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A wide range of networked systems exhibit highly connected nodes (hubs) as prominent structural elements.
The functional roles of hubs in the collective nonlinear dynamics of many such networks, however, are not well
understood. Here, we propose that hubs in neural circuits may activate local signal transmission along sequences
of specific subnetworks. Intriguingly, in contrast to previous suggestions of the functional roles of hubs, here,
not the hubs themselves, but nonhub subnetworks transfer the signals. The core mechanism relies on hubs and
nonhubs providing activating feedback to each other. It may, thus, induce the propagation of specific pulse and
rate signals in neuronal and other communication networks.
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Hubs—nodes that are significantly more highly connected
than average—constitute a prominent structural feature of
many network dynamical systems, such as infection, trans-
portation, communication, and social networks [1]. The exis-
tence of hubs may follow from intentional design to optimize
network properties (such as in airline, transportation, and
technical communication infrastructure) or may emerge due to
self-organization via intrinsic growth rules (World Wide Web
and social networks) [1–4]. As hubs can structurally improve
the capabilities of networks to transfer signals [5], it is not
surprising that they were also found in the brain on different
scales: In cortical neuronal circuits, hub regions are assumed
to coordinate the activity of other regions and to organize the
flow of information between them [6]. On the microscopic
level, for instance, the nervous system of Caenorhabditis
elegans contains single cell hubs [7] involved in the control
of pheromone attraction as well as social behavior [8].

Interestingly, Bonifazi et al. [9] recently experimentally
discovered hub cells also in higher animals where they support
synchronous activity in the developing hippocampus. Yet, how
exactly hubs dynamically influence information transmission
in neural circuits still remains unknown [10].

In this Rapid Communication, we show that hub activity
may amplify local signals and may enable their targeted
transmission. Specifically, we show how hubs and nonhub
subnetworks in neural circuits activate each other to exhibit
synchronous pulse emission. Thereby, synchronous pulse
activity may robustly propagate along sequences of nonhub
subnetworks, thus, enabling directed and specific routing of
information across the entire system. The generic mechanism
of mutual hub and nonhub activation may equally enable the
transmission of pulse-coded as well as rate-coded signals in a
wide range of natural and artificial communication networks.

For an example of spiking neural circuits, consider net-
works of N units randomly connected to each other. Each
connection is present with a fixed probability. In the simplest
setting, between any pair of neurons, there is an excitatory
connection of strength ε+ with probability p+ and an inhibitory
connection of strength ε− with probability p− = p+ =: p. The
dynamics of each unit i is described by a real state variable, its

membrane potential Vi(t) in real time t and changes according
to leaky integrate-and-fire dynamics. Specifically, Vi integrates
excitatory (positive) and inhibitory (negative) pulsed inputs,
and when crossing a threshold from below, the potential resets
and the unit emits a pulse. This pulse arrives at the postsynaptic
neurons after a transmission delay, and its effects are modeled
by transient double-exponential conductance changes [11].

Typically, some of the pulse inputs to a neuron are
synchronous (i.e., are received within a few milliseconds),
and others are asynchronous. Whereas, the neuron integrates
all inhibitory and asynchronous excitatory inputs additively,
synchronous excitatory inputs are processed nonadditively
(nonlinearly). This nonadditive integration takes into account
the influence of fast dendritic spikes found in single neuron
experiments [12] on the dendritic (input) sites of neurons:
Whenever the total excitatory input to a dendrite summed over
a short time interval (typically 2 to 3 ms) exceeds a dendritic
threshold �d, a dendritic spike is initiated and changes the
membrane potential of the neuron after a short delay in a
stereotypical way. We model its effect by a stereotypical
current pulse causing a rapid strong increase (depolarization)
of Vi , which substantially exceeds the level of depolarization
expected from linear summation of inputs [11,13,14] and
resembles the shape of the depolarization found in experiments
[12]. We account for the experimentally observed saturation of
the depolarization by inputs exceeding the dendritic threshold
�d [12] as well as for the refractory time of ion channels
generating dendritic spikes by assuming that the dendrite
becomes refractory for a short time period t ref,ds after a
dendritic spike is initiated.

