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Collective dynamics on small-world networks emerge in a broad range of systems with their spectra

characterizing fundamental asymptotic features.

Here we derive analytic mean field predictions

for the spectra of small-world models that systematically interpolate between regular and random
topologies by varying their randomness. These theoretical predictions agree well with the actual
spectra (obtained by numerical diagonalization) for undirected and directed networks and from fully
regular to strongly random topologies. These results may provide analytical insights to empirically
found features of dynamics on small-world networks from various research fields, including biology,

physics, engineering and social science.

Many networked systems, including the internet ﬂL
power grids [2], airline traffic [3], polymers [4], metabolic
pathways [3], social networks E] and neural circuits [6]
share two structural characteristics: a high ’clustering’
such that two nodes connected to a joint third are likely
to also be connected to each other; and a short average
path length, meaning that the path that connects two
randomly chosen nodes is short on average (known as
the small-world effect).

These topological features of small-world networks un-
derly their collective dynamics such as synchronization,
diffusion, relaxation and coordination processes [ﬁ, ] In
particular, the asymptotic dynamics on a small world
is characterized by its graph Laplacian. Such processes
occur in various fields ranging from opinion formation in
social networks E] and consensus dynamics of agents IE]
to synchronization in biological circuits , @g] and re-
laxation oscillations in gene regulatory networks , ]

In standard models of small-world topologies E] a con-
tinuous parameter, the topological randomness ¢ € [0, 1],
interpolates between fully regular (¢ = 0), small-world
(low ¢ < 1) and fully random networks (¢ = 1). Typ-
ically, networks for ¢ > 0 are constructed by randomly
rewiring a fraction ¢ of edges. Although such models
based on rewiring have received massive attention both
theoretically and in applications (as certified, e.g., by
the huge number of references to the original work E])7
for most of their features analytical predictions are not
known to date (for a mean field solution of the average
path length see Ref. ]) In particular, the spectrum of
small-world Laplacians has been studied for several spe-
cific cases and numerically M}, but a general deriva-
tion of reliable analytic predictions is still missing.

In this Letter we present an analytic derivation of
small-world spectra based on a two-stage mean field ap-
proximation that we introduce. A single formula cov-
ers the entire spectrum from regular via small-world to
strongly randomized topologies, explaining also the si-
multaneous dependencies on network size, average degree

FIG. 1: (color online) Rewiring ’on average’ (Cartoon for
N = 16 and k = 4). Single realizations of rewiring for (a)
undirected and (b) directed networks; (c) mean field rewiring.
From left to right: ¢ = 0 (regular ring network), ¢ = 0.1
(’small world’) and ¢ = 1 (random network). The regular
ring network is the same for (a), (b) and (c).

and randomness g. Numerical diagonalization of Lapla-
cians of undirected and directed networks shows that the
analytic prediction well approximates all actual eigenval-
ues, except for extremal parameter settings such as g of
the order of unity, where standard random matrix theory
can be applied.

Consider a graph of N nodes on a one-dimensional ring
lattice with periodic boundary conditions. Each node re-
ceives links from its k/2 nearest neighbors on both sides
(for simplicity of presentation we take k and N to be
even). Randomuess is introduced by rewiring. Following
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[2] for undirected networks, we first cut each edge with
probability ¢. Afterwards all cut edges are rewired to
nodes chosen uniformly at random from the whole net-
work (avoiding double edges and self-loops). Similarly,
for directed networks [21], we first cut all tails of edges
with probability ¢ and rewire them afterwards (avoiding
double edges and self-loops as well).

The generic asymptotic relaxation dynamics on such a
network is characterized by its graph Laplacian A defined
by its elements

Aij = Aij(1 = 0i5) — kidi; (1)
for 4,5 € {1,..., N}, where A;; are the elements of the
adjacency matrix (one for an existing edge and zero for
no edge), k; is the degree of node i (replaced by the in-
degree for directed networks) and d;; is the Kronecker-
delta. Note that the spectrum of the Laplacian for a
directed network is complex while the spectrum for an
undirected one is real.

