition to the reference event r), finding the synaptic
connectivity becomes solving the linear regression problem
(9) for the unknown parameters ∇hi;kΛi. In particular,
system (9) may be computationally solved in parallel for
different units i. We here solve such linear system via least
squares minimization (compare [8,23]). Block-sparse regres-
sion algorithms may also be employed, especially if one
proposes higher-order approximations than (9) [21,24].
Revealing synapses in networks of spiking neurons.—To

validate the predictive power of our theory, we revealed the
synaptic connectivity (i) of model systems with current-
and conductance-based synapses, (ii) of excitatory and
inhibitory synapses, (iii) with both instantaneous and
temporally extended responses, (iv) of moderately larger
number of neurons (compared to the state of the art), (v) for
regular, irregular, and bursting spiking patterns, and
(vi) under conditions where a subset of units is hidden
or unavailable to observation (Figs. 2–4 and Supplemental

Material, Figs. S2–S4 [25]). We quantify performance of
reconstruction by the area under the receiver-operating-
characteristic curve (AUC) score [37], which equals 1 for
perfect reconstruction and 1=2 for predictions as good as
random guessing.
We start illustrating successful reconstruction for simple

networks of leaky integrate-and-fire (LIF) [38] neurons with
mixed inhibitory and excitatory current-based δ synapses
(see Supplemental Material [25]). As Fig. 2(b) shows by
example, the method of event-space mappings does not only
reveal the existence and absence of synapses between pairs
of neurons in the network; in particular, the signs and
magnitudes of the derivatives ð∂hi=∂Wi

j1Þ already indicate
whether a synapse acts in an inhibitory or excitatory way:
indeed, inhibitory inputs to neuron i retard its subsequent
spike and thereby extend the duration of an ISI, whereas
excitatory inputs shorten the duration. Thus, positive deriv-
atives indicate (effectively) inhibitory and negative deriva-
tives excitatory interactions [compare Fig. 2(b)].
Reconstruction from irregular event patterns.—What if

the spiking patterns are not regular, as is often the case for
real data (from neurophysiological recordings as well as
from observations in any other discipline), and thus not all
events are located sufficiently close to one reference event
(7)? If the induced events ei;m are distributed in event space
Ei less locally, with the ei;m located on different, possibly
nonadjacent patches in Ei, we systematically collect only
those events that are located close to selected reference
events ei;r [39]. To check performance, we systematically
varied how irregular spike timing patterns are by varying
the overall coupling strength by a factor of 30, effectively
interpolating between regimes close to regular dynamics
(locking) [40] for small coupling and close to irregular
balanced states [12,41–43] for large coupling. If sufficiently
many events (ISI-CSI combinations) that are close in event
space occur in the network’s spike timing patterns, sampling
the events in some local region (or, alternatively, local
regions) in event space may be compensated by longer
recording times or collecting several patches of events. With
increasing inhibition, the total number of spikes in each
recording decreases, whereas the spike sequence irregularity
increases. Thereby, to ensure a sufficient number of events
locally in event space across inhibition levels, we simulated
all networks for 500 s each. We indeed find that such closest
sampling paradigm enables consistent high-quality
reconstruction for regular, intermediate, and irregular spike
timing patterns alike (Fig. 3).
We reiterate that approximation (9) requires no a priori

information about circuit or neuron models and parameters,
instead, only spike timing data are necessary to reveal
synapses. The same event-space linearization (ESL)
method proposed performs robustly across different circuits
of neurons (low- and higher-dimensional neuron models
and different synaptic models), compares favorably to
alternative approaches of model-free reconstruction, and

(a) (b)

FIG. 2. Slopes in event space yield excitatory and inhibitory
synaptic interactions. (a) Schematics of a local sampling in the
event space. Local samplings may be taken from regular spiking
patterns or subsets of irregular spike patterns such that events are
close by in event space. Taking a reference event (red dot) and
linearly approximating all other events (gray dot) through (9)
constrains existence and sign of interactions without knowing a
system model. (b) Reconstruction of inhibitory (green), excita-
tory (orange), and absent (blue) synaptic interactions of a neuron
in a random network of N ¼ 100 LIF neurons having δ synapses
with Nexc ¼ 50 excitatory and Ninh ¼ 50 inhibitory neurons and
a connection probability p ¼ 0.1. See [25] for further parameters.
The red dashed lines indicate the optimal thresholds (as calcu-
lated via Otsu’s method [36]) to distinguish excitatory and
inhibitory from absent interactions.
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even yields reasonable estimates if some units are hidden
(see [25] for more details); see Fig. 4. Figures 4(a) and 4(b)
illustrate the performance for networks of simple LIF
neurons with current-based synapses as well as for more
biophysically detailed Hodgkin-Huxley neurons coupled
via conductance-based synapses (see [25]), explicating that
the theory is insensitive to changes of types of coupling and
neurons. The ESL method outperforms predictions by
statistical dependencies such as cross-correlations, mutual
information, and spike-triggered averages. In addition, if
some neurons are inaccessible (hidden units), synapses
among accessible neurons may still be recovered (see [25]);
Figs. 4(c) and 4(d). Furthermore, a systematic study shows
that ESL accurately determines synaptic links in the
presence of external inputs emulating neurons firing with
Poisson statistics, at the expense of requiring to record a
larger number of events (see Supplemental Material [25]
for a detailed study). As explained above, recording a
larger number of events promotes denser samplings in the
event space, which in turn aids in filtering out dynamical
effects related to such unobserved inputs when solving the
regression problem.
Finally, reconstructing larger networks seems computa-

tionally feasible and reconstruction quality compares
favorably to other general model-free approaches. For
instance, Fig. 5 illustrates successful reconstruction of
the presynaptic pattern of a random unit i in a network
of N ¼ 2000 neurons exhibiting regular dynamics that was
computed within about 500 s (∼10 min per neuron) on a
single machine [44]. Generally, the computational (time)
complexity of our reconstruction theory results from the
computation of event-space distances, which scales as