In our numerical simulations, we focus on networks of
spiking leaky integrate-and-fire neurons as described above
(Simulation results were obtained using the simulation
software NEST [15]). To achieve a mechanistic understanding
of the observed phenomena, we further derive an analytically
tractable description in terms of probabilistic threshold units
below.

Motivated by recent anatomical and physiological findings
[9], we assume that some Nh � 0 neurons are hub neu-
rons. They are distinguished (exclusively) by an increased
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probability ph > p to receive input connections from other
units in the network.

Following a standard approach for signal transmission in
cortical networks [16], we consider signal propagation along
weak feed-forward structures: The network contains sequences
(chains) of m subnetworks (groups) with Ng neurons each.
The neurons in each group are randomly chosen from
the nonhub population, and excitatory connection strengths
between subsequent subnetworks are increased compared to
other coupling strengths in the network, εsub > ε+.

We consider networks with balanced excitatory and in-
hibitory connectivities such that, in the absence of external
inputs, asynchronous irregular spiking dynamics constitutes
their ground state activity [17]. Externally exciting an initial
subnetwork to spike synchronously causes synchronous in-
puts to neurons of the downstream subnetwork and induces
synchronous spiking of a fraction of its neurons. This may
excite neurons in the ensuing subnetwork to spike, etc.,
thereby transmitting signals along the chain of subnetworks.
However, as the subnetworks are parts of a larger recur-
rent network, synchronous activity not only may spread
from one subnetwork to the next, but also may induce a
synchronous spiking response (echo) in the remainder of
the network. Depending on the parameters and the number
of initially synchronous neurons g0 in the first subnetwork
and r0 in the remainder of the network, synchronous ac-
tivity may, in principle, stably propagate, spread across the
entire recurrent network, and, thus, may obscure a prop-
agation signal (not shown) or may extinguish after a few
subnetworks.

Sample simulations of networks without hubs [Nh = 0,
Fig. 1(a)] illustrate that spreading and dying out of syn-
chrony dominate state space in agreement with the lit-
erature [18] because there is no mechanism keeping the
synchronization in the network remainder at a moderate
level.

Networks with a substantial number Nh of hub units exhibit
qualitatively different dynamics and support signal transmis-
sion: As hubs receive more input connections than other
units, they have a higher probability of spiking in response
to synchronous inputs from a certain subnetwork. Thereby,
hubs may establish a synchronous response to propagating
synchronous pulses. Due to increased connectivity at hubs
only, such an echo is confined to the hub neuron subpopulation
and, thus, does not spread over the entire network [cf.
Fig. 1(b)].

The increased connectivity towards hubs plays an interest-
ing double role: It ensures that a population of sufficiently
many hub neurons exhibits, itself, synchronous activity if
supported by synchrony in a (nonhub) subnetwork. At the
same time, the fact that the network remainder without
hubs has relatively low connectivity prevents spreading
of synchronous activity beyond the hub population. This
combination enables robust synchrony propagation along
sequences of nonhub subnetworks for a range of initially
synchronous neurons g0 in a subnetwork [cf. Fig. 1(b), main
panel].

To further understand this coaction mechanism, we consider
the dynamics only at the relevant time intervals where
synchronous pulses are sent and are received. Observing that
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FIG. 1. (Color online) Hubs activate signal transmission in a
neural network. Signals consist of localized synchronous spiking
activity (times marked green in the insets) transmitted across a
sequence of subnetworks (displayed as lowest neuron indices).
Spike times of hubs (red) displayed at the top, above those of
the remaining neurons (black). Main panels: Joint dynamics of the
number of synchronously spiking neurons in the nth subnetwork
(gn) and the total number of synchronously coactivated neurons of
the network remainder (rn) during signal propagation initiated by
synchronously stimulating g0 neurons of the initial subnetwork and
r0 neurons of the network remainder. (a) In networks without hubs,
the overall network activity either becomes pathological (large scale
synchrony: red shading, gray trajectories) or extinguishes quickly to
background activity (yellow shading, black trajectories). Hub neurons
in otherwise the same network (b) can induce a persistent signal
transmission across nonhubs (green shading, blue trajectories) by
generating sustained but bounded synchrony. Red trajectories indicate
example dynamics shown in the insets. The dashed lines indicate
the borders of activity regions analytically estimated in this Rapid
Communication (cf. Eqs. (5) and (6) and Ref. [11]). Parameters:
N = 5000, m = 10, Ng = 200, and p = 0.05; furthermore, Nh = 0
in (a) and Nh = 900 and ph = 0.12 in (b).