What is the spectrum of these networks in dependence
on the network size N, the average degree k and the topo-
logical randomness ¢7 To analytically predict it, we in-
troduce an average rewiring process (as depicted in Fig.[I]
in comparison to both other rewiring procedures for undi-
rected and directed networks): Define a circulant mean
field Laplacian

Co €1 C2 CN—1
CN—-1 Co 1 C2
Amf — CN-1 Co C1 " ] (2)
C2
C1
c1 s CN—-1 Co

For the initial ring (¢ = 0), Eq. @) is exact and the
matrix elements take the form

—k ifi=0
=41 ifie{l,....EN-L  N-1}=
0 ifie{f+1,..., —g—}::SQ,

3)
where we classify the elements into those representing the
original ring S; and those representing absent edges S
outside that ring.

For given ¢ > 0, instead of rewiring each edge indepen-
dently with a certain probability to obtain a specific ran-
domized network, we now ’'rewire on average’ to obtain
a mean field version of the randomized network ensem-
ble: Firstly, the average total weight gkN/2 representing
all edges to be rewired is subtracted uniformly from the
weights of existing edges of S;. Secondly, the rewired
weight is distributed uniformly among the total ’avail-
able’ weight in the whole network. The latter is given by
f=[N(N—-1)—(1—q)kN]/2, where each edge is assumed
to carry at most weight one. Of this total, the weight

f1 = ¢kN/2is available in S; and fo = [N(N—1)—kN]/2
in S3. The fraction fi/f is then assigned to elements
representing edges in S7 and the fraction fo/f to those
representing Sy. Therefore, an individual edge in S7 gets
the additional weight

gkN 2

173 q-k
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and an edge in Sy gets the new weight

kN
W2 = é qT = ak (5)
f N(N—21>—kN N—-1—-(1-¢qk "

Thus, in our mean field theory the elements of the Lapla-
cian (@) of a network on N nodes with degree k after
rewiring with probability ¢ are given by

—k ifi=0
c; = 1—g+w ifies; (6)
w9 ifie S, .

The mean field Laplacian defined by (2)) and (6)) by con-

struction is a circulant matrix with eigenvalues [22]

Amf _ quxp( 2”35\] )) . 1)

The trivial eigenvalue 5\11“f = 0 follows immediately. It is
common to all networks (for all ¢, N, and any k < N—1)
and reflects the invariance of Laplacian dynamics against
uniform shifts, as seen from the associated eigenvector
o = (1,...,1)T. Exploiting the additional transposition
symmetry c¢; = cy—; yields an analytical expression for

the remaining spectrum (I € {2,...,N}),
NNk, q) = — k + ke le'
N-1-%
'y al ke Z o
J=%+1 j=N-

=—k—kd +k(d-")

where x; = exp [-278(1 — 1)/N], ¢ = (1—q)/k+q¢c” and
¢ = g/IN 1~ (1 q)H].

As the offset of each eigenvalue (B) equals k, we con-
sider the scaled eigenvalues (N, k, ¢) = N™(N, k,q) /k
in the following to allow for a consistent analysis for dif-
ferent k.

We first focus on the second largest eigenvalue since
it dominates the long time dynamics (see e.g. |11, 12]).
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FIG. 2: (color online) Accuracy of analytic prediction of sec-
ond largest eigenvalues as a function of topological random-
ness. (a) Numerical measurements for undirected (x) and di-
rected (O) networks in comparison with the analytical mean
field predictions (Eq. (@), solid lines) as a function of ¢, for
different degrees k. (b) Zoom close to ¢ = 1 for undirected
networks with the analytical predictions AY*¢ via Wigner’s
semi-circle law (dashed lines). (c) Zoom close to ¢ = 1 for
directed networks with the analytical predictions A\5™* from
the theory of asymmetric random matrices (dashed lines). In
(a), (b) and (c) error bars on the numerical measurements
are smaller than the data points (N = 1000, each data point
averaged over 100 realizations).

Monotonicity considerations show that the second largest
eigenvalue is given for [ = 2 where eq. (8) simplifies to

sin (W)
MY(N kg) = -1 —¢ + (¢ — ') ——+2%
sin ( %)
The analytic prediction (@) fits well with the eigenval-
ues of small worlds obtained by actual rewiring, cf. Fig.
It turns out that the analytic prediction is accurate for
both undirected and directed networks, and for all but
very small relative degrees k/N. For small k, the predic-
tion shows some deviation from the numerical results, but
still is a good guide for the general dependence of the sec-
ond largest eigenvalue on ¢q. Moreover, the prediction (@)
approximates well the actual dependence of Ay for all but
large g of the order of one, thus including regular rings,
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FIG. 3: (color online) Second largest eigenvalues in depen-
dence on edge density and network size. (a) Numerical mea-
surements for undirected (x) and directed (O) networks in
comparison with the analytic mean field prediction ([I0). Er-
ror bars on the numerical measurements are smaller than the
data points (N = 2000, each data point averaged over 100
realizations). (b) Asymptotic (N — o) real parts of the sec-
ond largest eigenvalues A2 in dependence on the network size
N for fixed edge density d = k/N = 0.1 (each data point av-
eraged over 100 realizations; g-values and symbols as in (a)).