(a) (b)

FIG. 3. Revealing synaptic connections from regular to irregu-
lar spiking patterns. (a) Schematic representation of spike trains
with different degrees of irregularity. To establish test statistics,
the spike trains were sampled from random networks of N ¼ 100
inhibitory LIF neurons interacting via δ synapses with connection
probability p ¼ 0.1. All simulations were performed using
identical time intervals of 500 s each (see [25] for further
settings). (b) AUC scores for two different sampling conditions:
random and closest. In the random sampling paradigm, events are
randomly drawn from the uniform distribution across the spike
trains, while in a closest sampling paradigm, the same number of
events closest to a reference event are jointly considered for
reconstruction. Reconstruction quality decreases with spiking
pattern irregularity for random sampling (dark gray), yet stays
consistently high for closest sampling. Gray dashed line indicates
random guessing.

FIG. 4. Model independence and robustness against hidden
units. Quality of reconstruction vs the number of events M
considered for random networks of N ¼ 100 and p ¼ 0.1.
(a) LIF neurons with α synapses. ESL, CCorr, MI, STA, and
RG stand for event-space linearization (our approach, marked in
blue), cross-correlations (green), mutual information (orange),
spike-triggered average (rose), and random guessing (gray),
respectively. (b) Hodgkin-Huxley neurons with conductance-
based synapses. (c) LIF neurons coupled with δ synapses where
only 80 neurons are observed. (d) Systematic reconstructions
vs the fraction of observed neurons. Network parameters are
Nexc ¼ 50 and Ninh ¼ 50 (see [25] for further settings).

(a)
(b)

(c)

FIG. 5. Reconstructing large networks is computationally
feasible. Reconstruction of random networks of N ¼ 2000 LIF
neurons with δ synapses and p ¼ 0.1. See [25] for more details.
(a) Connectivity matrix excitatory (red) and inhibitory (blue)
synapses. (Inset) A close-up. (b) Distribution of reconstructed
excitatory (orange), absent (blue), and inhibitory (green) synap-
ses of a single postsynaptic neuron. (c) Quality of reconstruction
for individual neurons for M ¼ 8000. ESL, CCorr, MI, and
STA stand for the approaches introduced here, using cross-
correlations, mutual information, and spike-triggered averages,
respectively. The gray dashed line stands for random guessing.
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O(ðMNKÞ2) (see [25]). The approach separates not only
existing from absent but also excitatory from inhibitory
synapses. As before, a systematic comparison for an equal
number of events shows that our approach again outper-
forms predictions by commonly employed statistical
dependency quantifiers [Fig. 5(c)].
Summary and Conclusions.—We presented a general

model-independent theory for reconstructing the topology of
a network’s direct interactions from observed patterns of
event timings only. A key advance is the proposal that the
interevent intervals are given by some unknown, sufficiently
smooth function, thereby not requiring access to a event
generating system model or even the full state vector of the
dynamical system generating the events. We illustrated core
performance aspects including robustness (against changes
in unit dynamics and coupling schemes), computational
performance (rapid analysis on single machines and paral-
lelizability), and suitability, even if some units are hidden by
example of spiking neural networks. By representing inter-
event intervals as functions of cross-event intervals, we
mapped the problem to event spaces yielding linear equa-
tions that enable robust least squares solutions for the
topology. Thereby, the approach may be transferred to other
systems generating event time series.
We remark that ∇hi;kΛi in (9) maps exactly those

physical connections that are used for transmitting signals
that actually directly influence the timings ti;m and thus the
interevent times. This has distinct consequences in practice.
For instance, a presynaptic neuron j may generate its only
potentially relevant spike during the refractory period of
neuron i (or may simply not generate any spike) during the
observation period of the experiment recording the timing
pattern; thus, no synapse from unit j will be indicated even
if an anatomical one exists. At the same time, if for any
reason (e.g., measurement error or data corruption) an event
of unit i is not recorded at all or the ISI is recorded with a
large error, it becomes easy to spot this event as an outlier,
as it would lie far above or below the other events with
nearby CSIs. As only the presence (and sign) of the above
derivatives play a role for reconstruction, a straightforward
generalization is to collect events close to several references
ei;r, ei;r0 , etc., and concatenate local (and generally differ-
ent) approximations of the form (9).
A recent work [45] studying excitatory-to-inhibitory

CA1 synapses in vivo focused on predicting exclusively
the strongest interactions from excitatory to inhibitory
neurons using a generalized linear model (GLM) combined
with cross correlograms, which results in high-computa-
tional demands when applied on large networks. The
clearest advantages of our theory, beyond its simplicity,
are its rapid computational performance, its generality and
model independence (compare to a recent alternative
approach [20]). Moreover, the proposed approach general-
izes to systems beyond the spiking neural circuits that were
used here for a systematic case study and illustration.

Indeed, it should be applicable across systems where timed
events are jointly generated by the units’ intrinsic dynamics
and the units’ interactions with other units via the same type
of events. For instance, the approach may be extended to
reveal friendship relations in online social networks
[13,14], where the times at which users share or comment
on activities mark events or to determine who communi-
cates with whom in hidden web or wireless services [46,47]
—from the timing of local unit activities alone. Taken
together, the results illustrated above suggest the power of
systematically generalizing a state-space perspective for
representing the full trajectories to an event-space perspec-
tive for representing collectively coordinated event timing
patterns.
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