the neurons effectively act as probabilistic threshold units, we
derive an approximate analytic map for the joint response sizes
of active hubs and signal carrying (nonhub) units. The spiking
probability due to a synchronous input below the dendritic
threshold �d is very low [cf. Fig. 2(a)] so that we neglect it
against the probability of spiking due to inputs above threshold.
The probability psp(I+,I−) of a neuron spiking in response
to excitatory and inhibitory inputs I+ and I− is a function
of the probability distribution of the membrane potentials
of that neuron at the time of input reception. We take this
dependency into account by assuming that, immediately before
every spike reception time, the neuronal state is distributed
as in the unperturbed ground state. The function psp, thus,
obeys

psp(I+,I−) =
{

0 for I+ < �d,

p0(I−) for I+ � �d,
(1)

where p0(I−) is the spiking probability of a neuron in
the ground state receiving a dendritically suprathreshold
excitatory input and an inhibitory input of size I−. In particular,
p0(0) is the spiking probability of a single neuron when a
dendritic spike is generated in the absence of inhibition. p0

depends solely on the inhibitory input I− because, on one
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FIG. 2. (Color online) Hubs induce tangent bifurcations towards
signal transmission (neuron and network parameters as in Fig. 1).
(a) and (b) Firing probability psp of a neuron in the ground state as
a function of synchronous (a) excitatory input I+ and (b) inhibitory
input I−. (c) and (d) Iterated maps for (c) the number gn of (syn-
chronously) active neurons in the nth subnetwork (different colors
indicate different fixed hn’s) and (d) the number of synchronized hub
neurons hn (different colors: ph fixed; different line styles: gn fixed).
Analytical predictions [solid and dashed lines; Eqs. (5) and (6)] agree
well with numerical simulations of the spiking neural network model
(markers). Sufficiently large hn enables propagation of synchrony (c),
and a sufficiently large connection probability ph enables a persistent
hub echo for a propagating synchronous pulse (d). Hubs and nonhubs
reactivate each other.

hand, only sufficiently strong excitatory inputs exceeding the
dendritic threshold elicit a dendritic spike and the effect of
a dendritic spike on the postsynaptic neuron saturates, i.e.,
it remains the same, for stronger excitation [cf. Fig. 2(a)]
as found in experiments [12]. On the other hand, inhibition
will generally decrease a neuron’s spiking probability as
it partially compensates the input to the soma due to the
dendritic spike (cf. Fig. 2(b) and the experimental findings
in Ref. [19]). The precise form of p0(I−) depends on the
details of the background activity and the properties of neurons
and interactions. As will become clear below, all qualitatively
similar p0(I−)’s induce the same type of bifurcation relevant
for robust signal transmission, and thus, details of p0(I−) do
not matter.

During robust signal transmission promoted by a hub echo,
spikes of hub neurons and neurons of the currently active
subnetwork dominate the network dynamics [cf. inset of
Fig. 1(b)]. We, thus, focus on these two groups of neurons.
The influence of the remaining neurons can be analytically
derived analogously [11]. To be specific, assume that gn � Ng

neurons in a given subnetwork n and hn � Nh hub neurons are
active simultaneously, i.e., they spike synchronously. Given
the random network topology, for sufficiently large gn and hn,
the total input to the neurons of the (n + 1)th subnetwork is
approximately Gaussian distributed (approximating the actual
binomial distributions) I± ∼ N (μ±,σ 2

±) with probability den-
sity functions f+(I+) and f−(I−) and means and variances

given by

μ+ = (ε+hn + εcgn)p, σ 2
+ = (

ε2
+hn + ε2

c gn

)
p(1 − p),

(2)

μ− = ε−(hn + gn)p and σ 2
− = ε2

−(hn + gn)p(1 − p).