small-world and even more substantially randomized net-
work topologies. Close to ¢ = 1 (Fig. @b,c), the second
largest eigenvalues for undirected networks are well pre-
dicted via random matrix theory by Wigner’s semi-circle
law |23, [24] AY®°(N,k,1) = 24/1/k—1/N — 1, the real
parts for directed networks by the circular law [25-2§]
AN k1) =+/1/k—1/N — 1.

How does the second largest eigenvalue scale with the
network size? Fixing the edge density d = k/N for large
N > 1 (ensuring that networks stay connected) yields
the prediction

(1-d)(1 -q)

)\glf(d, q) ~—1 + m

sin (dmr) (10)
in the limit N — oo. Our analytic prediction ([I0) again
approximates well the real part of the second largest
eigenvalue in dependence on the edge density d for net-
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FIG. 4: (color online) Analytics predicts structure of entire
spectrum. Densities of states, eq. (1)), for undirected (a),
directed (b) and mean field (c¢) networks (N = 1000, k = 50).
Dashed white lines show the extreme eigenvalues obtained
numerically for undirected and directed networks. The solid
black lines show the mean field prediction for the extreme
eigenvalues. Densities of states for directed and undirected
networks are averaged over 100 realizations for a fixed g-value,
while the mean field density is analytically determined by

eq. ([@).

works of size above about N = 500 nodes, for both undi-
rected and directed networks, cf. Fig. Bl For densities
other than that displayed (d = k/N = 0.1, Fig. B b) the
real parts of the second largest eigenvalue show qualita-
tively the same asymptotic behaviour.

To gain further insight into the entire spectrum we
study the density of states p(\) (cf. e.g. [29]) as defined

in its discrete form, i.e. for finite network size N, by
1 X
PO = 1 D50 - ) (1)
j=1

where 0 is the Dirac delta distribution. The evalua-
tion of (1)) for the analytic mean field predictions and
for the numerically obtained eigenvalues of undirected
and directed networks shows good qualitative agreement,
cf. Fig. [, for all but large topological randomness ¢ — 1.
Spectra for networks with parameters other than N =
1000 and k& = 50 yield qualitatively the same structure.
Thus, the largest and smallest eigenvalues, the location
and form of the bulk peaks as well as the entire struc-
ture of eigenvalues are well approximated (again, except
for ¢ of order one) by the mean field predictions derived
analytically.

In summary, we have introduced a simple two-stage
mean field rewiring to analytically derive predictions for
the spectra of graph Laplacians. Systematic numerical
checks confirm that this prediction is accurate for the
second largest eigenvalue for all parameter values except
for small degrees or too large topological randomness of
the order of unity. For smaller k, our analytic prediction
still serves as a valuable guide for the overall dependence
all topological parameters. For ¢ close to unity, our mean
field predictions are well complemented by standard ran-
dom matrix theory. Besides the second largest and small-
est eigenvalues that already give valuable information
about initial and asymptotic relaxation dynamics, also
the bulk spectrum and the fine structure of the spectrum
are well approximated by our analytical prediction.

The spectral predictions in particular include regu-
lar rings, small-worlds, and substantially more randomly
rewired networks and undirected as well as directed ones.
Thus, our theoretical predictions agree well with the ac-
tual eigenvalues obtained numerically over almost the
whole range of topological randomness ¢, thereby com-
pleting previous approaches based on perturbation the-
ory for ¢ < 1 |16, 11§].

The approach presented here enables systematic an-
alytic predictions of relaxation and consensus dynamics
on randomized networks [2] in dependence of their key
parameters N, k, and ¢, it substantially reduces compu-
tational efforts, and may make some regimes of interest
accessible for the first time. Our mean field approach may
be extended to rewiring processes starting from other
than ring-like structures, e.g. to two or three dimensions,
as for instance relevant for neural network modeling [30].
Checking with appropriate models, it may thus serve as a
powerful tool to predict or deduce the relations between
structural and dynamical properties of randomized net-
works.
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