(3)

The expected number of neurons that spike synchronously in
subnetwork n + 1 becomes

gn+1 = Ng

∫ ∞

0

∫ ∞

0
psp(I+,I−)f+(I+)f−(I−)dI+dI−. (4)

Whereas, psp discontinuously depends on I+, it changes
smoothly and, thus, locally linearly with I− [cf. Figs. 2(a) and
2(b)] such that we may set f−(I−) = δ(I− − μ−) to evaluate
the integral in Eq. (4), yielding the iterated map,

gn+1 = Ngp
0(μ−)

1

2

(
1 + Erf

[
�d − μ+√

2σ+

])
(5)

for the number of active signal transferring (nonhub) neurons
in the next subnetwork. Note that all three quantities μ−, μ+,
and σ+ depend on hn and gn through Eqs. (2) and (3).

The iterated map for the number of synchronously active
hub neurons hn+1 is derived analogously: We discard those
hn neurons that have spiked together with the nth subnetwork
because they are unlikely to spike again due to their relative
refractoriness such that Nh − hn hub neurons are available to
spike. Replacing Ng by Nh − hn in Eq. (4) and computing the
Gaussian probability densities of the inputs yield the iterated
map,

hn+1 = (Nh − hn)p0(μ̃−)
1

2

(
1 + Erf

[
�d − μ̃+√

2σ̃+

])
, (6)

where μ̃+ = ε+ph(hn + gn), μ̃− = ε−ph(hn + gn), and σ̃ 2
+ =

ε2
+ph(1 − ph)(hn + gn).

The joint two-dimensional map (5) and (6) explicates how
the hub neurons can enable robust propagation of synchrony
[see Figs. 2(c) and 2(d)]: For a given number hn of active
hub neurons, the fixed points of Eq. (5) determine whether
robust propagation of synchrony can be initiated in the chain of
subnetworks. For networks without (active) hubs hn = 0, there
is only one fixed point G0 = 0, and any initial synchronous
pulse extinguishes after a small number of subnetworks.
With increasing hn, two additional fixed points G1 (unstable)
and G2 (stable) appear via a tangent bifurcation at some
hn = h∗, and robust signal transmission is enabled for initial
synchronous pulses g0 � G1 [cf. Fig. 2(c)]. For large numbers
of active hubs, even small initial group sizes g0 are sufficient
to generate robust signal transmission across the chain of
subnetworks.

Analogously, the fixed points of Eq. (6) determine whether
a persistent hub echo for the propagating synchronous pulse
establishes for a given hub connectivity ph and group size
gn [cf. Fig. 2(d)]. For small ph and gn, there is only one
fixed point H0 = 0. With increasing ph or gn, two additional
fixed points H1 (unstable) and H2 (stable) appear via a tangent
bifurcation for some p∗

h and g∗. Thus, for sufficiently large
hub connectivity ph � p∗

h , a persistent echo for a propagating
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FIG. 3. (Color online) Hub neurons act as a generic signal ampli-
fier and activate different signal routes. The figure shows simulation
data for a sparse recurrent spiking neural network [the same network
as in Fig. 1(b)] with two chains of subnetworks. (a) Raster plot of the
network activity; the background colors indicate whether the neurons
are members of one or both chains, hub neurons or remaining neurons,
as visualized by (b). (c) Current activity (spikes per bin; bin size 1 ms)
of the different neuron populations. If synchronous spiking is initiated
either in the initial subnetwork of one chain (t = 50 ms) or in the
hub neurons (t = 100 ms) only, synchronous activity extinguishes
quickly. In contrast, if the initial subnetwork of one of the chains as
well as the hub neurons are excited (t = 150 and 250 ms), robust
propagation of synchrony establishes in that specific chain.

synchronous pulse of size gn can be established; equivalently,
for fixed connectivity ph, sufficiently many synchronously
active neurons in the subnetwork maintain a hub echo. The
bifurcations resulting from the analytic mapping (5) and (6)
approximately predict the numerically found region where
robust signal transmission is possible (see the dashed line in
Fig. 1 and Ref. [11]).

Having gained this mechanistic understanding, we now
illustrate that hubs unspecifically but selectively activate
synchrony propagation. Signal propagation becomes possible
along any chain of subnetworks that structurally exists in the
system if its initial group is excited. In particular, in systems
with a second chain of subnetworks embedded, the mutual
hub and nonhub feedback can amplify signal transmission
along one chain without activating transmission in the other
one (cf. Fig. 3).

To summarize, we have demonstrated that hubs may act
as amplifiers that enable signal generation and transmission
in recurrent networks. So far, hubs were thought to directly
distribute various types of signals (e.g., actual information on
the World Wide Web, certain infections in disease spreading,
and people in travel networks) across a network. We now
identified a complementary fundamentally different role
of hubs in signal transmission: The hubs studied here do
not communicate the specific signal themselves; instead,
increased hub activity mirrors the presence of some localized
signal in other network parts, and the hubs promote the
transmission of any such signal across sequences of nonhub
subnetworks.

This mechanism of hub-activated signal propagation
essentially relies on: (a) the existence of some highly
connected nodes and (b) some sharp thresholdlike processing
of incoming inputs by single units (as, for instance,
mediated by fast dendritic sodium spikes in neural circuits).

Furthermore, the phenomenon is robust against changes in
the network topology. As an explicit example, we show that it
occurs in scale-free networks [1] where hubs naturally emerge
due to the “fat tail” of the degree distribution (cf. Ref. [11]
for an example). We, thus, expect that this type of signal
transmission may well play a role in biological networks and
may even be exploited in self-organized solutions of technical
communication networks [20].

It has long been hypothesized that cortical neural networks
transmit signals via propagating synchronous spiking activity
across subnetworks connected in a feed-forward manner
[14,16,18]. The results above now suggest that hubs might
enable robust propagation of synchronous signals even in
weak embedded feed-forward structures by echoing the
synchronous signal propagating along them. In the absence
of hubs (and due to the lack of a confining mechanism), the
echo cannot contribute in this way as synchronous activity
either dies out or spreads across the whole network and
causes pathological activity [e.g., Ref. [18] and cf. also
Fig. 1(a)]. To reveal the essential mechanisms underlying
signal transmission, we disregarded “Dale’s law” [21] (stating
that each neuron either has only excitatory or has only
inhibitory outgoing connections) and considered a simple
bimodal degree distribution clearly splitting the system into
hub and nonhub neurons. In additional simulations, we
verified that the uncovered new type of signal transmission
equally emerges in networks with neurons obeying Dale’s law
and exhibiting natural and broad degree distributions [11].

Interestingly, hubs have recently also been uncovered
experimentally in the developing hippocampus [9]. As in the
adult hippocampus, synchronized oscillatory activity abounds,
and the structural feature of hub neurons might support the
directed transmission of specific signals. Such hub-feedback
support may provide one reason why hubs emerge in these
systems in the first place, cf. also Ref. [22].

Specifically, hub feedback might also be involved in the
replay of spike sequences during so-called sharp wave-ripple
complexes observed in the hippocampus [23]. Here, during
sleep, neurons are activated in the same order as they have been
during an exploration phase, accompanied by strong network
oscillations. Whereas, most neurons take part in only a few of
the different replayed patterns, some are activated in a large
fraction of events [24]. Our results suggest that the latter may
be unspecific for certain memories and, rather, hub neurons
generating a synchronous feedback signal to stabilize signal
propagation along a previously learned feed-forward structure
of specific neurons.

Finally, our analytical results (5) and (6) for the activity
of the hubs and the signal-carrying units clearly demonstrate
that the principle of mutual activation underlying the support
of signal transmission may act in any network of sharply
nonlinear (probabilistic) threshold units as characterizing,
e.g., transmission of rate activities in networks of neural
populations (McCullogh-Pitts model, e.g., Ref. [25]), (failure)
cascades in social, supply, or communication networks (e.g.,
Ref. [26]), or signaling in gene and protein networks (threshold
Boolean networks, e.g., Ref. [27]).

This work was supported by the BMBF (Grant No.
01GQ1005B) and the DFG (Grant No. TI 629/3-1).
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